X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fieee754%2Fpart_mul_add%2Fmultiply.py;h=060d69042fbfa0cb0a134c72f8559943d595e551;hb=fba3928a5d61d92a2f05ff1c1b1e10ab77d235e7;hp=f24724bf3d68900ef2f941be84528dad7d859135;hpb=8cb98291a98a129e3872c2e8798f768da459dfa5;p=ieee754fpu.git diff --git a/src/ieee754/part_mul_add/multiply.py b/src/ieee754/part_mul_add/multiply.py index f24724bf..060d6904 100644 --- a/src/ieee754/part_mul_add/multiply.py +++ b/src/ieee754/part_mul_add/multiply.py @@ -9,6 +9,7 @@ from nmigen.cli import main from functools import reduce from operator import or_ + class PartitionPoints(dict): """Partition points and corresponding ``Value``s. @@ -111,6 +112,11 @@ class FullAdder(Elaboratable): :attribute in2: the third input :attribute sum: the sum output :attribute carry: the carry output + + Rather than do individual full adders (and have an array of them, + which would be very slow to simulate), this module can specify the + bit width of the inputs and outputs: in effect it performs multiple + Full 3-2 Add operations "in parallel". """ def __init__(self, width): @@ -134,9 +140,77 @@ class FullAdder(Elaboratable): return m +class MaskedFullAdder(Elaboratable): + """Masked Full Adder. + + :attribute mask: the carry partition mask + :attribute in0: the first input + :attribute in1: the second input + :attribute in2: the third input + :attribute sum: the sum output + :attribute mcarry: the masked carry output + + FullAdders are always used with a "mask" on the output. To keep + the graphviz "clean", this class performs the masking here rather + than inside a large for-loop. + + See the following discussion as to why this is no longer derived + from FullAdder. Each carry is shifted here *before* being ANDed + with the mask, so that an AOI cell may be used (which is more + gate-efficient) + https://en.wikipedia.org/wiki/AND-OR-Invert + https://groups.google.com/d/msg/comp.arch/fcq-GLQqvas/vTxmcA0QAgAJ + """ + + def __init__(self, width): + """Create a ``MaskedFullAdder``. + + :param width: the bit width of the input and output + """ + self.width = width + self.mask = Signal(width, reset_less=True) + self.mcarry = Signal(width, reset_less=True) + self.in0 = Signal(width, reset_less=True) + self.in1 = Signal(width, reset_less=True) + self.in2 = Signal(width, reset_less=True) + self.sum = Signal(width, reset_less=True) + + def elaborate(self, platform): + """Elaborate this module.""" + m = Module() + s1 = Signal(self.width, reset_less=True) + s2 = Signal(self.width, reset_less=True) + s3 = Signal(self.width, reset_less=True) + c1 = Signal(self.width, reset_less=True) + c2 = Signal(self.width, reset_less=True) + c3 = Signal(self.width, reset_less=True) + m.d.comb += self.sum.eq(self.in0 ^ self.in1 ^ self.in2) + m.d.comb += s1.eq(Cat(0, self.in0)) + m.d.comb += s2.eq(Cat(0, self.in1)) + m.d.comb += s3.eq(Cat(0, self.in2)) + m.d.comb += c1.eq(s1 & s2 & self.mask) + m.d.comb += c2.eq(s2 & s3 & self.mask) + m.d.comb += c3.eq(s3 & s1 & self.mask) + m.d.comb += self.mcarry.eq(c1 | c2 | c3) + return m + + class PartitionedAdder(Elaboratable): """Partitioned Adder. + Performs the final add. The partition points are included in the + actual add (in one of the operands only), which causes a carry over + to the next bit. Then the final output *removes* the extra bits from + the result. + + partition: .... P... P... P... P... (32 bits) + a : .... .... .... .... .... (32 bits) + b : .... .... .... .... .... (32 bits) + exp-a : ....P....P....P....P.... (32+4 