remove self.o from FPAddAlignSingleAdd, make local
[ieee754fpu.git] / src / add / nmigen_add_experiment.py
1 # IEEE Floating Point Adder (Single Precision)
2 # Copyright (C) Jonathan P Dawson 2013
3 # 2013-12-12
4
5 from nmigen import Module, Signal, Cat, Mux, Array, Const
6 from nmigen.lib.coding import PriorityEncoder
7 from nmigen.cli import main, verilog
8 from math import log
9
10 from fpbase import FPNumIn, FPNumOut, FPOp, Overflow, FPBase, FPNumBase
11 from fpbase import MultiShiftRMerge, Trigger
12 #from fpbase import FPNumShiftMultiRight
13
14
15 class FPState(FPBase):
16 def __init__(self, state_from):
17 self.state_from = state_from
18
19 def set_inputs(self, inputs):
20 self.inputs = inputs
21 for k,v in inputs.items():
22 setattr(self, k, v)
23
24 def set_outputs(self, outputs):
25 self.outputs = outputs
26 for k,v in outputs.items():
27 setattr(self, k, v)
28
29
30 class FPGetSyncOpsMod:
31 def __init__(self, width, num_ops=2):
32 self.width = width
33 self.num_ops = num_ops
34 inops = []
35 outops = []
36 for i in range(num_ops):
37 inops.append(Signal(width, reset_less=True))
38 outops.append(Signal(width, reset_less=True))
39 self.in_op = inops
40 self.out_op = outops
41 self.stb = Signal(num_ops)
42 self.ack = Signal()
43 self.ready = Signal(reset_less=True)
44 self.out_decode = Signal(reset_less=True)
45
46 def elaborate(self, platform):
47 m = Module()
48 m.d.comb += self.ready.eq(self.stb == Const(-1, (self.num_ops, False)))
49 m.d.comb += self.out_decode.eq(self.ack & self.ready)
50 with m.If(self.out_decode):
51 for i in range(self.num_ops):
52 m.d.comb += [
53 self.out_op[i].eq(self.in_op[i]),
54 ]
55 return m
56
57 def ports(self):
58 return self.in_op + self.out_op + [self.stb, self.ack]
59
60
61 class FPOps(Trigger):
62 def __init__(self, width, num_ops):
63 Trigger.__init__(self)
64 self.width = width
65 self.num_ops = num_ops
66
67 res = []
68 for i in range(num_ops):
69 res.append(Signal(width))
70 self.v = Array(res)
71
72 def ports(self):
73 res = []
74 for i in range(self.num_ops):
75 res.append(self.v[i])
76 res.append(self.ack)
77 res.append(self.stb)
78 return res
79
80
81 class InputGroup:
82 def __init__(self, width, num_ops=2, num_rows=4):
83 self.width = width
84 self.num_ops = num_ops
85 self.num_rows = num_rows
86 self.mmax = int(log(self.num_rows) / log(2))
87 self.rs = []
88 self.mid = Signal(self.mmax, reset_less=True) # multiplex id
89 for i in range(num_rows):
90 self.rs.append(FPGetSyncOpsMod(width, num_ops))
91 self.rs = Array(self.rs)
92
93 self.out_op = FPOps(width, num_ops)
94
95 def elaborate(self, platform):
96 m = Module()
97
98 pe = PriorityEncoder(self.num_rows)
99 m.submodules.selector = pe
100 m.submodules.out_op = self.out_op
101 m.submodules += self.rs
102
103 # connect priority encoder
104 in_ready = []
105 for i in range(self.num_rows):
106 in_ready.append(self.rs[i].ready)
107 m.d.comb += pe.i.eq(Cat(*in_ready))
108
109 active = Signal(reset_less=True)
110 out_en = Signal(reset_less=True)
111 m.d.comb += active.eq(~pe.n) # encoder active
112 m.d.comb += out_en.eq(active & self.out_op.trigger)
113
114 # encoder active: ack relevant input, record MID, pass output
115 with m.If(out_en):
