X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=simple_v_extension.mdwn;h=4cf0937edde233618bbd012a4a8ad571c9acd473;hb=989d018425f243ab9d3959108356eba243ad57ae;hp=22a8c3fa4d0243ae6da2071139559bd29bbf8ef7;hpb=30f7d0c3c79b843f5aab7e647b8e26316f3c991f;p=libreriscv.git diff --git a/simple_v_extension.mdwn b/simple_v_extension.mdwn index 22a8c3fa4..4cf0937ed 100644 --- a/simple_v_extension.mdwn +++ b/simple_v_extension.mdwn @@ -1,14 +1,5 @@ # Variable-width Variable-packed SIMD / Simple-V / Parallelism Extension Proposal -* TODO 23may2018: CSR-CAM-ify regfile tables -* TODO 23may2018: zero-mark predication CSR -* TODO 28may2018: sort out VSETVL: CSR length to be removed? -* TODO 09jun2018: Chennai Presentation more up-to-date -* TODO 09jun2019: elwidth only 4 values (dflt, dflt/2, 8, 16) -* TODO 09jun2019: extra register banks (future option) -* TODO 09jun2019: new Reg CSR table (incl. packed=Y/N) - - Key insight: Simple-V is intended as an abstraction layer to provide a consistent "API" to parallelisation of existing *and future* operations. *Actual* internal hardware-level parallelism is *not* required, such @@ -18,8 +9,8 @@ instruction queue (FIFO), pending execution. *Actual* parallelism, if added independently of Simple-V in the form of Out-of-order restructuring (including parallel ALU lanes) or VLIW -implementations, or SIMD, or anything else, would then benefit *if* -Simple-V was added on top. +implementations, or SIMD, or anything else, would then benefit from +the uniformity of a consistent API. [[!toc ]] @@ -945,6 +936,115 @@ of detecting early page / segmentation faults and adjusting the TLB in advance, accordingly: other strategies are explored in the Appendix Section "Virtual Memory Page Faults". +## Vectorised Copy/Move (and conversion) instructions + +There is a series of 2-operand instructions involving copying (and +alteration): C.MV, FMV, FNEG, FABS, FCVT, FSGNJ. These operations all +follow the same pattern, as it is *both* the source *and* destination +predication masks that are taken into account. This is different from +the three-operand arithmetic instructions, where the predication mask +is taken from the *destination* register, and applied uniformly to the +elements of the source register(s), element-for-element. + +### C.MV Instruction + +There is no MV instruction in RV however there is a C.MV instruction. +It is used for copying integer-to-integer registers (vectorised FMV +is used for copying floating-point). + +If either the source or the destination register are marked as vectors +C.MV is reinterpreted to be a vectorised (multi-register) predicated +move operation. The actual instruction's format does not change: + +[[!table data=""" +15 12 | 11 7 | 6 2 | 1 0 | +funct4 | rd | rs | op | +4 | 5 | 5 | 2 | +C.MV | dest | src | C0 | +"""]] + +A simplified version of the pseudocode for this operation is as follows: + + function op_mv(rd, rs) # MV not VMV! +  rd = int_vec[rd].isvector ? int_vec[rd].regidx : rd; +  rs = int_vec[rs].isvector ? int_vec[rs].regidx : rs; +  ps = get_pred_val(FALSE, rs); # predication on src +  pd = get_pred_val(FALSE, rd); # ... AND on dest +  for (int i = 0, int j = 0; i < VL && j < VL;): + if (int_vec[rs].isvec) while (!(ps & 1< What does an ADD of two different-sized vectors do in simple-V? @@ -959,6 +1059,168 @@ Section "Virtual Memory Page Faults". * Throw an exception. Whether that actually results in spawning threads as part of the trap-handling remains to be seen. +# Under consideration + +From the Chennai 2018 slides the following issues were raised. +Efforts to analyse and answer these questions are below. + +* Should future extra bank be included now? +* How many Register and Predication CSRs should there be? + (and how many in RV32E) +* How many in M-Mode (for doing context-switch)? +* Should use of registers be allowed to "wrap" (x30 x31 x1 x2)? +* Can CLIP be done as a CSR (mode, like elwidth) +* SIMD saturation (etc.) also set as a mode? +* Include src1/src2 predication on Comparison Ops? + (same arrangement as C.MV, with same flexibility/power) +* 8/16-bit ops is it worthwhile adding a "start offset"? + (a bit like misaligned addressing... for registers) + or just use predication to skip start? + +## Future (extra) bank be included (made mandatory) + +The implications of expanding the *standard* register file from +32 entries per bank to 64 per bank is quite an extensive architectural +change. Also it has implications for context-switching. + +Therefore, on balance, it is not recommended and certainly should +not be made a *mandatory* requirement for the use of SV. SV's design +ethos is to be minimally-disruptive for implementors to shoe-horn +into an existing design. + +## How large should the Register and Predication CSR key-value stores be? + +This is something that definitely needs actual evaluation and for +code to be run and the results analysed. At the time of writing +(12jul2018) that is too early to tell. An approximate best-guess +however would be 16 entries. + +RV32E however is a special case, given that it is highly unlikely +(but not outside the realm of possibility) that it would be used +for performance reasons but instead for reducing instruction count. +The number of CSR entries therefore has to be considered extremely +carefully. + +## How many CSR entries in M-Mode or S-Mode (for context-switching)? + +The