initial commit
[glibc.git] / sysdeps / ia64 / fpu / s_cosf.S
1 .file "sincosf.s"
2
3
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 //
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
14 //
15 // * Redistributions in binary form must reproduce the above copyright
16 // notice, this list of conditions and the following disclaimer in the
17 // documentation and/or other materials provided with the distribution.
18 //
19 // * The name of Intel Corporation may not be used to endorse or promote
20 // products derived from this software without specific prior written
21 // permission.
22
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 //
35 // Intel Corporation is the author of this code, and requests that all
36 // problem reports or change requests be submitted to it directly at
37 // http://www.intel.com/software/products/opensource/libraries/num.htm.
38 //
39 // History
40 //==============================================================
41 // 02/02/00 Initial version
42 // 04/02/00 Unwind support added.
43 // 06/16/00 Updated tables to enforce symmetry
44 // 08/31/00 Saved 2 cycles in main path, and 9 in other paths.
45 // 09/20/00 The updated tables regressed to an old version, so reinstated them
46 // 10/18/00 Changed one table entry to ensure symmetry
47 // 01/03/01 Improved speed, fixed flag settings for small arguments.
48 // 02/18/02 Large arguments processing routine excluded
49 // 05/20/02 Cleaned up namespace and sf0 syntax
50 // 06/03/02 Insure inexact flag set for large arg result
51 // 09/05/02 Single precision version is made using double precision one as base
52 // 02/10/03 Reordered header: .section, .global, .proc, .align
53 // 03/31/05 Reformatted delimiters between data tables
54 //
55 // API
56 //==============================================================
57 // float sinf( float x);
58 // float cosf( float x);
59 //
60 // Overview of operation
61 //==============================================================
62 //
63 // Step 1
64 // ======
65 // Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
66 // divide x by pi/2^k.
67 // Multiply by 2^k/pi.
68 // nfloat = Round result to integer (round-to-nearest)
69 //
70 // r = x - nfloat * pi/2^k
71 // Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k)
72
73 // for increased accuracy.
74 // pi/2^k is stored as two numbers that when added make pi/2^k.
75 // pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
76 // HIGH part is rounded to zero, LOW - to nearest
77 //
78 // x = (nfloat * pi/2^k) + r
79 // r is small enough that we can use a polynomial approximation
80 // and is referred to as the reduced argument.
81 //
82 // Step 3
83 // ======
84 // Take the unreduced part and remove the multiples of 2pi.
85 // So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
86 //
87 // nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
88 // N * 2^(k+1)
89 // nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
90 // nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
91 // nfloat * pi/2^k = N2pi + M * pi/2^k
92 //
93 //
94 // Sin(x) = Sin((nfloat * pi/2^k) + r)
95 // = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
96 //
97 // Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
98 // = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
99 // = Sin(Mpi/2^k)
100 //
101 // Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
102 // = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
103 // = Cos(Mpi/2^k)
104 //
105 // Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
106 //
107 //
108 // Step 4
109 // ======
110 // 0 <= M < 2^(k+1)
111 // There are 2^(k+1) Sin entries in a table.
112 // There are 2^(k+1) Cos entries in a table.
113 //
114 // Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
115 //
116 //
117 // Step 5
118 // ======
119 // Calculate Cos(r) and Sin(r) by polynomial approximation.
120 //
121 // Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos
122 // Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin
123 //
124 // and the coefficients q1, q2 and p1, p2 are stored in a table
125 //
126 //
127 // Calculate
128 // Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
129 //
130 // as follows
131 //
132 // S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
133 // rsq = r*r
134 //
135 //
136 // P = P1 + r^2*P2
137 // Q = Q1 + r^2*Q2
138 //
139 // rcub = r * rsq
140 // Sin(r) = r + rcub * P
141 // = r + r^3p1 + r^5p2 = Sin(r)
142 //
143 // The coefficients are not exactly these values, but almost.
144 //
145 // p1 = -1/6 = -1/3!
146 // p2 = 1/120 = 1/5!
147 // p3 = -1/5040 = -1/7!
148 // p4 = 1/362889 = 1/9!
