style: eliminate equality tests with true and false
[gem5.git] / src / cpu / o3 / lsq_unit_impl.hh
1
2 /*
3 * Copyright (c) 2010-2013 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Korey Sewell
43 */
44
45 #ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
46 #define __CPU_O3_LSQ_UNIT_IMPL_HH__
47
48 #include "arch/generic/debugfaults.hh"
49 #include "arch/locked_mem.hh"
50 #include "base/str.hh"
51 #include "config/the_isa.hh"
52 #include "cpu/checker/cpu.hh"
53 #include "cpu/o3/lsq.hh"
54 #include "cpu/o3/lsq_unit.hh"
55 #include "debug/Activity.hh"
56 #include "debug/IEW.hh"
57 #include "debug/LSQUnit.hh"
58 #include "debug/O3PipeView.hh"
59 #include "mem/packet.hh"
60 #include "mem/request.hh"
61
62 template<class Impl>
63 LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
64 LSQUnit *lsq_ptr)
65 : Event(Default_Pri, AutoDelete),
66 inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
67 {
68 }
69
70 template<class Impl>
71 void
72 LSQUnit<Impl>::WritebackEvent::process()
73 {
74 assert(!lsqPtr->cpu->switchedOut());
75
76 lsqPtr->writeback(inst, pkt);
77
78 if (pkt->senderState)
79 delete pkt->senderState;
80
81 delete pkt->req;
82 delete pkt;
83 }
84
85 template<class Impl>
86 const char *
87 LSQUnit<Impl>::WritebackEvent::description() const
88 {
89 return "Store writeback";
90 }
91
92 template<class Impl>
93 void
94 LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
95 {
96 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
97 DynInstPtr inst = state->inst;
98 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
99 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
100
101 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
102
103 // If this is a split access, wait until all packets are received.
104 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
105 delete pkt->req;
106 delete pkt;
107 return;
108 }
109
110 assert(!cpu->switchedOut());
111 if (inst->isSquashed()) {
112 iewStage->decrWb(inst->seqNum);
113 } else {
114 if (!state->noWB) {
115 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
116 !state->isLoad) {
117 writeback(inst, pkt);
118 } else {
119 writeback(inst, state->mainPkt);
120 }
121 }
122
123 if (inst->isStore()) {
124 completeStore(state->idx);
125 }
126 }
127
128 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
129 delete state->mainPkt->req;
130 delete state->mainPkt;
131 }
132
133 pkt->req->setAccessLatency();
134 cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
135
136 delete state;
137 delete pkt->req;
138 delete pkt;
139 }
140
141 template <class Impl>
142 LSQUnit<Impl>::LSQUnit()
143 : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
144 isStoreBlocked(false), isLoadBlocked(false),
145 loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
146 {
147 }
148
149 template<class Impl>
150 void
151 LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
152 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
153 unsigned id)
154 {
155 cpu = cpu_ptr;
156 iewStage = iew_ptr;
157
158 lsq = lsq_ptr;
159
160 lsqID = id;
161
162 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
163
164 // Add 1 for the sentinel entry (they are circular queues).
165 LQEntries = maxLQEntries + 1;
166 SQEntries = maxSQEntries + 1;
167
168 //Due to uint8_t index in LSQSenderState
169 assert(LQEntries <= 256);
170 assert(SQEntries <= 256);
171
172 loadQueue.resize(LQEntries);
173 storeQueue.resize(SQEntries);
174
175 depCheckShift = params->LSQDepCheckShift;
176 checkLoads = params->LSQCheckLoads;
177 cachePorts = params->cachePorts;
178 needsTSO = params->needsTSO;
179
180 resetState();
181 }
182
183
184 template<class Impl>
185 void
186 LSQUnit<Impl>::resetState()
187 {
188 loads = stores = storesToWB = 0;
189
190 loadHead = loadTail = 0;
191
192 storeHead = storeWBIdx = storeTail = 0;
193
194 usedPorts = 0;
195
196 retryPkt = NULL;
197 memDepViolator = NULL;
198
199 blockedLoadSeqNum = 0;
200
201 stalled = false;
202 isLoadBlocked = false;
203 loadBlockedHandled = false;
204
205 cacheBlockMask = ~(cpu->cacheLineSize() - 1);
206 }
207
