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Why collaborate?

I 3D is hard. It’s also not the same as HPC

I NVIDIA, AMD, Imagination - cannot meet ”unusual” needs

I Working together on flexible standards, everyone wins

I Without collaboration: 10-20 man-years development

I With collaboration: cross-verification (avoids mistakes)
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What is the goal?

I You get to decide! No, really!

I Outlined here: some ideas and cost/time-saving approaches

I Two new platforms: 3D ”Embedded”, 3D ”UNIX”

I Flexible optional extensions (Transcendentals, Vectors,
Texturisation, Pixel/Z-Buffers - all optional)

I Good software support absolutely essential
(basically, that means Vulkan)
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Libre RISC-V Team

I Small team, sponsored by Purism and the NLNet Foundation

I Therefore, focus is on efficiency: leap-frogging ahead
without requiring huge resources.

I OpenGL API? Gallium3D / Vulkan is better

I Gallium3D turns out to be a single-threaded interpreter
(Vulkan is compiled, and can be parallelised)

I Independent teams have provided OpenGL to Vulkan adaptors

I Same approach on hardware: seek highest bang-per-buck
Save design time, save implementation time
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What (optional) things are needed?

I Vectorisation. (SIMD? RVV? Other?)

I Transcendentals (SIN, COS, EXP, LOG)

I Texture opcodes, Pixel/Z-Buffers

I Pixel conversion (YUV/RGB etc.)

I Optional accuracy (embedded space needs less accuracy)

I Options give implementors flexibility. No imposition:
imposition risks fragmentation (however, collaboration does
need some hard easily-logically-justifiable rules)
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What is essential (not really optional)

I The software, basically. Anything other than Vulkan
is a 10+ man-year effort

I Two new 3D ”platforms”. Vulkan compliance has implications
for hardware, and, with the API being public, interoperability
(and Khronos Compliance - which is Trademarked) is critical.

I Respecting that standards are hard to get right
(and that consequences of mistakes are severe:
no opportunity for corrections after a freeze)

I Respecting that, for collaboration and interoperability,
some things go into a standard that you might not ”need”

I Mutually respectful open and fully transparent collaboration.
No NDAs, no ”closed forums”. We need the help of experts
(such as Mitch Alsup) in this highly technical specialist area.
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Why Two new Platforms?

I Unique pragmatic consequences of ”Hybrid” CPU/GPU

I Embedded - no traps need be raised. Interoperability is
impossible, software toolchain collaboration is incidental).

I UNIX - illegal instruction traps mandatory: software
interoperability is mandatory and essential.

I 3D Embedded - failure to allow implementors the freedom
to reduce FP accuracy automatically results in product failure
(too many gates, too much power, equals end-user rejection).

I 3D UNIX - likewise. Also: failure to comply with Khronos
Specifications (then use ”Vulkan”) is a Trademark violation.

I Solution: allow software to select FP accuracy level
at runtime. (UNIX Platform: IEEE754. 3D UNIX: Vulkan).

I HW: slow for IEEE754, fast for 3D. Product now competitive!
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What has our team done already?

I Decided to go the ”Hybrid” Route (Separate GPUs requires a
full-blown RPC/IPC mechanism to transfer all 3D API calls
to and from userspace memory to GPU memory... and back).

I Developed Simple-V (a ”Parallelising” API)
(Simple-V is very hard to describe, because it is unique:
there is no common Computer Science terminology)

I Started on Kazan (a Vulkan SPIR-V to LLVM compiler)

I Started work on a highly flexible IEEE754 FPU

I Started work on a ”Precise” CDC 6600 style OoO Engine,
with help from Mitch Alsup, the designer of the M68000

I Variable-issue, predicated SIMD backend, Vector front-end
”precise” exceptions, branch shadowing, much more

I All Libre-licensed and developed publicly and transparently.

Luke Kenneth Casson Leighton Open 3D Alliance RISC-V



Why Simple-V? Why not RVV?