149 //
150 // P = r + r^3 * P
151 //
152 // Answer = S[m] Cos(r) + C[m] P
153 //
154 // Cos(r) = 1 + rsq Q
155 // Cos(r) = 1 + r^2 Q
156 // Cos(r) = 1 + r^2 (q1 + r^2q2)
157 // Cos(r) = 1 + r^2q1 + r^4q2
158 //
159 // S[m] Cos(r) = S[m](1 + rsq Q)
160 // S[m] Cos(r) = S[m] + S[m] rsq Q
161 // S[m] Cos(r) = S[m] + s_rsq Q
162 // Q = S[m] + s_rsq Q
163 //
164 // Then,
165 //
166 // Answer = Q + C[m] P
167
168
169 // Registers used
170 //==============================================================
171 // general input registers:
172 // r14 -> r19
173 // r32 -> r45
174
175 // predicate registers used:
176 // p6 -> p14
177
178 // floating-point registers used
179 // f9 -> f15
180 // f32 -> f61
181
182 // Assembly macros
183 //==============================================================
184 sincosf_NORM_f8 = f9
185 sincosf_W = f10
186 sincosf_int_Nfloat = f11
187 sincosf_Nfloat = f12
188
189 sincosf_r = f13
190 sincosf_rsq = f14
191 sincosf_rcub = f15
192 sincosf_save_tmp = f15
193
194 sincosf_Inv_Pi_by_16 = f32
195 sincosf_Pi_by_16_1 = f33
196 sincosf_Pi_by_16_2 = f34
197
198 sincosf_Inv_Pi_by_64 = f35
199
200 sincosf_Pi_by_16_3 = f36
201
202 sincosf_r_exact = f37
203
204 sincosf_Sm = f38
205 sincosf_Cm = f39
206
207 sincosf_P1 = f40
208 sincosf_Q1 = f41
209 sincosf_P2 = f42
210 sincosf_Q2 = f43
211 sincosf_P3 = f44
212 sincosf_Q3 = f45
213 sincosf_P4 = f46
214 sincosf_Q4 = f47
215
216 sincosf_P_temp1 = f48
217 sincosf_P_temp2 = f49
218
219 sincosf_Q_temp1 = f50
220 sincosf_Q_temp2 = f51
221
222 sincosf_P = f52
223 sincosf_Q = f53
224
225 sincosf_srsq = f54
226
227 sincosf_SIG_INV_PI_BY_16_2TO61 = f55
228 sincosf_RSHF_2TO61 = f56
229 sincosf_RSHF = f57
230 sincosf_2TOM61 = f58
231 sincosf_NFLOAT = f59
232 sincosf_W_2TO61_RSH = f60
233
234 fp_tmp = f61
235
236 /////////////////////////////////////////////////////////////
237
238 sincosf_AD_1 = r33
239 sincosf_AD_2 = r34
240 sincosf_exp_limit = r35
241 sincosf_r_signexp = r36
242 sincosf_AD_beta_table = r37
243 sincosf_r_sincos = r38
244
245 sincosf_r_exp = r39
246 sincosf_r_17_ones = r40
247
248 sincosf_GR_sig_inv_pi_by_16 = r14
249 sincosf_GR_rshf_2to61 = r15
250 sincosf_GR_rshf = r16
251 sincosf_GR_exp_2tom61 = r17
252 sincosf_GR_n = r18
253 sincosf_GR_m = r19
254 sincosf_GR_32m = r19
255 sincosf_GR_all_ones = r19
256
257 gr_tmp = r41
258 GR_SAVE_PFS = r41
259 GR_SAVE_B0 = r42
260 GR_SAVE_GP = r43
261
262 RODATA
263 .align 16
264
265 // Pi/16 parts
266 LOCAL_OBJECT_START(double_sincosf_pi)
267 data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
268 data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
269 LOCAL_OBJECT_END(double_sincosf_pi)
270
271 // Coefficients for polynomials
272 LOCAL_OBJECT_START(double_sincosf_pq_k4)
273 data8 0x3F810FABB668E9A2 // P2
274 data8 0x3FA552E3D6DE75C9 // Q2
275 data8 0xBFC555554447BC7F // P1
276 data8 0xBFDFFFFFC447610A // Q1
277 LOCAL_OBJECT_END(double_sincosf_pq_k4)
278
279 // Sincos table (S[m], C[m])
280 LOCAL_OBJECT_START(double_sin_cos_beta_k4)
281 data8 0x0000000000000000 // sin ( 0 Pi / 16 )
282 data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
283 //
284 data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
285 data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
286 //
287 data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
288 data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
289 //
290 data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
291 data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
292 //
293 data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
294 data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
295 //
296 data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
297 data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
298 //
299 data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
300 data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
301 //
302 data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
303 data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
304 //
305 data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
306 data8 0x0000000000000000 // cos ( 8 Pi / 16 )
307 //
308 data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
309 data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
310 //
311 data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
312 data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
313 //
314 data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
315 data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
316 //
317 data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
318 data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
319 //
320 data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
321 data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
322 //
323 data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
324 data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