208 template<class Impl>
209 std::string
210 LSQUnit<Impl>::name() const
211 {
212 if (Impl::MaxThreads == 1) {
213 return iewStage->name() + ".lsq";
214 } else {
215 return iewStage->name() + ".lsq.thread" + to_string(lsqID);
216 }
217 }
218
219 template<class Impl>
220 void
221 LSQUnit<Impl>::regStats()
222 {
223 lsqForwLoads
224 .name(name() + ".forwLoads")
225 .desc("Number of loads that had data forwarded from stores");
226
227 invAddrLoads
228 .name(name() + ".invAddrLoads")
229 .desc("Number of loads ignored due to an invalid address");
230
231 lsqSquashedLoads
232 .name(name() + ".squashedLoads")
233 .desc("Number of loads squashed");
234
235 lsqIgnoredResponses
236 .name(name() + ".ignoredResponses")
237 .desc("Number of memory responses ignored because the instruction is squashed");
238
239 lsqMemOrderViolation
240 .name(name() + ".memOrderViolation")
241 .desc("Number of memory ordering violations");
242
243 lsqSquashedStores
244 .name(name() + ".squashedStores")
245 .desc("Number of stores squashed");
246
247 invAddrSwpfs
248 .name(name() + ".invAddrSwpfs")
249 .desc("Number of software prefetches ignored due to an invalid address");
250
251 lsqBlockedLoads
252 .name(name() + ".blockedLoads")
253 .desc("Number of blocked loads due to partial load-store forwarding");
254
255 lsqRescheduledLoads
256 .name(name() + ".rescheduledLoads")
257 .desc("Number of loads that were rescheduled");
258
259 lsqCacheBlocked
260 .name(name() + ".cacheBlocked")
261 .desc("Number of times an access to memory failed due to the cache being blocked");
262 }
263
264 template<class Impl>
265 void
266 LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
267 {
268 dcachePort = dcache_port;
269 }
270
271 template<class Impl>
272 void
273 LSQUnit<Impl>::clearLQ()
274 {
275 loadQueue.clear();
276 }
277
278 template<class Impl>
279 void
280 LSQUnit<Impl>::clearSQ()
281 {
282 storeQueue.clear();
283 }
284
285 template<class Impl>
286 void
287 LSQUnit<Impl>::drainSanityCheck() const
288 {
289 for (int i = 0; i < loadQueue.size(); ++i)
290 assert(!loadQueue[i]);
291
292 assert(storesToWB == 0);
293 assert(!retryPkt);
294 }
295
296 template<class Impl>
297 void
298 LSQUnit<Impl>::takeOverFrom()
299 {
300 resetState();
301 }
302
303 template<class Impl>
304 void
305 LSQUnit<Impl>::resizeLQ(unsigned size)
306 {
307 unsigned size_plus_sentinel = size + 1;
308 assert(size_plus_sentinel >= LQEntries);
309
310 if (size_plus_sentinel > LQEntries) {
311 while (size_plus_sentinel > loadQueue.size()) {
312 DynInstPtr dummy;
313 loadQueue.push_back(dummy);
314 LQEntries++;
315 }
316 } else {
317 LQEntries = size_plus_sentinel;
318 }
319
320 assert(LQEntries <= 256);
321 }
322
323 template<class Impl>
324 void
325 LSQUnit<Impl>::resizeSQ(unsigned size)
326 {
327 unsigned size_plus_sentinel = size + 1;
328 if (size_plus_sentinel > SQEntries) {
329 while (size_plus_sentinel > storeQueue.size()) {
330 SQEntry dummy;
331 storeQueue.push_back(dummy);
332 SQEntries++;
333 }
334 } else {
335 SQEntries = size_plus_sentinel;
336 }
337
338 assert(SQEntries <= 256);
339 }
340
341 template <class Impl>
342 void
343 LSQUnit<Impl>::insert(DynInstPtr &inst)
344 {
345 assert(inst->isMemRef());
346
347 assert(inst->isLoad() || inst->isStore());
348
349 if (inst->isLoad()) {
350 insertLoad(inst);
351 } else {
352 insertStore(inst);
353 }
354
355 inst->setInLSQ();
356 }
357
358 template <class Impl>
359 void
360 LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
361 {
362 assert((loadTail + 1) % LQEntries != loadHead);
363 assert(loads < LQEntries);
364
365 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
366 load_inst->pcState(), loadTail, load_inst->seqNum);
367
368 load_inst->lqIdx = loadTail;
369
370 if (stores == 0) {
371 load_inst->sqIdx = -1;
372 } else {
373 load_inst->sqIdx = storeTail;
374 }
375
376 loadQueue[loadTail] = load_inst;
377
378 incrLdIdx(loadTail);
379
380 ++loads;
381 }
382
383 template <class Impl>
384 void
385 LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
386 {
387 // Make sure it is not full before inserting an instruction.
