X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fieee754%2Fpart_mul_add%2Fmultiply.py;h=89e4c4d322782ff1e16b2e88646405d6dcce0bd3;hb=31409cddf82e9d34ee6d25d89911bda28719afe8;hp=74286a48a1240d121f080d7503181e61c2b7f279;hpb=3ff3115e24d100edf989bd9989d12e156d506ece;p=ieee754fpu.git diff --git a/src/ieee754/part_mul_add/multiply.py b/src/ieee754/part_mul_add/multiply.py index 74286a48..89e4c4d3 100644 --- a/src/ieee754/part_mul_add/multiply.py +++ b/src/ieee754/part_mul_add/multiply.py @@ -8,6 +8,8 @@ from abc import ABCMeta, abstractmethod from nmigen.cli import main from functools import reduce from operator import or_ +from ieee754.pipeline import PipelineSpec +from nmutil.pipemodbase import PipeModBase class PartitionPoints(dict): @@ -305,60 +307,68 @@ FULL_ADDER_INPUT_COUNT = 3 class AddReduceData: - def __init__(self, ppoints, n_inputs, output_width, n_parts): + def __init__(self, part_pts, n_inputs, output_width, n_parts): self.part_ops = [Signal(2, name=f"part_ops_{i}", reset_less=True) for i in range(n_parts)] - self.inputs = [Signal(output_width, name=f"inputs_{i}", + self.terms = [Signal(output_width, name=f"terms_{i}", reset_less=True) for i in range(n_inputs)] - self.reg_partition_points = ppoints.like() + self.part_pts = part_pts.like() - def eq_from(self, reg_partition_points, inputs, part_ops): - return [self.reg_partition_points.eq(reg_partition_points)] + \ - [self.inputs[i].eq(inputs[i]) - for i in range(len(self.inputs))] + \ + def eq_from(self, part_pts, inputs, part_ops): + return [self.part_pts.eq(part_pts)] + \ + [self.terms[i].eq(inputs[i]) + for i in range(len(self.terms))] + \ [self.part_ops[i].eq(part_ops[i]) for i in range(len(self.part_ops))] def eq(self, rhs): - return self.eq_from(rhs.reg_partition_points, rhs.inputs, rhs.part_ops) + return self.eq_from(rhs.part_pts, rhs.terms, rhs.part_ops) class FinalReduceData: - def __init__(self, ppoints, output_width, n_parts): + def __init__(self, part_pts, output_width, n_parts): self.part_ops = [Signal(2, name=f"part_ops_{i}", reset_less=True) for i in range(n_parts)] self.output = Signal(output_width, reset_less=True) - self.reg_partition_points = ppoints.like() + self.part_pts = part_pts.like() - def eq_from(self, reg_partition_points, output, part_ops): - return [self.reg_partition_points.eq(reg_partition_points)] + \ + def eq_from(self, part_pts, output, part_ops): + return [self.part_pts.eq(part_pts)] + \ [self.output.eq(output)] + \ [self.part_ops[i].eq(part_ops[i]) for i in range(len(self.part_ops))] def eq(self, rhs): - return self.eq_from(rhs.reg_partition_points, rhs.output, rhs.part_ops) + return self.eq_from(rhs.part_pts, rhs.output, rhs.part_ops) -class FinalAdd(Elaboratable): +class FinalAdd(PipeModBase): """ Final stage of add reduce """ - def __init__(self, n_inputs, output_width, n_parts, register_levels, - partition_points): - self.i = AddReduceData(partition_points, n_inputs, - output_width, n_parts) - self.o = FinalReduceData(partition_points, output_width, n_parts) - self.output_width = output_width + def __init__(self, pspec, lidx, n_inputs, partition_points, + partition_step=1): + self.lidx = lidx + self.partition_step = partition_step + self.output_width = pspec.width * 2 self.n_inputs = n_inputs - self.n_parts = n_parts - self.register_levels = list(register_levels) + self.n_parts = pspec.n_parts self.partition_points = PartitionPoints(partition_points) - if not self.partition_points.fits_in_width(output_width): + if not self.partition_points.fits_in_width(self.output_width): raise ValueError("partition_points doesn't fit in output_width") + super().