I RVV is designed exclusively for supercomputing
(RVV simply has not been designed with 3D in mind).

I Like SIMD, RVV uses dedicated opcodes
(google ”SIMD considered harmful”)

I 98% of FP opcodes are duplicated in RVV. Large portion
of BitManip opcodes duplicated in predicate Masks

I OP32 space is extremely precious: 48 and 64 bit opcode space
comes with an inherent I-Cache power consumption penalty

I Simple-V ”prefixes” scalar opcodes (all of them)
No need for any new ”vector” opcodes (at all).
Can therefore use the RVV major opcode for 3D

I SV augments ”scalar” opcodes. Implications: it is relatively
straightforward to convert an existing design to SV.
SV ”slots in” between instruction decode and the ALU.
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Simple-V ”Prefixing”

I SV ”Prefix” does exactly that: takes RVC and OP32 opcodes
and ”prefixes” them with predication and a ”vector” tag

I Three prefix types: SV P32 (prefixed RVC), P48 and P64

I Prefixed RVC takes 3 ”Custom” OP32 opcodes.
P48 takes standard OP32 scalar opcodes and ”prefixes” them
P64 adds additional vector context on top of P48

I ”Prefixing” is a bit like SIMD. Vectors may be specified
of length 2 to 4, elements may be ”packed” into registers,
opcode element widths over-ridden.

I Convenient, but not very space-efficient (and VBLOCK is)
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VBLOCK Format

I Again: hard to describe. It is a bit like VLIW (only not really)
A ”block” of instructions is ”prefixed” with register ”tags”
which give extra context to scalar instructions within the block

I Sub-blocks include: Vector Length, Swizzling, Vector/Width
overrides, and predication. All this is added to scalar opcodes!
There are NO vector opcodes (and no need for any)

I In the ”context”, it goes like this: ”if a register is used
by a scalar opcode, and the register is listed in the ”context”,
SV mode is ”activated”

I ”Activation” results in a hardware-level ”for-loop” issuing
multiple contiguous scalar operations (instead of just one).

I Implementors are free to implement the ”loop” in any fashion
they see fit. SIMD, Multi-issue, single-execution: anything.

Luke Kenneth Casson Leighton Open 3D Alliance RISC-V



Other Standard Proposals

I Ztrans and Ztrig* - Transcendentals and Trigonometrics
(optional so that Embedded implementors have some leeway)

I ISAMUX / ISANS - stops arguments over OP32 space
(also allows clean ”paging” of new opcodes into e.g. RVC)

I MV.SWIZZLE and MV.X - RV does not have a MV opcode.

I Zfacc - dynamic FP accuracy. Needed for ”fast” Vulkan native
and to switch between fast 3D accuracy and IEEE754 modes.

I These - and more - need your input! 3D is hard!

I The key strategic premise: these are required as public
standards, because the software is to be public.

I This is not understood by the RISC-V Foundation.
(”custom” status not appropriate for high-profile mass-volume
end-user APIs such as Vulkan).
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Summary

I 3D is hard (and pure Vectorisation gets you 25% of
commercially-acceptable performance).

I Layered optional extensions are going to be key to
acceptance by a wide variety of 3D Alliance Members.

I With a custom specialised SPIR-V (Vulkan) Compiler
being an absolutely critical strategic requirement,
RVV and its associated compiler (still not developed)
is of marginal value (no clear benefits, extra cost)

I Question everything! Your input, and a willingness to
take active responsibility for tasks that your Company
is critically dependent on, are extremely important.

I Public and transparent Collaboration is key. There is simply
too much to do.

Luke Kenneth Casson Leighton Open 3D Alliance RISC-V



The end

Thank you

I http://lists.libre-riscv.org/pipermail/libre-riscv-dev/

I http://libre-riscv.org/simple v extension/abridged spec/

I https://libre-riscv.org/ztrans proposal/

I https://libre-riscv.org/simple v extension/specification/mv.x/
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