388 assert((storeTail + 1) % SQEntries != storeHead);
389 assert(stores < SQEntries);
390
391 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
392 store_inst->pcState(), storeTail, store_inst->seqNum);
393
394 store_inst->sqIdx = storeTail;
395 store_inst->lqIdx = loadTail;
396
397 storeQueue[storeTail] = SQEntry(store_inst);
398
399 incrStIdx(storeTail);
400
401 ++stores;
402 }
403
404 template <class Impl>
405 typename Impl::DynInstPtr
406 LSQUnit<Impl>::getMemDepViolator()
407 {
408 DynInstPtr temp = memDepViolator;
409
410 memDepViolator = NULL;
411
412 return temp;
413 }
414
415 template <class Impl>
416 unsigned
417 LSQUnit<Impl>::numFreeEntries()
418 {
419 unsigned free_lq_entries = LQEntries - loads;
420 unsigned free_sq_entries = SQEntries - stores;
421
422 // Both the LQ and SQ entries have an extra dummy entry to differentiate
423 // empty/full conditions. Subtract 1 from the free entries.
424 if (free_lq_entries < free_sq_entries) {
425 return free_lq_entries - 1;
426 } else {
427 return free_sq_entries - 1;
428 }
429 }
430
431 template <class Impl>
432 void
433 LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
434 {
435 int load_idx = loadHead;
436 DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
437
438 // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
439 // address. The CPU can speculatively execute a LL operation after a pending
440 // SC operation in the pipeline and that can make the cache monitor the CPU
441 // is connected to valid while it really shouldn't be.
442 for (int x = 0; x < cpu->numContexts(); x++) {
443 ThreadContext *tc = cpu->getContext(x);
444 bool no_squash = cpu->thread[x]->noSquashFromTC;
445 cpu->thread[x]->noSquashFromTC = true;
446 TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
447 cpu->thread[x]->noSquashFromTC = no_squash;
448 }
449
450 Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
451
452 DynInstPtr ld_inst = loadQueue[load_idx];
453 if (ld_inst) {
454 Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
455 // Check that this snoop didn't just invalidate our lock flag
456 if (ld_inst->effAddrValid() && load_addr == invalidate_addr &&
457 ld_inst->memReqFlags & Request::LLSC)
458 TheISA::handleLockedSnoopHit(ld_inst.get());
459 }
460
461 // If this is the only load in the LSQ we don't care
462 if (load_idx == loadTail)
463 return;
464
465 incrLdIdx(load_idx);
466
467 bool force_squash = false;
468
469 while (load_idx != loadTail) {
470 DynInstPtr ld_inst = loadQueue[load_idx];
471
472 if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
473 incrLdIdx(load_idx);
474 continue;
475 }
476
477 Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
478 DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
479 ld_inst->seqNum, load_addr, invalidate_addr);
480
481 if (load_addr == invalidate_addr || force_squash) {
482 if (needsTSO) {
483 // If we have a TSO system, as all loads must be ordered with
484 // all other loads, this load as well as *all* subsequent loads
485 // need to be squashed to prevent possible load reordering.
486 force_squash = true;
487 }
488 if (ld_inst->possibleLoadViolation() || force_squash) {
489 DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
490 pkt->getAddr(), ld_inst->seqNum);
491
492 // Mark the load for re-execution
493 ld_inst->fault = new ReExec;
494 } else {
495 DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
496 pkt->getAddr(), ld_inst->seqNum);
497
498 // Make sure that we don't lose a snoop hitting a LOCKED
499 // address since the LOCK* flags don't get updated until
500 // commit.
501 if (ld_inst->memReqFlags & Request::LLSC)
502 TheISA::handleLockedSnoopHit(ld_inst.get());
503
504 // If a older load checks this and it's true
505 // then we might have missed the snoop
506 // in which case we need to invalidate to be sure
507 ld_inst->hitExternalSnoop(true);
508 }
509 }
510 incrLdIdx(load_idx);
511 }
512 return;
513 }
514
515 template <class Impl>
516 Fault
517 LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
518 {
519 Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
520 Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
521
522 /** @todo in theory you only need to check an instruction that has executed
523 * however, there isn't a good way in the pipeline at the moment to check
524 * all instructions that will execute before the store writes back. Thus,
525 * like the implementation that came before it, we're overly conservative.