bits, P=1 if no partition) + exp-b : ....0....0....0....0.... (32 bits plus 4 zeros) + exp-o : ....xN...xN...xN...xN... (32+4 bits - x to be discarded) + o : .... N... N... N... N... (32 bits - x ignored, N is carry-over) + :attribute width: the bit width of the input and output. Read-only. :attribute a: the first input to the adder :attribute b: the second input to the adder @@ -164,46 +238,54 @@ class PartitionedAdder(Elaboratable): expanded_width += 1 expanded_width += 1 self._expanded_width = expanded_width - self._expanded_a = Signal(expanded_width) - self._expanded_b = Signal(expanded_width) - self._expanded_output = Signal(expanded_width) + # XXX these have to remain here due to some horrible nmigen + # simulation bugs involving sync. it is *not* necessary to + # have them here, they should (under normal circumstances) + # be moved into elaborate, as they are entirely local + self._expanded_a = Signal(expanded_width) # includes extra part-points + self._expanded_b = Signal(expanded_width) # likewise. + self._expanded_o = Signal(expanded_width) # likewise. def elaborate(self, platform): """Elaborate this module.""" m = Module() expanded_index = 0 # store bits in a list, use Cat later. graphviz is much cleaner - al = [] - bl = [] - ol = [] - ea = [] - eb = [] - eo = [] - # partition points are "breaks" (extra zeros) in what would otherwise - # be a massive long add. + al, bl, ol, ea, eb, eo = [],[],[],[],[],[] + + # partition points are "breaks" (extra zeros or 1s) in what would + # otherwise be a massive long add. when the "break" points are 0, + # whatever is in it (in the output) is discarded. however when + # there is a "1", it causes a roll-over carry to the *next* bit. + # we still ignore the "break" bit in the [intermediate] output, + # however by that time we've got the effect that we wanted: the + # carry has been carried *over* the break point. + for i in range(self.width): if i in self.partition_points: # add extra bit set to 0 + 0 for enabled partition points # and 1 + 0 for disabled partition points ea.append(self._expanded_a[expanded_index]) - al.append(~self.partition_points[i]) + al.append(~self.partition_points[i]) # add extra bit in a eb.append(self._expanded_b[expanded_index]) - bl.append(C(0)) - expanded_index += 1 + bl.append(C(0)) # yes, add a zero + expanded_index += 1 # skip the extra point. NOT in the output ea.append(self._expanded_a[expanded_index]) - al.append(self.a[i]) eb.append(self._expanded_b[expanded_index]) + eo.append(self._expanded_o[expanded_index]) + al.append(self.a[i]) bl.append(self.b[i]) - eo.append(self._expanded_output[expanded_index]) ol.append(self.output[i]) expanded_index += 1 + # combine above using Cat m.d.comb += Cat(*ea).eq(Cat(*al)) m.d.comb += Cat(*eb).eq(Cat(*bl)) m.d.comb += Cat(*ol).eq(Cat(*eo)) + # use only one addition to take advantage of look-ahead carry and # special hardware on FPGAs - m.d.comb += self._expanded_output.eq( + m.d.comb += self._expanded_o.eq( self._expanded_a + self._expanded_b) return m @@ -211,7 +293,7 @@ class PartitionedAdder(Elaboratable): FULL_ADDER_INPUT_COUNT = 3 -class AddReduce(Elaboratable): +class AddReduceSingle(Elaboratable): """Add list of numbers together. :attribute inputs: input ``Signal``s to be summed. Modification not @@ -223,7 +305,8 @@ class AddReduce(Elaboratable): supported, except for by ``Signal.eq``. """ - def __init__(self, inputs, output_width, register_levels, partition_points): + def __init__(self, inputs, output_width, register_levels, partition_points, + part_ops): """Create an ``AddReduce``. :param inputs: input ``Signal``s to be summed. @@ -232,6 +315,9 @@ class AddReduce(Elaboratable): pipeline registers. :param partition_points: the input partition points. """ + self.part_ops = part_ops + self.out_part_ops = [Signal(2, name=f"out_part_ops_{i}") + for i in range(len(part_ops))] self.inputs = list(inputs) self._resized_inputs = [ Signal(output_width, name=f"resized_inputs[{i}]") @@ -242,12 +328,22 @@ class AddReduce(Elaboratable): if not self.partition_points.fits_in_width(output_width): raise ValueError("partition_points doesn't fit in output_width") self._reg_partition_points = self.partition_points.like() - max_level = AddReduce.get_max_level(len(self.inputs)) + + max_level = AddReduceSingle.get_max_level(len(self.inputs)) for level in self.register_levels: if level > max_level: raise ValueError( "not enough adder levels for specified register levels") + # this is annoying. we have to create the modules (and terms) + # because we need to know what they are (in order to set up the + # interconnects back in AddReduce), but cannot do the m.d.comb += + # etc because this is not in elaboratable. + self.groups = AddReduceSingle.full_adder_groups(len(self.inputs)) + self._intermediate_terms = [] + if len(self.groups) != 0: + self.create_next_terms() + @staticmethod def get_max_level(input_count): """Get the maximum level. @@ -257,19 +353,13 @@ class AddReduce(Elaboratable): """ retval = 0 while True: - groups = AddReduce.full_adder_groups(input_count) + groups = AddReduceSingle.full_adder_groups(input_count) if len(groups) == 0: return retval input_count %= FULL_ADDER_INPUT_COUNT input_count += 2 * len(groups) retval += 1 - def next_register_levels(self): - """``Iterable`` of ``register_levels`` for next recursive level.""" - for level in self.register_levels: - if level > 0: - yield level - 1 - @staticmethod def full_adder_groups(input_count): """Get ``inputs`` indices for which a full adder should be built.""" @@ -285,17 +375,23 @@ class AddReduce(Elaboratable): # pipeline registers resized_input_assignments = [self._resized_inputs[i].eq(self.inputs[i]) for i in range(len(self.inputs))] + copy_part_ops = [self.out_part_ops[i].eq(self.part_ops[i]) + for i in range(len(self.part_ops))] if 0 in self.register_levels: + m.d.sync += copy_part_ops m.d.sync += resized_input_assignments m.d.sync += self._reg_partition_points.eq(self.partition_points) else: + m.d.comb += copy_part_ops m.d.comb += resized_input_assignments m.d.comb += self._reg_partition_points.eq(self.partition_points) - groups = AddReduce.full_adder_groups(len(self.inputs)) + for (value, term) in self._intermediate_terms: + m.d.comb += term.eq(value) + # if there are no full adders to create, then we handle the base cases # and return, otherwise we go on to the recursive case - if len(groups) == 0: + if len(self.groups) == 0: if len(self.inputs) == 0: # use 0 as the default output value m.d.comb += self.output.eq(0) @@ -303,8 +399,7 @@ class AddReduce(Elaboratable): # handle single input m.d.comb += self.output.eq(self._resized_inputs[0]) else: - # base case for adding 2 or more inputs, which get recursively - # reduced to 2 inputs + # base case for adding 2 inputs assert len(self.inputs) == 2 adder = PartitionedAdder(len(self.output), self._reg_partition_points) @@ -313,33 +408,47 @@ class AddReduce(Elaboratable): m.d.comb += adder.b.eq(self._resized_inputs[1]) m.d.comb += self.output.eq(adder.output) return