116 rs = self.rs[pe.o]
117 m.d.sync += self.mid.eq(pe.o)
118 m.d.sync += rs.ack.eq(0)
119 m.d.sync += self.out_op.stb.eq(0)
120 for j in range(self.num_ops):
121 m.d.sync += self.out_op.v[j].eq(rs.out_op[j])
122 with m.Else():
123 m.d.sync += self.out_op.stb.eq(1)
124 # acks all default to zero
125 for i in range(self.num_rows):
126 m.d.sync += self.rs[i].ack.eq(1)
127
128 return m
129
130 def ports(self):
131 res = []
132 for i in range(self.num_rows):
133 inop = self.rs[i]
134 res += inop.in_op + [inop.stb]
135 return self.out_op.ports() + res + [self.mid]
136
137
138 class FPGetOpMod:
139 def __init__(self, width):
140 self.in_op = FPOp(width)
141 self.out_op = Signal(width)
142 self.out_decode = Signal(reset_less=True)
143
144 def elaborate(self, platform):
145 m = Module()
146 m.d.comb += self.out_decode.eq((self.in_op.ack) & (self.in_op.stb))
147 m.submodules.get_op_in = self.in_op
148 #m.submodules.get_op_out = self.out_op
149 with m.If(self.out_decode):
150 m.d.comb += [
151 self.out_op.eq(self.in_op.v),
152 ]
153 return m
154
155
156 class FPGetOp(FPState):
157 """ gets operand
158 """
159
160 def __init__(self, in_state, out_state, in_op, width):
161 FPState.__init__(self, in_state)
162 self.out_state = out_state
163 self.mod = FPGetOpMod(width)
164 self.in_op = in_op
165 self.out_op = Signal(width)
166 self.out_decode = Signal(reset_less=True)
167
168 def setup(self, m, in_op):
169 """ links module to inputs and outputs
170 """
171 setattr(m.submodules, self.state_from, self.mod)
172 m.d.comb += self.mod.in_op.eq(in_op)
173 m.d.comb += self.out_decode.eq(self.mod.out_decode)
174
175 def action(self, m):
176 with m.If(self.out_decode):
177 m.next = self.out_state
178 m.d.sync += [
179 self.in_op.ack.eq(0),
180 self.out_op.eq(self.mod.out_op)
181 ]
182 with m.Else():
183 m.d.sync += self.in_op.ack.eq(1)
184
185
186 class FPGet2OpMod(Trigger):
187 def __init__(self, width, id_wid):
188 Trigger.__init__(self)
189 self.width = width
190 self.id_wid = id_wid
191 self.i = self.ispec()
192 self.o = self.ospec()
193
194 def ispec(self):
195 return FPADDBaseData(self.width, self.id_wid)
196
197 def ospec(self):
198 return FPNumBase2Ops(self.width, self.id_wid)
199
200 def elaborate(self, platform):
201 m = Trigger.elaborate(self, platform)
202 m.submodules.get_op1_out = self.o.a
203 m.submodules.get_op2_out = self.o.b
204 out_op1 = FPNumIn(None, self.width)
205 out_op2 = FPNumIn(None, self.width)
206 with m.If(self.trigger):
207 m.d.comb += [
208 out_op1.decode(self.i.a),
209 out_op2.decode(self.i.b),
210 self.o.a.eq(out_op1),
211 self.o.b.eq(out_op2),
212 ]
213 return m
214
215
216 class FPGet2Op(FPState):
217 """ gets operands
218 """
219
220 def __init__(self, in_state, out_state, width, id_wid):
221 FPState.__init__(self, in_state)
222 self.out_state = out_state
223 self.mod = FPGet2OpMod(width, id_wid)
224 self.o = self.mod.ospec()
225 self.in_stb = Signal(reset_less=True)
226 self.out_ack = Signal(reset_less=True)
227 self.out_decode = Signal(reset_less=True)
228
229 def setup(self, m, i, in_stb, in_ack):
230 """ links module to inputs and outputs
231 """
232 m.submodules.get_ops = self.mod
233 m.d.comb += self.mod.i.eq(i)
234 m.d.comb += self.mod.stb.eq(in_stb)