526 */
527 while (load_idx != loadTail) {
528 DynInstPtr ld_inst = loadQueue[load_idx];
529 if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
530 incrLdIdx(load_idx);
531 continue;
532 }
533
534 Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
535 Addr ld_eff_addr2 =
536 (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
537
538 if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
539 if (inst->isLoad()) {
540 // If this load is to the same block as an external snoop
541 // invalidate that we've observed then the load needs to be
542 // squashed as it could have newer data
543 if (ld_inst->hitExternalSnoop()) {
544 if (!memDepViolator ||
545 ld_inst->seqNum < memDepViolator->seqNum) {
546 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
547 "and [sn:%lli] at address %#x\n",
548 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
549 memDepViolator = ld_inst;
550
551 ++lsqMemOrderViolation;
552
553 return new GenericISA::M5PanicFault(
554 "Detected fault with inst [sn:%lli] and "
555 "[sn:%lli] at address %#x\n",
556 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
557 }
558 }
559
560 // Otherwise, mark the load has a possible load violation
561 // and if we see a snoop before it's commited, we need to squash
562 ld_inst->possibleLoadViolation(true);
563 DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
564 " between instructions [sn:%lli] and [sn:%lli]\n",
565 inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
566 } else {
567 // A load/store incorrectly passed this store.
568 // Check if we already have a violator, or if it's newer
569 // squash and refetch.
570 if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
571 break;
572
573 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
574 "[sn:%lli] at address %#x\n",
575 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
576 memDepViolator = ld_inst;
577
578 ++lsqMemOrderViolation;
579
580 return new GenericISA::M5PanicFault("Detected fault with "
581 "inst [sn:%lli] and [sn:%lli] at address %#x\n",
582 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
583 }
584 }
585
586 incrLdIdx(load_idx);
587 }
588 return NoFault;
589 }
590
591
592
593
594 template <class Impl>
595 Fault
596 LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
597 {
598 using namespace TheISA;
599 // Execute a specific load.
600 Fault load_fault = NoFault;
601
602 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
603 inst->pcState(), inst->seqNum);
604
605 assert(!inst->isSquashed());
606
607 load_fault = inst->initiateAcc();
608
609 if (inst->isTranslationDelayed() &&
610 load_fault == NoFault)
611 return load_fault;
612
613 // If the instruction faulted or predicated false, then we need to send it
614 // along to commit without the instruction completing.
615 if (load_fault != NoFault || !inst->readPredicate()) {
616 // Send this instruction to commit, also make sure iew stage
617 // realizes there is activity.
618 // Mark it as executed unless it is an uncached load that
619 // needs to hit the head of commit.
620 if (!inst->readPredicate())
621 inst->forwardOldRegs();
622 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
623 inst->seqNum,
624 (load_fault != NoFault ? "fault" : "predication"));
625 if (!(inst->hasRequest() && inst->uncacheable()) ||
626 inst->isAtCommit()) {
627 inst->setExecuted();
628 }
629 iewStage->instToCommit(inst);
630 iewStage->activityThisCycle();
631 } else if (!loadBlocked()) {
632 assert(inst->effAddrValid());
633 int load_idx = inst->lqIdx;
634 incrLdIdx(load_idx);
635
636 if (checkLoads)
637 return checkViolations(load_idx, inst);
638 }
639
640 return load_fault;
641 }
642
643 template <class Impl>
644 Fault
645 LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
646 {
647 using namespace TheISA;
648 // Make sure that a store exists.
649 assert(stores != 0);
650
651 int store_idx = store_inst->sqIdx;
652
653 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
654 store_inst->pcState(), store_inst->seqNum);
655
656 assert(!store_inst->isSquashed());
657
658 // Check the recently completed loads to see if any match this store's
659 // address. If so, then we have a memory ordering violation.
660 int load_idx = store_inst->lqIdx;
661
662 Fault store_fault = store_inst->initiateAcc();
663
664 if (store_inst->isTranslationDelayed() &&
665 store_fault == NoFault)
666 return store_fault;
667
668 if (!store_inst->readPredicate())
669 store_inst->forwardOldRegs();
670
671 if (storeQueue[store_idx].size == 0) {
672 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
673 store_inst->pcState(), store_inst->seqNum);
674
675 return store_fault;
676 } else if (!store_inst->readPredicate()) {
677 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
678 store_inst->seqNum);
679 return store_fault;
680 }
681
682 assert(store_fault == NoFault);
683
684 if (store_inst->isStoreConditional()) {
685 // Store conditionals need to set themselves as able to
686 // writeback if we haven't had a fault by here.