m - # go on to handle recursive case + + mask = self._reg_partition_points.as_mask(len(self.output)) + m.d.comb += self.part_mask.eq(mask) + + # add and link the intermediate term modules + for i, (iidx, adder_i) in enumerate(self.adders): + setattr(m.submodules, f"adder_{i}", adder_i) + + m.d.comb += adder_i.in0.eq(self._resized_inputs[iidx]) + m.d.comb += adder_i.in1.eq(self._resized_inputs[iidx + 1]) + m.d.comb += adder_i.in2.eq(self._resized_inputs[iidx + 2]) + m.d.comb += adder_i.mask.eq(self.part_mask) + + return m + + def create_next_terms(self): + + # go on to prepare recursive case intermediate_terms = [] + _intermediate_terms = [] def add_intermediate_term(value): intermediate_term = Signal( len(self.output), name=f"intermediate_terms[{len(intermediate_terms)}]") + _intermediate_terms.append((value, intermediate_term)) intermediate_terms.append(intermediate_term) - m.d.comb += intermediate_term.eq(value) # store mask in intermediary (simplifies graph) - part_mask = Signal(len(self.output), reset_less=True) - mask = self._reg_partition_points.as_mask(len(self.output)) - m.d.comb += part_mask.eq(mask) + self.part_mask = Signal(len(self.output), reset_less=True) # create full adders for this recursive level. # this shrinks N terms to 2 * (N // 3) plus the remainder - for i in groups: - adder_i = FullAdder(len(self.output)) - setattr(m.submodules, f"adder_{i}", adder_i) - m.d.comb += adder_i.in0.eq(self._resized_inputs[i]) - m.d.comb += adder_i.in1.eq(self._resized_inputs[i + 1]) - m.d.comb += adder_i.in2.eq(self._resized_inputs[i + 2]) + self.adders = [] + for i in self.groups: + adder_i = MaskedFullAdder(len(self.output)) + self.adders.append((i, adder_i)) + # add both the sum and the masked-carry to the next level. + # 3 inputs have now been reduced to 2... add_intermediate_term(adder_i.sum) - shifted_carry = adder_i.carry << 1 - # mask out carry bits to prevent carries between partitions - add_intermediate_term((adder_i.carry << 1) & part_mask) + add_intermediate_term(adder_i.mcarry) # handle the remaining inputs. if len(self.inputs) % FULL_ADDER_INPUT_COUNT == 1: add_intermediate_term(self._resized_inputs[-1]) @@ -351,13 +460,89 @@ class AddReduce(Elaboratable): add_intermediate_term(self._resized_inputs[-1]) else: assert len(self.inputs) % FULL_ADDER_INPUT_COUNT == 0 - # recursive invocation of ``AddReduce`` - next_level = AddReduce(intermediate_terms, - len(self.output), - self.next_register_levels(), - self._reg_partition_points) - m.submodules.next_level = next_level + + self.intermediate_terms = intermediate_terms + self._intermediate_terms = _intermediate_terms + + +class AddReduce(Elaboratable): + """Recursively Add list of numbers together. + + :attribute inputs: input ``Signal``s to be summed. Modification not + supported, except for by ``Signal.eq``. + :attribute register_levels: List of nesting levels that should have + pipeline registers. + :attribute output: output sum. + :attribute partition_points: the input partition points. Modification not + supported, except for by ``Signal.eq``. + """ + + def __init__(self, inputs, output_width, register_levels, partition_points, + part_ops): + """Create an ``AddReduce``. + + :param inputs: input ``Signal``s to be summed. + :param output_width: bit-width of ``output``. + :param register_levels: List of nesting levels that should have + pipeline registers. + :param partition_points: the input partition points. + """ + self.inputs = inputs + self.part_ops = part_ops + self.out_part_ops = [Signal(2, name=f"out_part_ops_{i}") + for i in range(len(part_ops))] + self.output = Signal(output_width) + self.output_width = output_width + self.register_levels = register_levels + self.partition_points = partition_points + + self.create_levels() + + @staticmethod + def get_max_level(input_count): + return AddReduceSingle.get_max_level(input_count) + + @staticmethod + def next_register_levels(register_levels): + """``Iterable`` of ``register_levels`` for next recursive level.""" + for level in register_levels: + if level > 0: + yield level - 1 + + def create_levels(self): + """creates reduction levels""" + + mods = [] + next_levels = self.register_levels + partition_points = self.partition_points + inputs = self.inputs + part_ops = self.part_ops + while True: + next_level = AddReduceSingle(inputs, self.output_width, next_levels, + partition_points, part_ops) + mods.append(next_level) + if len(next_level.groups) == 0: + break + next_levels = list(AddReduce.next_register_levels(next_levels)) + partition_points = next_level._reg_partition_points + inputs = next_level.intermediate_terms + part_ops = next_level.out_part_ops + + self.levels = mods + + def elaborate(self, platform): + """Elaborate this module.""" + m = Module() + + for i, next_level in enumerate(self.levels): + setattr(m.submodules, "next_level%d" % i, next_level) + + # output comes from last module m.d.comb += self.output.eq(next_level.output) + copy_part_ops = [self.out_part_ops[i].eq(next_level.out_part_ops[i]) + for i in range(len(self.part_ops))] + m.d.comb += copy_part_ops + return m @@ -378,6 +563,11 @@ def get_term(value, shift=0, enabled=None): class ProductTerm(Elaboratable): + """ this class creates a single product term (a[..]*b[..]). + it has a design flaw in that is the *output* that is selected, + where the multiplication(s) are combinatorially generated + all the time. + """ def __init__(self, width, twidth, pbwid, a_index, b_index): self.a_index = a_index @@ -417,8 +607,8 @@ class ProductTerm(Elaboratable): bsb = Signal(self.width, reset_less=True) a_index, b_index = self.a_index, self.b_index pwidth = self.pwidth - m.d.comb += bsa.eq(self.a.bit_select(a_index * pwidth, pwidth)) - m.d.comb += bsb.eq(self.b.bit_select(b_index * pwidth, pwidth)) + m.d.comb += bsa.eq(self.a.part(a_index * pwidth, pwidth)) + m.d.comb += bsb.eq(self.b.part(b_index * pwidth, pwidth)) m.d.comb += self.ti.eq(bsa * bsb) m.d.comb += self.term.eq(get_term(self.ti, self.shift, self.enabled)) """ @@ -432,8 +622,8 @@ class ProductTerm(Elaboratable): asel = Signal(width, reset_less=True) bsel = Signal(width, reset_less=True) a_index, b_index = self.a_index, self.b_index - m.d.comb += asel.eq(self.a.bit_select(a_index * pwidth, pwidth)) - m.d.comb += bsel.eq(self.b.bit_select(b_index * pwidth, pwidth)) + m.d.comb += asel.eq(self.a.part(a_index * pwidth, pwidth)) + m.d.comb += bsel.eq(self.b.part(b_index * pwidth, pwidth)) m.d.comb += bsa.eq(get_term(asel, self.shift, self.enabled)) m.d.comb += bsb.eq(get_term(bsel, self.shift, self.enabled)) m.d.comb += self.ti.eq(bsa * bsb) @@ -444,7 +634,10 @@ class ProductTerm(Elaboratable): class ProductTerms(Elaboratable): - + """ creates a bank of product terms. also performs the actual bit-selection + this class is to be wrapped with a for-loop on the "a" operand. + it creates a second-level for-loop on the "b" operand. + """ def __init__(self, width, twidth, pbwid, a_index, blen): self.a_index = a_index self.blen = blen @@ -475,7 +668,55 @@ class ProductTerms(Elaboratable): return m +class LSBNegTerm(Elaboratable): + + def __init__(self, bit_width): + self.bit_width = bit_width + self.part = Signal(reset_less=True) + self.signed = Signal(reset_less=True) + self.op = Signal(bit_width, reset_less=True) + self.msb = Signal(reset_less=True) + self.nt = Signal(bit_width*2, reset_less=True) + self.nl = Signal(bit_width*2, reset_less=True) + + def elaborate(self, platform): + m = Module() + comb = m.d.comb + bit_wid = self.bit_width + ext = Repl(0, bit_wid) # extend output to HI part + + # determine sign of each incoming number *in this partition* + enabled = Signal(reset_less=True) + m.d.comb += enabled.eq(self.part & self.msb & self.signed) + + # for 8-bit values: form a * 0xFF00 by using -a * 0x100, the + # negation operation is split into a bitwise not and a +1. + # likewise for 16, 32, and 64-bit values. + + # width-extended 1s complement if a is signed, otherwise zero + comb += self.nt.eq(Mux(enabled, Cat(ext, ~self.op), 0)) + + # add 1 if signed, otherwise add zero + comb += self.nl.eq(Cat(ext, enabled, Repl(0, bit_wid-1))) + + return m + + class Part(Elaboratable): + """ a key class which, depending on the partitioning, will determine + what action to take when parts of the output are signed or unsigned. + + this requires 2 pieces of data *per operand, per partition*: + whether the MSB is HI/LO (per partition!), and whether a signed + or unsigned operation has been *requested*. + + once that is determined, signed is basically carried out + by splitting 2's complement into 1's complement plus one. + 1's complement is just a bit-inversion. + + the extra terms - as separate terms - are then thrown at the + AddReduce alongside the multiplication part-results. + """ def __init__(self, width, n_parts, n_levels, pbwid): # inputs @@ -504,14 +745,17 @@ class Part(Elaboratable): m = Module() pbs, parts, delayed_parts = self.pbs, self.parts, self.delayed_parts + # negated-temporary copy of partition bits + npbs = Signal.like(pbs, reset_less=True) + m.d.comb += npbs.eq(~pbs) byte_count = 8 // len(parts) for i in range(len(parts)): pbl = [] - pbl.append(~pbs[i * byte_count - 1]) + pbl.append(npbs[i * byte_count - 1]) for j in range(i * byte_count, (i + 1) * byte_count - 1): pbl.append(pbs[j]) - pbl.append(~pbs[(i + 1) * byte_count - 1]) - value = Signal(len(pbl), reset_less=True) + pbl.append(npbs[(i + 1) * byte_count - 1]) + value = Signal(len(pbl), name="value_%di" % i, reset_less=True) m.d.comb += value.eq(Cat(*pbl)) m.d.comb += parts[i].eq(~(value).bool()) m.d.comb += delayed_parts[0][i].eq(parts[i]) @@ -523,38 +767,31 @@ class Part(Elaboratable): self.not_a_term, self.neg_lsb_a_term, \ self.not_b_term, self.neg_lsb_b_term - byte_width = 8 // len(parts) - bit_width = 8 * byte_width + byte_width = 8 // len(parts) # byte width + bit_wid = 8 * byte_width # bit width nat, nbt, nla, nlb = [], [], [], [] for i in range(len(parts)): - be = parts[i] & self.a[(i + 1) * bit_width - 1] \ - & self.a_signed[i * byte_width] - ae = parts[i] & self.b[(i + 1) * bit_width - 1] \ - & self.b_signed[i * byte_width] - a_enabled = Signal(name="a_en_%d" % i, reset_less=True) - b_enabled = Signal(name="b_en_%d" % i, reset_less=True) - m.d.comb += a_enabled.eq(ae) - m.d.comb += b_enabled.eq(be) - - # for 8-bit values: form a * 0xFF00 by using -a * 0x100, the - # negation operation is split into a bitwise not and a +1. - # likewise for 16, 32, and 64-bit