235 m.d.comb += self.out_ack.eq(self.mod.ack)
236 m.d.comb += self.out_decode.eq(self.mod.trigger)
237 m.d.comb += in_ack.eq(self.mod.ack)
238
239 def action(self, m):
240 with m.If(self.out_decode):
241 m.next = self.out_state
242 m.d.sync += [
243 self.mod.ack.eq(0),
244 self.o.eq(self.mod.o),
245 ]
246 with m.Else():
247 m.d.sync += self.mod.ack.eq(1)
248
249
250 class FPNumBase2Ops:
251
252 def __init__(self, width, id_wid, m_extra=True):
253 self.a = FPNumBase(width, m_extra)
254 self.b = FPNumBase(width, m_extra)
255 self.mid = Signal(id_wid, reset_less=True)
256
257 def eq(self, i):
258 return [self.a.eq(i.a), self.b.eq(i.b), self.mid.eq(i.mid)]
259
260
261 class FPAddSpecialCasesMod:
262 """ special cases: NaNs, infs, zeros, denormalised
263 NOTE: some of these are unique to add. see "Special Operations"
264 https://steve.hollasch.net/cgindex/coding/ieeefloat.html
265 """
266
267 def __init__(self, width, id_wid):
268 self.width = width
269 self.id_wid = id_wid
270 self.i = self.ispec()
271 self.o = self.ospec()
272 self.out_do_z = Signal(reset_less=True)
273
274 def ispec(self):
275 return FPNumBase2Ops(self.width, self.id_wid)
276
277 def ospec(self):
278 return FPPackData(self.width, self.id_wid)
279
280 def setup(self, m, i, out_do_z):
281 """ links module to inputs and outputs
282 """
283 m.submodules.specialcases = self
284 m.d.comb += self.i.eq(i)
285 m.d.comb += out_do_z.eq(self.out_do_z)
286
287 def elaborate(self, platform):
288 m = Module()
289
290 m.submodules.sc_in_a = self.i.a
291 m.submodules.sc_in_b = self.i.b
292 m.submodules.sc_out_z = self.o.z
293
294 s_nomatch = Signal()
295 m.d.comb += s_nomatch.eq(self.i.a.s != self.i.b.s)
296
297 m_match = Signal()
298 m.d.comb += m_match.eq(self.i.a.m == self.i.b.m)
299
300 # if a is NaN or b is NaN return NaN
301 with m.If(self.i.a.is_nan | self.i.b.is_nan):
302 m.d.comb += self.out_do_z.eq(1)
303 m.d.comb += self.o.z.nan(0)
304
305 # XXX WEIRDNESS for FP16 non-canonical NaN handling
306 # under review
307
308 ## if a is zero and b is NaN return -b
309 #with m.If(a.is_zero & (a.s==0) & b.is_nan):
310 # m.d.comb += self.out_do_z.eq(1)
311 # m.d.comb += z.create(b.s, b.e, Cat(b.m[3:-2], ~b.m[0]))
312
313 ## if b is zero and a is NaN return -a
314 #with m.Elif(b.is_zero & (b.s==0) & a.is_nan):
315 # m.d.comb += self.out_do_z.eq(1)
316 # m.d.comb += z.create(a.s, a.e, Cat(a.m[3:-2], ~a.m[0]))
317
318 ## if a is -zero and b is NaN return -b
319 #with m.Elif(a.is_zero & (a.s==1) & b.is_nan):
320 # m.d.comb += self.out_do_z.eq(1)
321 # m.d.comb += z.create(a.s & b.s, b.e, Cat(b.m[3:-2], 1))
322
323 ## if b is -zero and a is NaN return -a
324 #with m.Elif(b.is_zero & (b.s==1) & a.is_nan):
325 # m.d.comb += self.out_do_z.eq(1)
326 # m.d.comb += z.create(a.s & b.s, a.e, Cat(a.m[3:-2], 1))
327
328 # if a is inf return inf (or NaN)
329 with m.Elif(self.i.a.is_inf):
330 m.d.comb += self.out_do_z.eq(1)
331 m.d.comb += self.o.z.inf(self.i.a.s)
332 # if a is inf and signs don't match return NaN
333 with m.If(self.i.b.exp_128 & s_nomatch):
334 m.d.comb += self.o.z.nan(0)
335
336 # if b is inf return inf
337 with m.Elif(self.i.b.is_inf):
338 m.d.comb += self.out_do_z.eq(1)
339 m.d.comb += self.o.z.inf(self.i.b.s)