687 storeQueue[store_idx].canWB = true;
688
689 ++storesToWB;
690 }
691
692 return checkViolations(load_idx, store_inst);
693
694 }
695
696 template <class Impl>
697 void
698 LSQUnit<Impl>::commitLoad()
699 {
700 assert(loadQueue[loadHead]);
701
702 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
703 loadQueue[loadHead]->pcState());
704
705 loadQueue[loadHead] = NULL;
706
707 incrLdIdx(loadHead);
708
709 --loads;
710 }
711
712 template <class Impl>
713 void
714 LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
715 {
716 assert(loads == 0 || loadQueue[loadHead]);
717
718 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
719 commitLoad();
720 }
721 }
722
723 template <class Impl>
724 void
725 LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
726 {
727 assert(stores == 0 || storeQueue[storeHead].inst);
728
729 int store_idx = storeHead;
730
731 while (store_idx != storeTail) {
732 assert(storeQueue[store_idx].inst);
733 // Mark any stores that are now committed and have not yet
734 // been marked as able to write back.
735 if (!storeQueue[store_idx].canWB) {
736 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
737 break;
738 }
739 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
740 "%s [sn:%lli]\n",
741 storeQueue[store_idx].inst->pcState(),
742 storeQueue[store_idx].inst->seqNum);
743
744 storeQueue[store_idx].canWB = true;
745
746 ++storesToWB;
747 }
748
749 incrStIdx(store_idx);
750 }
751 }
752
753 template <class Impl>
754 void
755 LSQUnit<Impl>::writebackPendingStore()
756 {
757 if (hasPendingPkt) {
758 assert(pendingPkt != NULL);
759
760 // If the cache is blocked, this will store the packet for retry.
761 if (sendStore(pendingPkt)) {
762 storePostSend(pendingPkt);
763 }
764 pendingPkt = NULL;
765 hasPendingPkt = false;
766 }
767 }
768
769 template <class Impl>
770 void
771 LSQUnit<Impl>::writebackStores()
772 {
773 // First writeback the second packet from any split store that didn't
774 // complete last cycle because there weren't enough cache ports available.
775 if (TheISA::HasUnalignedMemAcc) {
776 writebackPendingStore();
777 }
778
779 while (storesToWB > 0 &&
780 storeWBIdx != storeTail &&
781 storeQueue[storeWBIdx].inst &&
782 storeQueue[storeWBIdx].canWB &&
783 ((!needsTSO) || (!storeInFlight)) &&
784 usedPorts < cachePorts) {
785
786 if (isStoreBlocked || lsq->cacheBlocked()) {
787 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
788 " is blocked!\n");
789 break;
790 }
791
792 // Store didn't write any data so no need to write it back to
793 // memory.
794 if (storeQueue[storeWBIdx].size == 0) {
795 completeStore(storeWBIdx);
796
797 incrStIdx(storeWBIdx);
798
799 continue;
800 }
801
802 ++usedPorts;
803
804 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
805 incrStIdx(storeWBIdx);
806
807 continue;
808 }
809
810 assert(storeQueue[storeWBIdx].req);
811 assert(!storeQueue[storeWBIdx].committed);
812
813 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
814 assert(storeQueue[storeWBIdx].sreqLow);
815 assert(storeQueue[storeWBIdx].sreqHigh);
816 }
817
818 DynInstPtr inst = storeQueue[storeWBIdx].inst;
819
820 Request *req = storeQueue[storeWBIdx].req;
821 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
822 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
823
824 storeQueue[storeWBIdx].committed = true;
825
826 assert(!inst->memData);
827 inst->memData = new uint8_t[req->getSize()];
828
829 if (storeQueue[storeWBIdx].isAllZeros)
830 memset(inst->memData, 0, req->getSize());
831 else
832 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
833
834 MemCmd command =
835 req->isSwap() ? MemCmd::SwapReq :
836 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
837 PacketPtr data_pkt;
838 PacketPtr snd_data_pkt = NULL;
839
840 LSQSenderState *state = new LSQSenderState;
841 state->isLoad = false;
842 state->idx = storeWBIdx;
843 state->inst = inst;
844
845 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
846
847 // Build a single data packet if the store isn't split.
848 data_pkt = new Packet(req, command);
849 data_pkt->dataStatic(inst->memData);
850 data_pkt->senderState = state;
851 } else {
852 // Create two packets if the store is split in two.
853 data_pkt = new Packet(sreqLow, command);
854 snd_data_pkt = new Packet(sreqHigh, command);
855
856 data_pkt->dataStatic(inst->memData);
857 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
858
859 data_pkt->senderState = state;
860 snd_data_pkt->senderState = state;
861
862 state->isSplit = true;
863 state->outstanding = 2;
864
865 // Can delete the main request now.