values. - nat.append(Mux(a_enabled, - Cat(Repl(0, bit_width), - ~self.a.bit_select(bit_width * i, bit_width)), - 0)) - - nla.append(Cat(Repl(0, bit_width), a_enabled, - Repl(0, bit_width-1))) - - nbt.append(Mux(b_enabled, - Cat(Repl(0, bit_width), - ~self.b.bit_select(bit_width * i, bit_width)), - 0)) - - nlb.append(Cat(Repl(0, bit_width), b_enabled, - Repl(0, bit_width-1))) - + # work out bit-inverted and +1 term for a. + pa = LSBNegTerm(bit_wid) + setattr(m.submodules, "lnt_%d_a_%d" % (bit_wid, i), pa) + m.d.comb += pa.part.eq(parts[i]) + m.d.comb += pa.op.eq(self.a.part(bit_wid * i, bit_wid)) + m.d.comb += pa.signed.eq(self.b_signed[i * byte_width]) # yes b + m.d.comb += pa.msb.eq(self.b[(i + 1) * bit_wid - 1]) # really, b + nat.append(pa.nt) + nla.append(pa.nl) + + # work out bit-inverted and +1 term for b + pb = LSBNegTerm(bit_wid) + setattr(m.submodules, "lnt_%d_b_%d" % (bit_wid, i), pb) + m.d.comb += pb.part.eq(parts[i]) + m.d.comb += pb.op.eq(self.b.part(bit_wid * i, bit_wid)) + m.d.comb += pb.signed.eq(self.a_signed[i * byte_width]) # yes a + m.d.comb += pb.msb.eq(self.a[(i + 1) * bit_wid - 1]) # really, a + nbt.append(pb.nt) + nlb.append(pb.nl) + + # concatenate together and return all 4 results. m.d.comb += [not_a_term.eq(Cat(*nat)), not_b_term.eq(Cat(*nbt)), neg_lsb_a_term.eq(Cat(*nla)), @@ -565,6 +802,9 @@ class Part(Elaboratable): class IntermediateOut(Elaboratable): + """ selects the HI/LO part of the multiplication, for a given bit-width + the output is also reconstructed in its SIMD (partition) lanes. + """ def __init__(self, width, out_wid, n_parts): self.width = width self.n_parts = n_parts @@ -583,8 +823,8 @@ class IntermediateOut(Elaboratable): op = Signal(w, reset_less=True, name="op%d_%d" % (w, i)) m.d.comb += op.eq( Mux(self.delayed_part_ops[sel * i] == OP_MUL_LOW, - self.intermed.bit_select(i * w*2, w), - self.intermed.bit_select(i * w*2 + w, w))) + self.intermed.part(i * w*2, w), + self.intermed.part(i * w*2 + w, w))) ol.append(op) m.d.comb += self.output.eq(Cat(*ol)) @@ -592,6 +832,12 @@ class IntermediateOut(Elaboratable): class FinalOut(Elaboratable): + """ selects the final output based on the partitioning. + + each byte is selectable independently, i.e. it is possible + that some partitions requested 8-bit computation whilst others + requested 16 or 32 bit. + """ def __init__(self, out_wid): # inputs self.d8 = [Signal(name=f"d8_{i}", reset_less=True) for i in range(8)] @@ -610,19 +856,26 @@ class FinalOut(Elaboratable): m = Module() ol = [] for i in range(8): + # select one of the outputs: d8 selects i8, d16 selects i16 + # d32 selects i32, and the default is i64. + # d8 and d16 are ORed together in the first Mux + # then the 2nd selects either i8 or i16. + # if neither d8 nor d16 are set, d32 selects either i32 or i64. op = Signal(8, reset_less=True, name="op_%d" % i) m.d.comb += op.eq( Mux(self.d8[i] | self.d16[i // 2], - Mux(self.d8[i], self.i8.bit_select(i * 8, 8), - self.i16.bit_select(i * 8, 8)), - Mux(self.d32[i // 4], self.i32.bit_select(i * 8, 8), - self.i64.bit_select(i * 8, 8)))) + Mux(self.d8[i], self.i8.part(i * 8, 8), + self.i16.part(i * 8, 8)), + Mux(self.d32[i // 4], self.i32.part(i * 8, 8), + self.i64.part(i * 8, 8)))) ol.append(op) m.d.comb += self.out.eq(Cat(*ol)) return m class OrMod(Elaboratable): + """ ORs four values together in a hierarchical tree + """ def __init__(self, wid): self.wid = wid self.orin = [Signal(wid, name="orin%d" % i, reset_less=True) @@ -641,6 +894,9 @@ class OrMod(Elaboratable): class Signs(Elaboratable): + """ determines whether a or b are signed numbers + based on the required operation type (OP_MUL_*) + """ def __init__(self): self.part_ops = Signal(2, reset_less=True) @@ -688,7 +944,10 @@ class Mul8_16_32_64(Elaboratable): instruction. """ - def __init__(self, register_levels= ()): + def __init__(self, register_levels=()): + """ register_levels: specifies the points in the cascade at which + flip-flops are to be inserted. + """ # parameter(s) self.register_levels = list(register_levels) @@ -733,15 +992,6 @@ class Mul8_16_32_64(Elaboratable): setattr(m.submodules, "signs%d" % i, s) m.d.comb += s.part_ops.eq(self.part_ops[i]) - delayed_part_ops = [ - [Signal(2, name=f"_delayed_part_ops_{delay}_{i}") - for i in range(8)] - for delay in range(1 + len(self.register_levels))] - for i in range(len(self.part_ops)): - m.d.comb += delayed_part_ops[0][i].eq(self.part_ops[i]) - m.d.sync += [delayed_part_ops[j + 1][i].eq(delayed_part_ops[j][i]) - for j in range(len(self.register_levels))] - n_levels = len(self.register_levels)+1 m.submodules.part_8 = part_8 = Part(128, 8, n_levels, 8) m.submodules.part_16 = part_16 = Part(128, 4, n_levels, 8) @@ -796,46 +1046,50 @@ class Mul8_16_32_64(Elaboratable): add_reduce = AddReduce(terms, 128, self.register_levels, - expanded_part_pts) + expanded_part_pts, + self.part_ops) + + out_part_ops = add_reduce.levels[-1].out_part_ops + m.submodules.add_reduce = add_reduce m.d.comb += self._intermediate_output.eq(add_reduce.output) # create _output_64 m.submodules.io64 = io64 = IntermediateOut(64, 128, 1) m.d.comb += io64.intermed.eq(self._intermediate_output) for i in range(8): - m.d.comb += io64.delayed_part_ops[i].eq(delayed_part_ops[-1][i]) + m.d.comb += io64.delayed_part_ops[i].eq(out_part_ops[i]) # create _output_32 m.submodules.io32 = io32 = IntermediateOut(32, 128, 2) m.d.comb += io32.intermed.eq(self._intermediate_output) for i in range(8): - m.d.comb += io32.delayed_part_ops[i].eq(delayed_part_ops[-1][i]) + m.d.comb += io32.delayed_part_ops[i].eq(out_part_ops[i]) # create _output_16 m.submodules.io16 = io16 = IntermediateOut(16, 128, 4) m.d.comb += io16.intermed.eq(self._intermediate_output) for i in range(8): - m.d.comb += io16.delayed_part_ops[i].eq(delayed_part_ops[-1][i]) + m.d.comb += io16.delayed_part_ops[i].eq(out_part_ops[i]) # create _output_8 m.submodules.io8 = io8 = IntermediateOut(8, 128, 8) m.d.comb += io8.intermed.eq(self._intermediate_output) for i in range(8): - m.d.comb += io8.delayed_part_ops[i].eq(delayed_part_ops[-1][i]) + m.d.comb += io8.delayed_part_ops[i].eq(out_part_ops[i]) # final output - m.submodules.fo = fo = FinalOut(64) + m.submodules.finalout = finalout = FinalOut(64) for i in range(len(part_8.delayed_parts[-1])): - m.d.comb += fo.d8[i].eq(part_8.dplast[i]) + m.d.comb += finalout.d8[i].eq(part_8.dplast[i]) for i in range(len(part_16.delayed_parts[-1])): - m.d.comb += fo.d16[i].eq(part_16.dplast[i]) + m.d.comb += finalout.d16[i].eq(part_16.dplast[i]) for i in range(len(part_32.delayed_parts[-1])): - m.d.comb += fo.d32[i].eq(part_32.dplast[i]) - m.d.comb += fo.i8.eq(io8.output) - m.d.comb += fo.i16.eq(io16.output) - m.d.comb += fo.i32.eq(io32.output) - m.d.comb += fo.i64.eq(io64.output) - m.d.comb += self.output.eq(fo.out) + m.d.comb += finalout.d32[i].eq(part_32.dplast[i]) + m.d.comb += finalout.i8.eq(io8.output) + m.d.comb += finalout.i16.eq(io16.output) + m.d.comb += finalout.i32.eq(io32.output) + m.d.comb += finalout.i64.eq(io64.output) + m.d.comb += self.output.eq(finalout.out) return m