__init__(pspec, "finaladd") + + def ispec(self): + return AddReduceData(self.partition_points, self.n_inputs, + self.output_width, self.n_parts) + + def ospec(self): + return FinalReduceData(self.partition_points, + self.output_width, self.n_parts) + def elaborate(self, platform): """Elaborate this module.""" m = Module() @@ -370,25 +380,25 @@ class FinalAdd(Elaboratable): m.d.comb += output.eq(0) elif self.n_inputs == 1: # handle single input - m.d.comb += output.eq(self.i.inputs[0]) + m.d.comb += output.eq(self.i.terms[0]) else: # base case for adding 2 inputs assert self.n_inputs == 2 adder = PartitionedAdder(output_width, - self.i.reg_partition_points, 2) + self.i.part_pts, self.partition_step) m.submodules.final_adder = adder - m.d.comb += adder.a.eq(self.i.inputs[0]) - m.d.comb += adder.b.eq(self.i.inputs[1]) + m.d.comb += adder.a.eq(self.i.terms[0]) + m.d.comb += adder.b.eq(self.i.terms[1]) m.d.comb += output.eq(adder.output) # create output - m.d.comb += self.o.eq_from(self.i.reg_partition_points, output, + m.d.comb += self.o.eq_from(self.i.part_pts, output, self.i.part_ops) return m -class AddReduceSingle(Elaboratable): +class AddReduceSingle(PipeModBase): """Add list of numbers together. :attribute inputs: input ``Signal``s to be summed. Modification not @@ -400,35 +410,35 @@ class AddReduceSingle(Elaboratable): supported, except for by ``Signal.eq``. """ - def __init__(self, n_inputs, output_width, n_parts, register_levels, - partition_points): + def __init__(self, pspec, lidx, n_inputs, partition_points, + partition_step=1): """Create an ``AddReduce``. :param inputs: input ``Signal``s to be summed. :param output_width: bit-width of ``output``. - :param register_levels: List of nesting levels that should have - pipeline registers. :param partition_points: the input partition points. """ + self.lidx = lidx + self.partition_step = partition_step self.n_inputs = n_inputs - self.n_parts = n_parts - self.output_width = output_width - self.i = AddReduceData(partition_points, n_inputs, - output_width, n_parts) - self.register_levels = list(register_levels) + self.n_parts = pspec.n_parts + self.output_width = pspec.width * 2 self.partition_points = PartitionPoints(partition_points) - if not self.partition_points.fits_in_width(output_width): + if not self.partition_points.fits_in_width(self.output_width): raise ValueError("partition_points doesn't fit in output_width") - max_level = AddReduceSingle.get_max_level(n_inputs) - for level in self.register_levels: - if level > max_level: - raise ValueError( - "not enough adder levels for specified register levels") - self.groups = AddReduceSingle.full_adder_groups(n_inputs) - n_terms = AddReduceSingle.calc_n_inputs(n_inputs, self.groups) - self.o = AddReduceData(partition_points, n_terms, output_width, n_parts) + self.n_terms = AddReduceSingle.calc_n_inputs(n_inputs, self.groups) + + super().__init__(pspec, "addreduce_%d" % lidx) + + def ispec(self): + return AddReduceData(self.partition_points, self.n_inputs, + self.output_width, self.n_parts) + + def ospec(self): + return AddReduceData(self.partition_points, self.n_terms, + self.output_width, self.n_parts) @staticmethod def calc_n_inputs(n_inputs, groups): @@ -481,13 +491,13 @@ class AddReduceSingle(Elaboratable): terms.append(adder_i.mcarry) # handle the remaining inputs. if self.n_inputs % FULL_ADDER_INPUT_COUNT == 1: - terms.append(self.i.inputs[-1]) + terms.append(self.i.terms[-1]) elif self.n_inputs % FULL_ADDER_INPUT_COUNT == 2: # Just pass the terms to the next