340
341 # if a is zero and b zero return signed-a/b
342 with m.Elif(self.i.a.is_zero & self.i.b.is_zero):
343 m.d.comb += self.out_do_z.eq(1)
344 m.d.comb += self.o.z.create(self.i.a.s & self.i.b.s,
345 self.i.b.e,
346 self.i.b.m[3:-1])
347
348 # if a is zero return b
349 with m.Elif(self.i.a.is_zero):
350 m.d.comb += self.out_do_z.eq(1)
351 m.d.comb += self.o.z.create(self.i.b.s, self.i.b.e,
352 self.i.b.m[3:-1])
353
354 # if b is zero return a
355 with m.Elif(self.i.b.is_zero):
356 m.d.comb += self.out_do_z.eq(1)
357 m.d.comb += self.o.z.create(self.i.a.s, self.i.a.e,
358 self.i.a.m[3:-1])
359
360 # if a equal to -b return zero (+ve zero)
361 with m.Elif(s_nomatch & m_match & (self.i.a.e == self.i.b.e)):
362 m.d.comb += self.out_do_z.eq(1)
363 m.d.comb += self.o.z.zero(0)
364
365 # Denormalised Number checks
366 with m.Else():
367 m.d.comb += self.out_do_z.eq(0)
368
369 return m
370
371
372 class FPID:
373 def __init__(self, id_wid):
374 self.id_wid = id_wid
375 if self.id_wid:
376 self.in_mid = Signal(id_wid, reset_less=True)
377 self.out_mid = Signal(id_wid, reset_less=True)
378 else:
379 self.in_mid = None
380 self.out_mid = None
381
382 def idsync(self, m):
383 if self.id_wid is not None:
384 m.d.sync += self.out_mid.eq(self.in_mid)
385
386
387 class FPAddSpecialCases(FPState, FPID):
388 """ special cases: NaNs, infs, zeros, denormalised
389 NOTE: some of these are unique to add. see "Special Operations"
390 https://steve.hollasch.net/cgindex/coding/ieeefloat.html
391 """
392
393 def __init__(self, width, id_wid):
394 FPState.__init__(self, "special_cases")
395 FPID.__init__(self, id_wid)
396 self.mod = FPAddSpecialCasesMod(width)
397 self.out_z = self.mod.ospec()
398 self.out_do_z = Signal(reset_less=True)
399
400 def setup(self, m, in_a, in_b, in_mid):
401 """ links module to inputs and outputs
402 """
403 self.mod.setup(m, in_a, in_b, self.out_do_z)
404 if self.in_mid is not None:
405 m.d.comb += self.in_mid.eq(in_mid)
406
407 def action(self, m):
408 self.idsync(m)
409 with m.If(self.out_do_z):
410 m.d.sync += self.out_z.v.eq(self.mod.out_z.v) # only take the output
411 m.next = "put_z"
412 with m.Else():
413 m.next = "denormalise"
414
415
416 class FPAddSpecialCasesDeNorm(FPState, FPID):
417 """ special cases: NaNs, infs, zeros, denormalised
418 NOTE: some of these are unique to add. see "Special Operations"
419 https://steve.hollasch.net/cgindex/coding/ieeefloat.html
420 """
421
422 def __init__(self, width, id_wid):
423 FPState.__init__(self, "special_cases")
424 FPID.__init__(self, id_wid)
425 self.smod = FPAddSpecialCasesMod(width, id_wid)
426 self.out_z = self.smod.ospec()
427 self.out_do_z = Signal(reset_less=True)
428
429 self.dmod = FPAddDeNormMod(width, id_wid)
430 self.o = self.dmod.ospec()
431
432 def setup(self, m, i, in_mid):
433 """ links module to inputs and outputs
434 """
435 self.smod.setup(m, i, self.out_do_z)
436 self.dmod.setup(m, i)
437 if self.in_mid is not None:
438 m.d.comb += self.in_mid.eq(in_mid)
439
440 def action(self, m):
441 self.idsync(m)
442 with m.If(self.out_do_z):
443 m.d.sync += self.out_z.z.v.eq(self.smod.o.z.v) # only take output
444 m.next = "put_z"
445 with m.Else():
446 m.next = "align"