866 delete req;
867 req = sreqLow;
868 }
869
870 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
871 "to Addr:%#x, data:%#x [sn:%lli]\n",
872 storeWBIdx, inst->pcState(),
873 req->getPaddr(), (int)*(inst->memData),
874 inst->seqNum);
875
876 // @todo: Remove this SC hack once the memory system handles it.
877 if (inst->isStoreConditional()) {
878 assert(!storeQueue[storeWBIdx].isSplit);
879 // Disable recording the result temporarily. Writing to
880 // misc regs normally updates the result, but this is not
881 // the desired behavior when handling store conditionals.
882 inst->recordResult(false);
883 bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
884 inst->recordResult(true);
885
886 if (!success) {
887 // Instantly complete this store.
888 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
889 "Instantly completing it.\n",
890 inst->seqNum);
891 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
892 cpu->schedule(wb, curTick() + 1);
893 if (cpu->checker) {
894 // Make sure to set the LLSC data for verification
895 // if checker is loaded
896 inst->reqToVerify->setExtraData(0);
897 inst->completeAcc(data_pkt);
898 }
899 completeStore(storeWBIdx);
900 incrStIdx(storeWBIdx);
901 continue;
902 }
903 } else {
904 // Non-store conditionals do not need a writeback.
905 state->noWB = true;
906 }
907
908 bool split =
909 TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
910
911 ThreadContext *thread = cpu->tcBase(lsqID);
912
913 if (req->isMmappedIpr()) {
914 assert(!inst->isStoreConditional());
915 TheISA::handleIprWrite(thread, data_pkt);
916 delete data_pkt;
917 if (split) {
918 assert(snd_data_pkt->req->isMmappedIpr());
919 TheISA::handleIprWrite(thread, snd_data_pkt);
920 delete snd_data_pkt;
921 delete sreqLow;
922 delete sreqHigh;
923 }
924 delete state;
925 delete req;
926 completeStore(storeWBIdx);
927 incrStIdx(storeWBIdx);
928 } else if (!sendStore(data_pkt)) {
929 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
930 "retry later\n",
931 inst->seqNum);
932
933 // Need to store the second packet, if split.
934 if (split) {
935 state->pktToSend = true;
936 state->pendingPacket = snd_data_pkt;
937 }
938 } else {
939
940 // If split, try to send the second packet too
941 if (split) {
942 assert(snd_data_pkt);
943
944 // Ensure there are enough ports to use.
945 if (usedPorts < cachePorts) {
946 ++usedPorts;
947 if (sendStore(snd_data_pkt)) {
948 storePostSend(snd_data_pkt);
949 } else {
950 DPRINTF(IEW, "D-Cache became blocked when writing"
951 " [sn:%lli] second packet, will retry later\n",
952 inst->seqNum);
953 }
954 } else {
955
956 // Store the packet for when there's free ports.
957 assert(pendingPkt == NULL);
958 pendingPkt = snd_data_pkt;
959 hasPendingPkt = true;
960 }
961 } else {
962
963 // Not a split store.
964 storePostSend(data_pkt);
965 }
966 }
967 }
968
969 // Not sure this should set it to 0.
970 usedPorts = 0;
971
972 assert(stores >= 0 && storesToWB >= 0);
973 }
974
975 /*template <class Impl>
976 void
977 LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
978 {
979 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
980 mshrSeqNums.end(),
981 seqNum);
982
983 if (mshr_it != mshrSeqNums.end()) {
984 mshrSeqNums.erase(mshr_it);
985 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
986 }
987 }*/
988
989 template <class Impl>
990 void
991 LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
992 {
993 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
994 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
995
996 int load_idx = loadTail;
997 decrLdIdx(load_idx);
998
999 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1000 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1001 "[sn:%lli]\n",
1002 loadQueue[load_idx]->pcState(),
1003 loadQueue[load_idx]->seqNum);
1004
1005 if (isStalled() && load_idx == stallingLoadIdx) {
1006 stalled = false;
1007 stallingStoreIsn = 0;
1008 stallingLoadIdx = 0;
1009 }
1010
1011 // Clear the smart pointer to make sure it is decremented.
1012 loadQueue[load_idx]->setSquashed();
1013 loadQueue[load_idx] = NULL;
1014 --loads;
1015
1016 // Inefficient!