325 //
326 data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
327 data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
328 //
329 data8 0x0000000000000000 // sin ( 16 Pi / 16 )
330 data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
331 //
332 data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
333 data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
334 //
335 data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
336 data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
337 //
338 data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
339 data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
340 //
341 data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
342 data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
343 //
344 data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
345 data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
346 //
347 data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
348 data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
349 //
350 data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
351 data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
352 //
353 data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
354 data8 0x0000000000000000 // cos ( 24 Pi / 16 )
355 //
356 data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
357 data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
358 //
359 data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
360 data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
361 //
362 data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
363 data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
364 //
365 data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
366 data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
367 //
368 data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
369 data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
370 //
371 data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
372 data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
373 //
374 data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
375 data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
376 //
377 data8 0x0000000000000000 // sin ( 32 Pi / 16 )
378 data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
379 LOCAL_OBJECT_END(double_sin_cos_beta_k4)
380
381 .section .text
382
383 ////////////////////////////////////////////////////////
384 // There are two entry points: sin and cos
385 // If from sin, p8 is true
386 // If from cos, p9 is true
387
388 GLOBAL_IEEE754_ENTRY(sinf)
389
390 { .mlx
391 alloc r32 = ar.pfs,1,13,0,0
392 movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi
393 }
394 { .mlx
395 addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp
396 movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
397 };;
398
399 { .mfi
400 ld8 sincosf_AD_1 = [sincosf_AD_1]
401 fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument
402 cmp.eq p8,p9 = r0, r0 // set p8 (clear p9) for sin
403 }
404 { .mib
405 mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
406 mov sincosf_r_sincos = 0x0 // 0 for sin
407 br.cond.sptk _SINCOSF_COMMON // go to common part
408 };;
409
410 GLOBAL_IEEE754_END(sinf)
411 libm_alias_float_other (__sin, sin)
412
413 GLOBAL_IEEE754_ENTRY(cosf)
414
415 { .mlx
416 alloc r32 = ar.pfs,1,13,0,0
417 movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi
418 }
419 { .mlx
420 addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp
421 movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
422 };;
423
424 { .mfi
425 ld8 sincosf_AD_1 = [sincosf_AD_1]
426 fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument
427 cmp.eq p9,p8 = r0, r0 // set p9 (clear p8) for cos
428 }
429 { .mib
430 mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
431 mov sincosf_r_sincos = 0x8 // 8 for cos
432 nop.b 999
433 };;
434
435 ////////////////////////////////////////////////////////
436 // All entry points end up here.
437 // If from sin, sincosf_r_sincos is 0 and p8 is true
438 // If from cos, sincosf_r_sincos is 8 = 2^(k-1) and p9 is true
439 // We add sincosf_r_sincos to N
440
441 ///////////// Common sin and cos part //////////////////
442 _SINCOSF_COMMON:
443
444 // Form two constants we need
445 // 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
446 // 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
447 // fcmp used to set denormal, and invalid on snans
448 { .mfi
449 setf.sig sincosf_SIG_INV_PI_BY_16_2TO61 = sincosf_GR_sig_inv_pi_by_16
450 fclass.m p6,p0 = f8, 0xe7 // if x=0,inf,nan
451 mov sincosf_exp_limit = 0x10017
452 }
453 { .mlx
454 setf.d sincosf_RSHF_2TO61 = sincosf_GR_rshf_2to61
455 movl sincosf_GR_rshf = 0x43e8000000000000 // 1.1000 2^63
456 };; // Right shift
457
458 // Form another constant
459 // 2^-61 for scaling Nfloat
460 // 0x10017 is register_bias + 24.