447 m.d.sync += self.o.a.eq(self.dmod.o.a)
448 m.d.sync += self.o.b.eq(self.dmod.o.b)
449
450
451 class FPAddDeNormMod(FPState):
452
453 def __init__(self, width, id_wid):
454 self.width = width
455 self.id_wid = id_wid
456 self.i = self.ispec()
457 self.o = self.ospec()
458
459 def ispec(self):
460 return FPNumBase2Ops(self.width, self.id_wid)
461
462 def ospec(self):
463 return FPNumBase2Ops(self.width, self.id_wid)
464
465 def setup(self, m, i):
466 """ links module to inputs and outputs
467 """
468 m.submodules.denormalise = self
469 m.d.comb += self.i.eq(i)
470
471 def elaborate(self, platform):
472 m = Module()
473 m.submodules.denorm_in_a = self.i.a
474 m.submodules.denorm_in_b = self.i.b
475 m.submodules.denorm_out_a = self.o.a
476 m.submodules.denorm_out_b = self.o.b
477 # hmmm, don't like repeating identical code
478 m.d.comb += self.o.a.eq(self.i.a)
479 with m.If(self.i.a.exp_n127):
480 m.d.comb += self.o.a.e.eq(self.i.a.N126) # limit a exponent
481 with m.Else():
482 m.d.comb += self.o.a.m[-1].eq(1) # set top mantissa bit
483
484 m.d.comb += self.o.b.eq(self.i.b)
485 with m.If(self.i.b.exp_n127):
486 m.d.comb += self.o.b.e.eq(self.i.b.N126) # limit a exponent
487 with m.Else():
488 m.d.comb += self.o.b.m[-1].eq(1) # set top mantissa bit
489
490 return m
491
492
493 class FPAddDeNorm(FPState, FPID):
494
495 def __init__(self, width, id_wid):
496 FPState.__init__(self, "denormalise")
497 FPID.__init__(self, id_wid)
498 self.mod = FPAddDeNormMod(width)
499 self.out_a = FPNumBase(width)
500 self.out_b = FPNumBase(width)
501
502 def setup(self, m, in_a, in_b, in_mid):
503 """ links module to inputs and outputs
504 """
505 self.mod.setup(m, in_a, in_b)
506 if self.in_mid is not None:
507 m.d.comb += self.in_mid.eq(in_mid)
508
509 def action(self, m):
510 self.idsync(m)
511 # Denormalised Number checks
512 m.next = "align"
513 m.d.sync += self.out_a.eq(self.mod.out_a)
514 m.d.sync += self.out_b.eq(self.mod.out_b)
515
516
517 class FPAddAlignMultiMod(FPState):
518
519 def __init__(self, width):
520 self.in_a = FPNumBase(width)
521 self.in_b = FPNumBase(width)
522 self.out_a = FPNumIn(None, width)
523 self.out_b = FPNumIn(None, width)
524 self.exp_eq = Signal(reset_less=True)
525
526 def elaborate(self, platform):
527 # This one however (single-cycle) will do the shift
528 # in one go.
529
530 m = Module()
531
532 m.submodules.align_in_a = self.in_a
533 m.submodules.align_in_b = self.in_b
534 m.submodules.align_out_a = self.out_a
535 m.submodules.align_out_b = self.out_b
536
537 # NOTE: this does *not* do single-cycle multi-shifting,
538 # it *STAYS* in the align state until exponents match
539
540 # exponent of a greater than b: shift b down
541 m.d.comb += self.exp_eq.eq(0)
542 m.d.comb += self.out_a.eq(self.in_a)
543 m.d.comb += self.out_b.eq(self.in_b)
544 agtb = Signal(reset_less=True)
545 altb = Signal(reset_less=True)
546 m.d.comb += agtb.eq(self.in_a.e > self.in_b.e)
547 m.d.comb += altb.eq(self.in_a.e < self.in_b.e)
548 with m.If(agtb):
549 m.d.comb += self.out_b.shift_down(self.in_b)
550 # exponent of b greater than a: shift a down
551 with m.Elif(altb):
552 m.d.comb += self.out_a.shift_down(self.in_a)
553 # exponents equal: move to next stage.