1017 loadTail = load_idx;
1018
1019 decrLdIdx(load_idx);
1020 ++lsqSquashedLoads;
1021 }
1022
1023 if (isLoadBlocked) {
1024 if (squashed_num < blockedLoadSeqNum) {
1025 isLoadBlocked = false;
1026 loadBlockedHandled = false;
1027 blockedLoadSeqNum = 0;
1028 }
1029 }
1030
1031 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1032 memDepViolator = NULL;
1033 }
1034
1035 int store_idx = storeTail;
1036 decrStIdx(store_idx);
1037
1038 while (stores != 0 &&
1039 storeQueue[store_idx].inst->seqNum > squashed_num) {
1040 // Instructions marked as can WB are already committed.
1041 if (storeQueue[store_idx].canWB) {
1042 break;
1043 }
1044
1045 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1046 "idx:%i [sn:%lli]\n",
1047 storeQueue[store_idx].inst->pcState(),
1048 store_idx, storeQueue[store_idx].inst->seqNum);
1049
1050 // I don't think this can happen. It should have been cleared
1051 // by the stalling load.
1052 if (isStalled() &&
1053 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1054 panic("Is stalled should have been cleared by stalling load!\n");
1055 stalled = false;
1056 stallingStoreIsn = 0;
1057 }
1058
1059 // Clear the smart pointer to make sure it is decremented.
1060 storeQueue[store_idx].inst->setSquashed();
1061 storeQueue[store_idx].inst = NULL;
1062 storeQueue[store_idx].canWB = 0;
1063
1064 // Must delete request now that it wasn't handed off to
1065 // memory. This is quite ugly. @todo: Figure out the proper
1066 // place to really handle request deletes.
1067 delete storeQueue[store_idx].req;
1068 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1069 delete storeQueue[store_idx].sreqLow;
1070 delete storeQueue[store_idx].sreqHigh;
1071
1072 storeQueue[store_idx].sreqLow = NULL;
1073 storeQueue[store_idx].sreqHigh = NULL;
1074 }
1075
1076 storeQueue[store_idx].req = NULL;
1077 --stores;
1078
1079 // Inefficient!
1080 storeTail = store_idx;
1081
1082 decrStIdx(store_idx);
1083 ++lsqSquashedStores;
1084 }
1085 }
1086
1087 template <class Impl>
1088 void
1089 LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1090 {
1091 if (isStalled() &&
1092 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1093 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1094 "load idx:%i\n",
1095 stallingStoreIsn, stallingLoadIdx);
1096 stalled = false;
1097 stallingStoreIsn = 0;
1098 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1099 }
1100
1101 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1102 // The store is basically completed at this time. This
1103 // only works so long as the checker doesn't try to
1104 // verify the value in memory for stores.
1105 storeQueue[storeWBIdx].inst->setCompleted();
1106
1107 if (cpu->checker) {
1108 cpu->checker->verify(storeQueue[storeWBIdx].inst);
1109 }
1110 }
1111
1112 if (needsTSO) {
1113 storeInFlight = true;
1114 }
1115
1116 incrStIdx(storeWBIdx);
1117 }
1118
1119 template <class Impl>
1120 void
1121 LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1122 {
1123 iewStage->wakeCPU();
1124
1125 // Squashed instructions do not need to complete their access.
1126 if (inst->isSquashed()) {
1127 iewStage->decrWb(inst->seqNum);
1128 assert(!inst->isStore());
1129 ++lsqIgnoredResponses;
1130 return;
1131 }
1132
1133 if (!inst->isExecuted()) {
1134 inst->setExecuted();
1135
1136 // Complete access to copy data to proper place.
1137 inst->completeAcc(pkt);
1138 }
1139
1140 // Need to insert instruction into queue to commit
1141 iewStage->instToCommit(inst);
1142
1143 iewStage->activityThisCycle();
1144
1145 // see if this load changed the PC
1146 iewStage->checkMisprediction(inst);
1147 }
1148
1149 template <class Impl>
1150 void
1151 LSQUnit<Impl>::completeStore(int store_idx)
1152 {
1153 assert(storeQueue[store_idx].inst);
1154 storeQueue[store_idx].completed = true;
1155 --storesToWB;
1156 // A bit conservative because a store completion may not free up entries,
1157 // but hopefully avoids two store completions in one cycle from making
1158 // the CPU tick twice.