layer, since we wouldn't gain # anything by using a half adder since there would still be 2 terms # and just passing the terms to the next layer saves gates. - terms.append(self.i.inputs[-2]) - terms.append(self.i.inputs[-1]) + terms.append(self.i.terms[-2]) + terms.append(self.i.terms[-1]) else: assert self.n_inputs % FULL_ADDER_INPUT_COUNT == 0 @@ -501,10 +511,10 @@ class AddReduceSingle(Elaboratable): # copy the intermediate terms to the output for i, value in enumerate(terms): - m.d.comb += self.o.inputs[i].eq(value) + m.d.comb += self.o.terms[i].eq(value) # copy reg part points and part ops to output - m.d.comb += self.o.reg_partition_points.eq(self.i.reg_partition_points) + m.d.comb += self.o.part_pts.eq(self.i.part_pts) m.d.comb += [self.o.part_ops[i].eq(self.i.part_ops[i]) for i in range(len(self.i.part_ops))] @@ -512,22 +522,76 @@ class AddReduceSingle(Elaboratable): part_mask = Signal(self.output_width, reset_less=True) # get partition points as a mask - mask = self.i.reg_partition_points.as_mask(self.output_width, mul=2) + mask = self.i.part_pts.as_mask(self.output_width, + mul=self.partition_step) m.d.comb += part_mask.eq(mask) # add and link the intermediate term modules for i, (iidx, adder_i) in enumerate(adders): setattr(m.submodules, f"adder_{i}", adder_i) - m.d.comb += adder_i.in0.eq(self.i.inputs[iidx]) - m.d.comb += adder_i.in1.eq(self.i.inputs[iidx + 1]) - m.d.comb += adder_i.in2.eq(self.i.inputs[iidx + 2]) + m.d.comb += adder_i.in0.eq(self.i.terms[iidx]) + m.d.comb += adder_i.in1.eq(self.i.terms[iidx + 1]) + m.d.comb += adder_i.in2.eq(self.i.terms[iidx + 2]) m.d.comb += adder_i.mask.eq(part_mask) return m -class AddReduce(Elaboratable): +class AddReduceInternal: + """Iteratively Add list of numbers together. + + :attribute inputs: input ``Signal``s to be summed. Modification not + supported, except for by ``Signal.eq``. + :attribute register_levels: List of nesting levels that should have + pipeline registers. + :attribute output: output sum. + :attribute partition_points: the input partition points. Modification not + supported, except for by ``Signal.eq``. + """ + + def __init__(self, pspec, n_inputs, part_pts, partition_step=1): + """Create an ``AddReduce``. + + :param inputs: input ``Signal``s to be summed. + :param output_width: bit-width of ``output``. + :param partition_points: the input partition points. + """ + self.pspec = pspec + self.n_inputs = n_inputs + self.output_width = pspec.width * 2 + self.partition_points = part_pts + self.partition_step = partition_step + + self.create_levels() + + def create_levels(self): + """creates reduction levels""" + + mods = [] + partition_points = self.partition_points + ilen = self.n_inputs + while True: + groups = AddReduceSingle.full_adder_groups(ilen) + if len(groups) == 0: + break + lidx = len(mods) + next_level = AddReduceSingle(self.pspec, lidx, ilen, + partition_points, + self.partition_step) + mods.append(next_level) + partition_points = next_level.i.part_pts + ilen = len(next_level.o.terms) + + lidx = len(mods) + next_level = FinalAdd(self.pspec, lidx, ilen, + partition_points, self.partition_step) + mods.append(next_level) + + self.levels = mods + + +class AddReduce(AddReduceInternal, Elaboratable): """Recursively Add list of numbers together. :attribute inputs: input ``Signal``s to be summed. Modification not @@ -539,8 +603,8 @@ class AddReduce(Elaboratable): supported, except for by ``Signal.eq``. """ - def __init__(self, inputs, output_width, register_levels, partition_points, - part_ops): + def __init__(self, inputs, output_width, register_levels, part_pts, + part_ops, partition_step=1): """Create an ``AddReduce``. :param inputs: input ``Signal``s to be summed. @@ -549,15 +613,16 @@ class AddReduce(Elaboratable): pipeline registers. :param partition_points: the input partition points. """ - self.inputs = inputs - self.part_ops = part_ops + self._inputs = inputs + self._part_pts = part_pts + self._part_ops = part_ops n_parts = len(part_ops) - self.o = FinalReduceData(partition_points, output_width, n_parts) - self.output_width = output_width + self.i = AddReduceData(part_pts, len(inputs), + output_width, n_parts) + AddReduceInternal.__init__(self, pspec, n_inputs, part_pts, + partition_step) + self.o = FinalReduceData(part_pts, output_width, n_parts) self.register_levels = register_levels - self.partition_points = partition_points - - self.create_levels() @staticmethod def get_max_level(input_count): @@ -570,53 +635,19 @@ class AddReduce(Elaboratable): if level > 0: yield level - 1 - def create_levels(self): - """creates reduction levels""" - - mods = [] - next_levels = self.register_levels - partition_points = self.partition_points - part_ops = self.part_ops - n_parts = len(part_ops) - inputs = self.inputs - ilen = len(inputs) - while True: - groups = AddReduceSingle.full_adder_groups(len(inputs)) - if len(groups) == 0: - break - next_level = AddReduceSingle(ilen, self.output_width, n_parts, - next_levels, partition_points) - mods.append(next_level) - next_levels = list(AddReduce.next_register_levels(next_levels)) - partition_points = next_level.i.reg_partition_points - inputs = next_level.o.inputs - ilen = len(inputs) - part_ops = next_level.i.part_ops - - next_level = FinalAdd(ilen, self.output_width, n_parts, - next_levels, partition_points) - mods.append(next_level) - - self.levels = mods - def elaborate(self, platform): """Elaborate this module.""" m = Module() + m.d.comb += self.i.eq_from(self._part_pts, self._inputs, self._part_ops) + for i, next_level in enumerate(self.levels): setattr(m.submodules, "next_level%d" % i, next_level) - partition_points = self.partition_points - inputs = self.inputs - part_ops = self.part_ops - n_parts = len(part_ops) - n_inputs = len(inputs) - output_width = self.output_width - i = AddReduceData(partition_points, n_inputs, output_width, n_parts) - m.d.comb += i.eq_from(partition_points, inputs, part_ops) + i = self.i for idx in range(len(self.levels)): mcur = self.levels[idx] - if 0 in mcur.register_levels: + if idx in self.register_levels: m.d.sync += mcur.i.eq(i) else: m.d.comb += mcur.i.eq(i) @@ -689,8 +720,8 @@ class ProductTerm(Elaboratable): bsb = Signal(self.width, reset_less=True) a_index, b_index = self.a_index, self.b_index pwidth = self.pwidth - m.d.comb += bsa.eq(self.a.part(a_index * pwidth, pwidth)) - m.d.comb += bsb.eq(self.b.part(b_index * pwidth, pwidth)) + m.d.comb += bsa.eq(self.a.bit_select(a_index * pwidth, pwidth)) + m.d.comb += bsb.eq(self.b.bit_select(b_index * pwidth, pwidth)) m.d.comb += self.ti.eq(bsa * bsb) m.d.comb += self.term.eq(get_term(self.ti, self.shift, self.enabled)) """ @@ -704,8 +735,8 @@ class ProductTerm(Elaboratable): asel = Signal(width, reset_less=True) bsel = Signal(width, reset_less=True) a_index, b_index = self.a_index, self.b_index - m.d.comb += asel.eq(self.a.part(a_index * pwidth, pwidth)) - m.d.comb += bsel.eq(self.b.part(b_index * pwidth, pwidth)) + m.d.comb += asel.eq(self.a.bit_select(a_index * pwidth, pwidth)) + m.d.comb += bsel.eq(self.b.bit_select(b_index * pwidth, pwidth)) m.d.comb += bsa.eq(get_term(asel, self.shift, self.enabled)) m.d.comb += bsb.eq(get_term(bsel, self.shift, self.enabled)) m.d.comb += self.ti.eq(bsa * bsb) @@ -786,10 +817,10 @@ class LSBNegTerm(Elaboratable): class Parts(Elaboratable): - def __init__(self, pbwid, epps, n_parts): + def __init__(self, pbwid, part_pts, n_parts): self.pbwid = pbwid # inputs - self.epps = PartitionPoints.like(epps, name="epps") # expanded points + self.part_pts = PartitionPoints.like(part_pts) # outputs self.parts = [Signal(name=f"part_{i}", reset_less=True) for i in range(n_parts)] @@ -797,13 +828,13 @@ class Parts(Elaboratable): def elaborate(self, platform): m = Module() - epps, parts = self.epps, self.parts + part_pts, parts = self.part_pts, self.parts # collect part-bytes (double factor because the input is extended) pbs = Signal(self.pbwid, reset_less=True) tl = [] for i in range(self.pbwid): pb = Signal(name="pb%d" % i, reset_less=True) - m.d.comb += pb.eq(epps.part_byte(i)) + m.d.comb += pb.eq(part_pts.part_byte(i)) tl.append(pb) m.d.comb += pbs.eq(Cat(*tl)) @@ -839,10 +870,10 @@ class Part(Elaboratable): the extra terms - as separate terms - are then thrown at the AddReduce alongside the multiplication part-results. """ - def __init__(self, epps, width, n_parts, n_levels, pbwid): + def __init__(self, part_pts, width, n_parts, pbwid): self.pbwid = pbwid - self.epps = epps + self.part_pts = part_pts # inputs self.a = Signal(64, reset_less=True) @@ -866,9 +897,9 @@ class Part(Elaboratable): m = Module() pbs, parts = self.pbs, self.parts - epps = self.epps - m.submodules.p = p = Parts(self.pbwid, epps, len(parts)) - m.d.comb += p.epps.eq(epps) + part_pts = self.part_pts + m.submodules.p = p = Parts(self.pbwid, part_pts, len(parts)) + m.d.comb += p.part_pts.eq(part_pts) parts = p.parts byte_count = 8 // len(parts) @@ -885,7 +916,7 @@ class Part(Elaboratable): pa = LSBNegTerm(bit_wid) setattr(m.submodules, "lnt_%d_a_%d" % (bit_wid, i), pa) m.d.comb += pa.part.eq(parts[i]) - m.d.comb += pa.op.eq(self.a.part(bit_wid * i, bit_wid)) + m.d.comb += pa.op.eq(self.a.bit_select(bit_wid * i, bit_wid)) m.d.comb += pa.signed.eq(self.b_signed[i * byte_width]) # yes b m.d.comb += pa.msb.eq(self.b[(i + 1) * bit_wid - 1]) # really, b nat.append(pa.nt) @@ -895,7 +926,7 @@ class Part(Elaboratable): pb = LSBNegTerm(bit_wid) setattr(m.submodules, "lnt_%d_b_%d" % (bit_wid, i), pb) m.d.comb += pb.part.eq(parts[i]) - m.d.comb += pb.op.eq(self.b.part(bit_wid * i, bit_wid)) + m.d.comb += pb.op.eq(self.b.bit_select(bit_wid * i, bit_wid)) m.d.comb += pb.signed.eq(self.a_signed[i * byte_width]) # yes a m.d.comb += pb.msb.eq(self.a[(i + 1) * bit_wid - 1]) # really, a nbt.append(pb.nt) @@ -933,39 +964,46 @@ class IntermediateOut(Elaboratable): op = Signal(w, reset_less=True, name="op%d_%d" % (w, i)) m.d.comb += op.eq( Mux(self.part_ops[sel * i] == OP_MUL_LOW, - self.intermed.part(i * w*2, w), - self.intermed.part(i * w*2 + w, w))) + self.intermed.bit_select(i * w*2, w), + self.intermed.bit_select(i * w*2 + w, w))) ol.append(op) m.d.comb += self.output.eq(Cat(*ol)) return m -class FinalOut(Elaboratable): +class FinalOut(PipeModBase): """ selects the final output based on the partitioning. each byte is selectable independently, i.e. it is possible that some partitions requested 8-bit computation whilst others requested 16 or 32 bit. """ - def __init__(self, output_width, n_parts, partition_points): - self.expanded_part_points = partition_points - self.i = IntermediateData(partition_points, output_width, n_parts) - self.out_wid = output_width//2 - # output - self.out = Signal(self.out_wid, reset_less=True) - self.intermediate_output = Signal(output_width, reset_less=True) + def __init__(self, pspec, part_pts): + + self.part_pts = part_pts + self.output_width = pspec.width * 2 + self.n_parts = pspec.n_parts + self.out_wid = pspec.width + + super().