461 // So if f8 >= 2^24, go to large argument routines
462 { .mmi
463 getf.exp sincosf_r_signexp = f8
464 setf.exp sincosf_2TOM61 = sincosf_GR_exp_2tom61
465 addl gr_tmp = -1,r0 // For "inexect" constant create
466 };;
467
468 // Load the two pieces of pi/16
469 // Form another constant
470 // 1.1000...000 * 2^63, the right shift constant
471 { .mmb
472 ldfe sincosf_Pi_by_16_1 = [sincosf_AD_1],16
473 setf.d sincosf_RSHF = sincosf_GR_rshf
474 (p6) br.cond.spnt _SINCOSF_SPECIAL_ARGS
475 };;
476
477 // Getting argument's exp for "large arguments" filtering
478 { .mmi
479 ldfe sincosf_Pi_by_16_2 = [sincosf_AD_1],16
480 setf.sig fp_tmp = gr_tmp // constant for inexact set
481 nop.i 999
482 };;
483
484 // Polynomial coefficients (Q2, Q1, P2, P1) loading
485 { .mmi
486 ldfpd sincosf_P2,sincosf_Q2 = [sincosf_AD_1],16
487 nop.m 999
488 nop.i 999
489 };;
490
491 // Select exponent (17 lsb)
492 { .mmi
493 ldfpd sincosf_P1,sincosf_Q1 = [sincosf_AD_1],16
494 nop.m 999
495 dep.z sincosf_r_exp = sincosf_r_signexp, 0, 17
496 };;
497
498 // p10 is true if we must call routines to handle larger arguments
499 // p10 is true if f8 exp is >= 0x10017 (2^24)
500 { .mfb
501 cmp.ge p10,p0 = sincosf_r_exp,sincosf_exp_limit
502 nop.f 999
503 (p10) br.cond.spnt _SINCOSF_LARGE_ARGS // Go to "large args" routine
504 };;
505
506 // sincosf_W = x * sincosf_Inv_Pi_by_16
507 // Multiply x by scaled 16/pi and add large const to shift integer part of W to
508 // rightmost bits of significand
509 { .mfi
510 nop.m 999
511 fma.s1 sincosf_W_2TO61_RSH = sincosf_NORM_f8, sincosf_SIG_INV_PI_BY_16_2TO61, sincosf_RSHF_2TO61
512 nop.i 999
513 };;
514
515 // sincosf_NFLOAT = Round_Int_Nearest(sincosf_W)
516 // This is done by scaling back by 2^-61 and subtracting the shift constant
517 { .mfi
518 nop.m 999
519 fms.s1 sincosf_NFLOAT = sincosf_W_2TO61_RSH,sincosf_2TOM61,sincosf_RSHF
520 nop.i 999
521 };;
522
523 // get N = (int)sincosf_int_Nfloat
524 { .mfi
525 getf.sig sincosf_GR_n = sincosf_W_2TO61_RSH // integer N value
526 nop.f 999
527 nop.i 999
528 };;
529
530 // Add 2^(k-1) (which is in sincosf_r_sincos=8) to N
531 // sincosf_r = -sincosf_Nfloat * sincosf_Pi_by_16_1 + x
532 { .mfi
533 add sincosf_GR_n = sincosf_GR_n, sincosf_r_sincos
534 fnma.s1 sincosf_r = sincosf_NFLOAT, sincosf_Pi_by_16_1, sincosf_NORM_f8
535 nop.i 999
536 };;
537
538 // Get M (least k+1 bits of N)
539 { .mmi
540 and sincosf_GR_m = 0x1f,sincosf_GR_n // Put mask 0x1F -
541 nop.m 999 // - select k+1 bits
542 nop.i 999
543 };;
544
545 // Add 16*M to address of sin_cos_beta table
546 { .mfi
547 shladd sincosf_AD_2 = sincosf_GR_32m, 4, sincosf_AD_1
548 (p8) fclass.m.unc p10,p0 = f8,0x0b // If sin denormal input -
549 nop.i 999
550 };;
551
552 // Load Sin and Cos table value using obtained index m (sincosf_AD_2)
553 { .mfi
554 ldfd sincosf_Sm = [sincosf_AD_2],8 // Sin value S[m]
555 (p9) fclass.m.unc p11,p0 = f8,0x0b // If cos denormal input -
556 nop.i 999 // - set denormal
557 };;
558
559 // sincosf_r = sincosf_r -sincosf_Nfloat * sincosf_Pi_by_16_2
560 { .mfi
561 ldfd sincosf_Cm = [sincosf_AD_2] // Cos table value C[m]
562 fnma.s1 sincosf_r_exact = sincosf_NFLOAT, sincosf_Pi_by_16_2, sincosf_r
563 nop.i 999
564 }
565 // get rsq = r*r
566 { .mfi
567 nop.m 999
568 fma.s1 sincosf_rsq = sincosf_r, sincosf_r, f0 // r^2 = r*r
569 nop.i 999
570 };;
571
572 { .mfi
573 nop.m 999