1159 cpu->wakeCPU();
1160 cpu->activityThisCycle();
1161
1162 if (store_idx == storeHead) {
1163 do {
1164 incrStIdx(storeHead);
1165
1166 --stores;
1167 } while (storeQueue[storeHead].completed &&
1168 storeHead != storeTail);
1169
1170 iewStage->updateLSQNextCycle = true;
1171 }
1172
1173 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1174 "idx:%i\n",
1175 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1176
1177 #if TRACING_ON
1178 if (DTRACE(O3PipeView)) {
1179 storeQueue[store_idx].inst->storeTick =
1180 curTick() - storeQueue[store_idx].inst->fetchTick;
1181 }
1182 #endif
1183
1184 if (isStalled() &&
1185 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1186 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1187 "load idx:%i\n",
1188 stallingStoreIsn, stallingLoadIdx);
1189 stalled = false;
1190 stallingStoreIsn = 0;
1191 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1192 }
1193
1194 storeQueue[store_idx].inst->setCompleted();
1195
1196 if (needsTSO) {
1197 storeInFlight = false;
1198 }
1199
1200 // Tell the checker we've completed this instruction. Some stores
1201 // may get reported twice to the checker, but the checker can
1202 // handle that case.
1203 if (cpu->checker) {
1204 cpu->checker->verify(storeQueue[store_idx].inst);
1205 }
1206 }
1207
1208 template <class Impl>
1209 bool
1210 LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1211 {
1212 if (!dcachePort->sendTimingReq(data_pkt)) {
1213 // Need to handle becoming blocked on a store.
1214 isStoreBlocked = true;
1215 ++lsqCacheBlocked;
1216 assert(retryPkt == NULL);
1217 retryPkt = data_pkt;
1218 lsq->setRetryTid(lsqID);
1219 return false;
1220 }
1221 return true;
1222 }
1223
1224 template <class Impl>
1225 void
1226 LSQUnit<Impl>::recvRetry()
1227 {
1228 if (isStoreBlocked) {
1229 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1230 assert(retryPkt != NULL);
1231
1232 LSQSenderState *state =
1233 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1234
1235 if (dcachePort->sendTimingReq(retryPkt)) {
1236 // Don't finish the store unless this is the last packet.
1237 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1238 state->pendingPacket == retryPkt) {
1239 state->pktToSend = false;
1240 storePostSend(retryPkt);
1241 }
1242 retryPkt = NULL;
1243 isStoreBlocked = false;
1244 lsq->setRetryTid(InvalidThreadID);
1245
1246 // Send any outstanding packet.
1247 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1248 assert(state->pendingPacket);
1249 if (sendStore(state->pendingPacket)) {
1250 storePostSend(state->pendingPacket);
1251 }
1252 }
1253 } else {
1254 // Still blocked!
1255 ++lsqCacheBlocked;
1256 lsq->setRetryTid(lsqID);
1257 }
1258 } else if (isLoadBlocked) {
1259 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1260 "no need to resend packet.\n");
1261 } else {
1262 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1263 }
1264 }
1265
1266 template <class Impl>
1267 inline void
1268 LSQUnit<Impl>::incrStIdx(int &store_idx) const
1269 {
1270 if (++store_idx >= SQEntries)
1271 store_idx = 0;
1272 }
1273
1274 template <class Impl>
1275 inline void
1276 LSQUnit<Impl>::decrStIdx(int &store_idx) const
1277 {
1278 if (--store_idx < 0)
1279 store_idx += SQEntries;
1280 }
1281
1282 template <class Impl>
1283 inline void
1284 LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1285 {
1286 if (++load_idx >= LQEntries)
1287 load_idx = 0;
1288 }
1289
1290 template <class Impl>
1291 inline void
1292 LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1293 {
1294 if (--load_idx < 0)
1295 load_idx += LQEntries;
1296 }
1297
1298 template <class Impl>
1299 void
1300 LSQUnit<Impl>::dumpInsts() const
1301 {
1302 cprintf("Load store queue: Dumping instructions.\n");
1303 cprintf("Load queue size: %i\n", loads);
1304 cprintf("Load queue: ");
1305
1306 int load_idx = loadHead;
1307
1308 while (load_idx != loadTail && loadQueue[load_idx]) {
1309 const DynInstPtr &inst(loadQueue[load_idx]);
1310 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1311
1312 incrLdIdx(load_idx);
1313 }
1314 cprintf("\n");
1315
1316 cprintf("Store queue size: %i\n", stores);
1317 cprintf("Store queue: ");
1318
1319 int store_idx = storeHead;
1320
1321 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1322 const DynInstPtr &inst(storeQueue[store_idx].inst);
1323 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1324
1325 incrStIdx(store_idx);
1326 }
1327
1328 cprintf("\n");
1329 }
1330
1331 #endif//__CPU_O3_LSQ_UNIT_IMPL_HH__