__init__(pspec, "finalout") + + def ispec(self): + return IntermediateData(self.part_pts, self.output_width, self.n_parts) + + def ospec(self): + return OutputData() def elaborate(self, platform): m = Module() - eps = self.expanded_part_points - m.submodules.p_8 = p_8 = Parts(8, eps, 8) - m.submodules.p_16 = p_16 = Parts(8, eps, 4) - m.submodules.p_32 = p_32 = Parts(8, eps, 2) - m.submodules.p_64 = p_64 = Parts(8, eps, 1) + part_pts = self.part_pts + m.submodules.p_8 = p_8 = Parts(8, part_pts, 8) + m.submodules.p_16 = p_16 = Parts(8, part_pts, 4) + m.submodules.p_32 = p_32 = Parts(8, part_pts, 2) + m.submodules.p_64 = p_64 = Parts(8, part_pts, 1) - out_part_pts = self.i.reg_partition_points + out_part_pts = self.i.part_pts # temporaries d8 = [Signal(name=f"d8_{i}", reset_less=True) for i in range(8)] @@ -977,10 +1015,10 @@ class FinalOut(Elaboratable): i32 = Signal(self.out_wid, reset_less=True) i64 = Signal(self.out_wid, reset_less=True) - m.d.comb += p_8.epps.eq(out_part_pts) - m.d.comb += p_16.epps.eq(out_part_pts) - m.d.comb += p_32.epps.eq(out_part_pts) - m.d.comb += p_64.epps.eq(out_part_pts) + m.d.comb += p_8.part_pts.eq(out_part_pts) + m.d.comb += p_16.part_pts.eq(out_part_pts) + m.d.comb += p_32.part_pts.eq(out_part_pts) + m.d.comb += p_64.part_pts.eq(out_part_pts) for i in range(len(p_8.parts)): m.d.comb += d8[i].eq(p_8.parts[i]) @@ -1003,11 +1041,16 @@ class FinalOut(Elaboratable): op = Signal(8, reset_less=True, name="op_%d" % i) m.d.comb += op.eq( Mux(d8[i] | d16[i // 2], - Mux(d8[i], i8.part(i * 8, 8), i16.part(i * 8, 8)), - Mux(d32[i // 4], i32.part(i * 8, 8), i64.part(i * 8, 8)))) + Mux(d8[i], i8.bit_select(i * 8, 8), + i16.bit_select(i * 8, 8)), + Mux(d32[i // 4], i32.bit_select(i * 8, 8), + i64.bit_select(i * 8, 8)))) ol.append(op) - m.d.comb += self.out.eq(Cat(*ol)) - m.d.comb += self.intermediate_output.eq(self.i.intermediate_output) + + # create outputs + m.d.comb += self.o.output.eq(Cat(*ol)) + m.d.comb += self.o.intermediate_output.eq(self.i.intermediate_output) + return m @@ -1056,18 +1099,18 @@ class Signs(Elaboratable): class IntermediateData: - def __init__(self, ppoints, output_width, n_parts): + def __init__(self, part_pts, output_width, n_parts): self.part_ops = [Signal(2, name=f"part_ops_{i}", reset_less=True) for i in range(n_parts)] - self.reg_partition_points = ppoints.like() + self.part_pts = part_pts.like() self.outputs = [Signal(output_width, name="io%d" % i, reset_less=True) for i in range(4)] # intermediates (needed for unit tests) self.intermediate_output = Signal(output_width) - def eq_from(self, reg_partition_points, outputs, intermediate_output, + def eq_from(self, part_pts, outputs, intermediate_output, part_ops): - return [self.reg_partition_points.eq(reg_partition_points)] + \ + return [self.part_pts.eq(part_pts)] + \ [self.intermediate_output.eq(intermediate_output)] + \ [self.outputs[i].eq(outputs[i]) for i in range(4)] + \ @@ -1075,54 +1118,64 @@ class IntermediateData: for i in range(len(self.part_ops))] def eq(self, rhs): - return self.eq_from(rhs.reg_partition_points, rhs.outputs, + return self.eq_from(rhs.part_pts, rhs.outputs, rhs.intermediate_output, rhs.part_ops) -class AllTermsData: +class InputData: - def __init__(self, partition_points): + def __init__(self): self.a = Signal(64) self.b = Signal(64) - self.epps = partition_points.like() + self.part_pts = PartitionPoints() + for i in range(8, 64, 8): + self.part_pts[i] = Signal(name=f"part_pts_{i}") self.part_ops = [Signal(2, name=f"part_ops_{i}") for i in range(8)] - def eq_from(self, epps, inputs, part_ops): - return [self.epps.eq(epps)] + \ + def eq_from(self, part_pts, a, b, part_ops): + return [self.part_pts.eq(part_pts)] + \ [self.a.eq(a), self.b.eq(b)] + \ [self.part_ops[i].eq(part_ops[i]) for i in range(len(self.part_ops))] def eq(self, rhs): - return self.eq_from(rhs.epps, rhs.a, rhs.b, rhs.part_ops) + return self.eq_from(rhs.part_pts, rhs.a, rhs.b, rhs.part_ops) + + +class OutputData: + + def __init__(self): + self.intermediate_output = Signal(128) # needed for unit tests + self.output = Signal(64) + + def eq(self, rhs): + return [self.intermediate_output.eq(rhs.intermediate_output), + self.output.eq(rhs.output)] -class AllTerms(Elaboratable): +class AllTerms(PipeModBase): """Set of terms to be added together """ - def __init__(self, n_inputs, output_width, n_parts, register_levels, - partition_points): - """Create an ``AddReduce``. - - :param inputs: input ``Signal``s to be summed. - :param output_width: bit-width of ``output``. - :param register_levels: List of nesting levels that should have - pipeline registers. - :param partition_points: the input partition points. + def __init__(self, pspec, n_inputs): + """Create an ``AllTerms``. """ - self.i = AllTermsData(partition_points) - self.register_levels = register_levels self.n_inputs = n_inputs - self.n_parts = n_parts - self.output_width = output_width - self.o = AddReduceData(self.i.epps, n_inputs, - output_width, n_parts) + self.n_parts = pspec.n_parts + self.output_width = pspec.width * 2 + super().__init__(pspec, "allterms") + + def ispec(self): + return InputData() + + def ospec(self): + return AddReduceData(self.i.part_pts, self.n_inputs, + self.output_width, self.n_parts) def elaborate(self, platform): m = Module() - eps = self.i.epps + eps = self.i.part_pts # collect part-bytes pbs = Signal(8, reset_less=True) @@ -1141,11 +1194,10 @@ class AllTerms(Elaboratable): setattr(m.submodules, "signs%d" % i, s) m.d.comb += s.part_ops.eq(self.i.part_ops[i]) - n_levels = len(self.register_levels)+1 - m.submodules.part_8 = part_8 = Part(eps, 128, 8, n_levels, 8) - m.submodules.part_16 = part_16 = Part(eps, 128, 4, n_levels, 8) - m.submodules.part_32 = part_32 = Part(eps, 128, 2, n_levels, 8) - m.submodules.part_64 = part_64 = Part(eps, 128, 1, n_levels, 8) + m.submodules.part_8 = part_8 = Part(eps, 128, 8, 8) + m.submodules.part_16 = part_16 = Part(eps, 128, 4, 8) + m.submodules.part_32 = part_32 = Part(eps, 128, 2, 8) + m.submodules.part_64 = part_64 = Part(eps, 128, 1, 8) nat_l, nbt_l, nla_l, nlb_l = [], [], [], [] for mod in [part_8, part_16, part_32, part_64]: m.d.comb += mod.a.eq(self.i.a) @@ -1188,29 +1240,38 @@ class AllTerms(Elaboratable): # copy the intermediate terms to the output for i, value in enumerate(terms): - m.d.comb += self.o.inputs[i].eq(value) + m.d.comb += self.o.terms[i].eq(value) # copy reg part points and part ops to output - m.d.comb += self.o.reg_partition_points.eq(eps) + m.d.comb += self.o.part_pts.eq(eps) m.d.comb += [self.o.part_ops[i].eq(self.i.part_ops[i]) for i in range(len(self.i.part_ops))] return m -class Intermediates(Elaboratable): +class Intermediates(PipeModBase): """ Intermediate output modules """ - def __init__(self, output_width, n_parts, partition_points): - self.i = FinalReduceData(partition_points, output_width, n_parts) - self.o = IntermediateData(partition_points, output_width, n_parts) + def __init__(self, pspec, part_pts): + self.part_pts = part_pts + self.output_width = pspec.width * 2 + self.n_parts = pspec.n_parts + + super().