574 fmpy.s0 fp_tmp = fp_tmp, fp_tmp // forces inexact flag
575 nop.i 999
576 };;
577
578 // Polynomials calculation
579 // Q = Q2*r^2 + Q1
580 // P = P2*r^2 + P1
581 { .mfi
582 nop.m 999
583 fma.s1 sincosf_Q = sincosf_rsq, sincosf_Q2, sincosf_Q1
584 nop.i 999
585 }
586 { .mfi
587 nop.m 999
588 fma.s1 sincosf_P = sincosf_rsq, sincosf_P2, sincosf_P1
589 nop.i 999
590 };;
591
592 // get rcube and S[m]*r^2
593 { .mfi
594 nop.m 999
595 fmpy.s1 sincosf_srsq = sincosf_Sm,sincosf_rsq // r^2*S[m]
596 nop.i 999
597 }
598 { .mfi
599 nop.m 999
600 fmpy.s1 sincosf_rcub = sincosf_r_exact, sincosf_rsq
601 nop.i 999
602 };;
603
604 // Get final P and Q
605 // Q = Q*S[m]*r^2 + S[m]
606 // P = P*r^3 + r
607 { .mfi
608 nop.m 999
609 fma.s1 sincosf_Q = sincosf_srsq,sincosf_Q, sincosf_Sm
610 nop.i 999
611 }
612 { .mfi
613 nop.m 999
614 fma.s1 sincosf_P = sincosf_rcub,sincosf_P,sincosf_r_exact
615 nop.i 999
616 };;
617
618 // If sinf(denormal) - force underflow to be set
619 .pred.rel "mutex",p10,p11
620 { .mfi
621 nop.m 999
622 (p10) fmpy.s.s0 fp_tmp = f8,f8 // forces underflow flag
623 nop.i 999 // for denormal sine args
624 }
625 // If cosf(denormal) - force denormal to be set
626 { .mfi
627 nop.m 999
628 (p11) fma.s.s0 fp_tmp = f8, f1, f8 // forces denormal flag
629 nop.i 999 // for denormal cosine args
630 };;
631
632
633 // Final calculation
634 // result = C[m]*P + Q
635 { .mfb
636 nop.m 999
637 fma.s.s0 f8 = sincosf_Cm, sincosf_P, sincosf_Q
638 br.ret.sptk b0 // Exit for common path
639 };;
640
641 ////////// x = 0/Inf/NaN path //////////////////
642 _SINCOSF_SPECIAL_ARGS:
643 .pred.rel "mutex",p8,p9
644 // sinf(+/-0) = +/-0
645 // sinf(Inf) = NaN
646 // sinf(NaN) = NaN
647 { .mfi
648 nop.m 999
649 (p8) fma.s.s0 f8 = f8, f0, f0 // sinf(+/-0,NaN,Inf)
650 nop.i 999
651 }
652 // cosf(+/-0) = 1.0
653 // cosf(Inf) = NaN
654 // cosf(NaN) = NaN
655 { .mfb
656 nop.m 999
657 (p9) fma.s.s0 f8 = f8, f0, f1 // cosf(+/-0,NaN,Inf)
658 br.ret.sptk b0 // Exit for x = 0/Inf/NaN path
659 };;
660
661 GLOBAL_IEEE754_END(cosf)
662 libm_alias_float_other (__cos, cos)
663
664 //////////// x >= 2^24 - large arguments routine call ////////////
665 LOCAL_LIBM_ENTRY(__libm_callout_sincosf)
666 _SINCOSF_LARGE_ARGS:
667 .prologue
668 { .mfi
669 mov sincosf_GR_all_ones = -1 // 0xffffffff
670 nop.f 999
671 .save ar.pfs,GR_SAVE_PFS
672 mov GR_SAVE_PFS = ar.pfs
673 }
674 ;;
675
676 { .mfi
677 mov GR_SAVE_GP = gp
678 nop.f 999
679 .save b0, GR_SAVE_B0
680 mov GR_SAVE_B0 = b0
681 }
682 .body
683
684 { .mbb
685 setf.sig sincosf_save_tmp = sincosf_GR_all_ones // inexact set
686 nop.b 999
687 (p8) br.call.sptk.many b0 = __libm_sin_large# // sinf(large_X)
688 };;
689
690 { .mbb
691 cmp.ne p9,p0 = sincosf_r_sincos, r0 // set p9 if cos
692 nop.b 999
693 (p9) br.call.sptk.many b0 = __libm_cos_large# // cosf(large_X)
694 };;
695
696 { .mfi
697 mov gp = GR_SAVE_GP
698 fma.s.s0 f8 = f8, f1, f0 // Round result to single
699 mov b0 = GR_SAVE_B0
700 }
701 { .mfi // force inexact set
702 nop.m 999
703 fmpy.s0 sincosf_save_tmp = sincosf_save_tmp, sincosf_save_tmp
704 nop.i 999
705 };;
706
707 { .mib
708 nop.m 999
709 mov ar.pfs = GR_SAVE_PFS
710 br.ret.sptk b0 // Exit for large arguments routine call
711 };;
712 LOCAL_LIBM_END(__libm_callout_sincosf)
713
714 .type __libm_sin_large#, @function
715 .global __libm_sin_large#
716 .type __libm_cos_large#, @function
717 .global __libm_cos_large#