minimum required CSR entries would be 1 for each register-bank: +one for integer and one for floating-point. However, as shown +in the "Context Switch Example" section, for optimal efficiency +(minimal instructions in a low-latency situation) the CSRs for +the context-switch should be set up *and left alone*. + +This means that it is not really a good idea to touch the CSRs +used for context-switching in the M-Mode (or S-Mode) trap, so +if there is ever demonstrated a need for vectors then there would +need to be *at least* one more free. However just one does not make +much sense (as it one only covers scalar-vector ops) so it is more +likely that at least two extra would be needed. + +This *in addition* - in the RV32E case - if an RV32E implementation +happens also to support U/S/M modes. This would be considered quite +rare but not outside of the realm of possibility. + +Conclusion: all needs careful analysis and future work. + +## Should use of registers be allowed to "wrap" (x30 x31 x1 x2)? + +On balance it's a neat idea however it does seem to be one where the +benefits are not really clear. It would however obviate the need for +an exception to be raised if the VL runs out of registers to put +things in (gets to x31, tries a non-existent x32 and fails), however +the "fly in the ointment" is that x0 is hard-coded to "zero". The +increment therefore would need to be double-stepped to skip over x0. +Some microarchitectures could run into difficulties (SIMD-like ones +in particular) so it needs a lot more thought. + +## Can CLIP be done as a CSR (mode, like elwidth) + +RVV appears to be going this way. At the time of writing (12jun2018) +it's noted that in V2.3-Draft V0.4 RVV Chapter, RVV intends to do +clip by way of exactly this method: setting a "clip mode" in a CSR. + +No details are given however the most sensible thing to have would be +to extend the 16-bit Register CSR table to 24-bit (or 32-bit) and have +extra bits specifying the type of clipping to be carried out, on +a per-register basis. Other bits may be used for other purposes +(see SIMD saturation below) + +## SIMD saturation (etc.) also set as a mode? + +Similar to "CLIP" as an extension to the CSR key-value store, "saturate" +may also need extra details (what the saturation maximum is for example). + +## Include src1/src2 predication on Comparison Ops? + +In the C.MV (and other ops - see "C.MV Instruction"), the decision +was taken, unlike in ADD (etc.) which are 3-operand ops, to use +*both* the src *and* dest predication masks to give an extremely +powerful and flexible instruction that covers a huge number of +"traditional" vector opcodes. + +The natural question therefore to ask is: where else could this +flexibility be deployed? What about comparison operations? + +Unfortunately, C.MV is basically "regs[dest] = regs[src]" whilst +predicated comparison operations are actually a *three* operand +instruction: + + regs[pred] |= 1<< (cmp(regs[src1], regs[src2]) ? 1 : 0) + +Therefore at first glance it does not make sense to use src1 and src2 +predication masks, as it breaks the rule of 3-operand instructions +to use the *destination* predication register. + +In this case however, the destination *is* a predication register +as opposed to being a predication mask that is applied *to* the +(vectorised) operation, element-at-a-time on src1 and src2. + +Thus the question is directly inter-related to whether the modification +of the predication mask should *itself* be predicated. + +It is quite complex, in other words, and needs careful consideration. + +## 8/16-bit ops is it worthwhile adding a "start offset"? + +The idea here is to make it possible, particularly in a "Packed SIMD" +case, to be able to avoid doing unaligned Load/Store operations +by specifying that operations, instead of being carried out +element-for-element, are offset by a fixed amount *even* in 8 and 16-bit +element Packed SIMD cases. + +For example rather than take 2 32-bit registers divided into 4 8-bit +elements and have them ADDed element-for-element as follows: + + r3[0] = add r4[0], r6[0] + r3[1] = add r4[1], r6[1] + r3[2] = add r4[2], r6[2] + r3[3] = add r4[3], r6[3] + +an offset of 1 would result in four operations as follows, instead: + + r3[0] = add r4[1], r6[0] + r3[1] = add r4[2], r6[1] + r3[2] = add r4[3], r6[2] + r3[3] = add r5[0], r6[3] + +In non-packed-SIMD mode there is no benefit at all, as a vector may +be created using a different CSR that has the offset built-in. So this +leaves just the packed-SIMD case to consider. + +Two ways in which this could be implemented / emulated (without special +hardware): + +* bit-manipulation that shuffles the data along by one byte (or one word) + either prior to or as part of the operation requiring the offset. +* just use an unaligned Load/Store sequence, even if there are performance + penalties for doing so. + +The question then is whether the performance hit is worth the extra hardware +involving byte-shuffling/shifting the data by an arbitrary offset. On +balance given that there are two reasonable instruction-based options, the +hardware-offset option should be left out for the initial version of SV, +with the option to consider it in an "advanced" version of the specification. + # Impementing V on top of Simple-V With Simple-V converting the original RVV draft concept-for-concept