__init__(pspec, "intermediates") + + def ispec(self): + return FinalReduceData(self.part_pts, self.output_width, self.n_parts) + + def ospec(self): + return IntermediateData(self.part_pts, self.output_width, self.n_parts) def elaborate(self, platform): m = Module() out_part_ops = self.i.part_ops - out_part_pts = self.i.reg_partition_points + out_part_pts = self.i.part_pts # create _output_64 m.submodules.io64 = io64 = IntermediateOut(64, 128, 1) @@ -1242,7 +1303,7 @@ class Intermediates(Elaboratable): for i in range(8): m.d.comb += self.o.part_ops[i].eq(out_part_ops[i]) - m.d.comb += self.o.reg_partition_points.eq(out_part_pts) + m.d.comb += self.o.part_pts.eq(out_part_pts) m.d.comb += self.o.intermediate_output.eq(self.i.output) return m @@ -1281,61 +1342,65 @@ class Mul8_16_32_64(Elaboratable): flip-flops are to be inserted. """ + self.id_wid = 0 # num_bits(num_rows) + self.op_wid = 0 + self.pspec = PipelineSpec(64, self.id_wid, self.op_wid, n_ops=3) + self.pspec.n_parts = 8 + # parameter(s) self.register_levels = list(register_levels) - # inputs - self.part_pts = PartitionPoints() - for i in range(8, 64, 8): - self.part_pts[i] = Signal(name=f"part_pts_{i}") - self.part_ops = [Signal(2, name=f"part_ops_{i}") for i in range(8)] - self.a = Signal(64) - self.b = Signal(64) + self.i = self.ispec() + self.o = self.ospec() - # intermediates (needed for unit tests) - self.intermediate_output = Signal(128) + # inputs + self.part_pts = self.i.part_pts + self.part_ops = self.i.part_ops + self.a = self.i.a + self.b = self.i.b # output - self.output = Signal(64) + self.intermediate_output = self.o.intermediate_output + self.output = self.o.output + + def ispec(self): + return InputData() + + def ospec(self): + return OutputData() def elaborate(self, platform): m = Module() - expanded_part_pts = eps = self.part_pts + part_pts = self.part_pts n_inputs = 64 + 4 - n_parts = 8 #len(self.part_pts) - t = AllTerms(n_inputs, 128, n_parts, self.register_levels, - eps) - m.submodules.allterms = t - m.d.comb += t.i.a.eq(self.a) - m.d.comb += t.i.b.eq(self.b) - m.d.comb += t.i.epps.eq(eps) - for i in range(8): - m.d.comb += t.i.part_ops[i].eq(self.part_ops[i]) - - terms = t.o.inputs + t = AllTerms(self.pspec, n_inputs) + t.setup(m, self.i) - add_reduce = AddReduce(terms, - 128, - self.register_levels, - t.o.reg_partition_points, - t.o.part_ops) + terms = t.o.terms - out_part_ops = add_reduce.o.part_ops - out_part_pts = add_reduce.o.reg_partition_points + at = AddReduceInternal(self.pspec, n_inputs, part_pts, partition_step=2) - m.submodules.add_reduce = add_reduce + i = t.o + for idx in range(len(at.levels)): + mcur = at.levels[idx] + mcur.setup(m, i) + o = mcur.ospec() + if idx in self.register_levels: + m.d.sync += o.eq(mcur.process(i)) + else: + m.d.comb += o.eq(mcur.process(i)) + i = o # for next loop - interm = Intermediates(128, 8, expanded_part_pts) - m.submodules.intermediates = interm - m.d.comb += interm.i.eq(add_reduce.o) + interm = Intermediates(self.pspec, part_pts) + interm.setup(m, i) + o = interm.process(interm.i) # final output - m.submodules.finalout = finalout = FinalOut(128, 8, expanded_part_pts) - m.d.comb += finalout.i.eq(interm.o) - m.d.comb += self.output.eq(finalout.out) - m.d.comb += self.intermediate_output.eq(finalout.intermediate_output) + finalout = FinalOut(self.pspec, part_pts) + finalout.setup(m, o) + m.d.comb += self.o.eq(finalout.process(o)) return m