554 with m.Else():
555 m.d.comb += self.exp_eq.eq(1)
556 return m
557
558
559 class FPAddAlignMulti(FPState, FPID):
560
561 def __init__(self, width, id_wid):
562 FPID.__init__(self, id_wid)
563 FPState.__init__(self, "align")
564 self.mod = FPAddAlignMultiMod(width)
565 self.out_a = FPNumIn(None, width)
566 self.out_b = FPNumIn(None, width)
567 self.exp_eq = Signal(reset_less=True)
568
569 def setup(self, m, in_a, in_b, in_mid):
570 """ links module to inputs and outputs
571 """
572 m.submodules.align = self.mod
573 m.d.comb += self.mod.in_a.eq(in_a)
574 m.d.comb += self.mod.in_b.eq(in_b)
575 #m.d.comb += self.out_a.eq(self.mod.out_a)
576 #m.d.comb += self.out_b.eq(self.mod.out_b)
577 m.d.comb += self.exp_eq.eq(self.mod.exp_eq)
578 if self.in_mid is not None:
579 m.d.comb += self.in_mid.eq(in_mid)
580
581 def action(self, m):
582 self.idsync(m)
583 m.d.sync += self.out_a.eq(self.mod.out_a)
584 m.d.sync += self.out_b.eq(self.mod.out_b)
585 with m.If(self.exp_eq):
586 m.next = "add_0"
587
588
589 class FPNumIn2Ops:
590
591 def __init__(self, width, id_wid):
592 self.a = FPNumIn(None, width)
593 self.b = FPNumIn(None, width)
594 self.mid = Signal(id_wid, reset_less=True)
595
596 def eq(self, i):
597 return [self.a.eq(i.a), self.b.eq(i.b), self.mid.eq(i.mid)]
598
599
600 class FPAddAlignSingleMod:
601
602 def __init__(self, width, id_wid):
603 self.width = width
604 self.id_wid = id_wid
605 self.i = self.ispec()
606 self.o = self.ospec()
607
608 def ispec(self):
609 return FPNumBase2Ops(self.width, self.id_wid)
610
611 def ospec(self):
612 return FPNumIn2Ops(self.width, self.id_wid)
613
614 def setup(self, m, i):
615 """ links module to inputs and outputs
616 """
617 m.submodules.align = self
618 m.d.comb += self.i.eq(i)
619
620 def elaborate(self, platform):
621 """ Aligns A against B or B against A, depending on which has the
622 greater exponent. This is done in a *single* cycle using
623 variable-width bit-shift
624
625 the shifter used here is quite expensive in terms of gates.
626 Mux A or B in (and out) into temporaries, as only one of them
627 needs to be aligned against the other
628 """
629 m = Module()
630
631 m.submodules.align_in_a = self.i.a
632 m.submodules.align_in_b = self.i.b
633 m.submodules.align_out_a = self.o.a
634 m.submodules.align_out_b = self.o.b
635
636 # temporary (muxed) input and output to be shifted
637 t_inp = FPNumBase(self.width)
638 t_out = FPNumIn(None, self.width)
639 espec = (len(self.i.a.e), True)
640 msr = MultiShiftRMerge(self.i.a.m_width, espec)
641 m.submodules.align_t_in = t_inp
642 m.submodules.align_t_out = t_out
643 m.submodules.multishift_r = msr
644
645 ediff = Signal(espec, reset_less=True)
646 ediffr = Signal(espec, reset_less=True)
647 tdiff = Signal(espec, reset_less=True)
648 elz = Signal(reset_less=True)
649 egz = Signal(reset_less=True)
650
651 # connect multi-shifter to t_inp/out mantissa (and tdiff)
652 m.d.comb += msr.inp.eq(t_inp.m)
653 m.d.comb += msr.diff.eq(tdiff)
654 m.d.comb += t_out.m.eq(msr.m)
655 m.d.comb += t_out.e.eq(t_inp.e + tdiff)
656 m.d.comb += t_out.s.eq(t_inp.s)
657
658 m.d.comb += ediff.eq(self.i.a.e - self.i.b.e)
659 m.d.comb += ediffr.eq(self.i.b.e - self.i.a.e)
660 m.d.comb += elz.eq(self.i.a.e < self.i.b.e)
661 m.d.comb += egz.eq(self.i.a.e > self.i.b.e)
662
663 # default: A-exp == B-exp, A and B untouched (fall through)
664 m.d.comb += self.o.a.eq(self.i.a)
665 m.d.comb += self.o.b.eq(self.i.b)
666 # only one shifter (muxed)
667 #m.d.comb += t_out.shift_down_multi(tdiff, t_inp)
668 # exponent of a greater than b: shift b down
669 with m.If(egz):
670 m.d.comb += [t_inp.eq(self.i.b),
671 tdiff.eq(ediff),
672 self.o.b.eq(t_out),
673 self.o.b.s.eq(self.i.b.s), # whoops forgot sign
674 ]
675 # exponent of b greater than a: shift a down
676 with m.Elif(elz):
677 m.d.comb += [t_inp.eq(self.i.a),
678 tdiff.eq(ediffr),
679 self.o.a.eq(t_out),
680 self.o.a.s.eq(self.i.a.s), # whoops forgot sign
681 ]
682 return m
683
684
685 class FPAddAlignSingle(FPState, FPID):
686
687 def __init__(self, width, id_wid):
688 FPState.__init__(self, "align")
689 FPID.__init__(self, id_wid)
690 self.mod = FPAddAlignSingleMod(width, id_wid)
691 self.out_a = FPNumIn(None, width)
692 self.out_b = FPNumIn(None, width)
693
694 def setup(self, m, in_a, in_b, in_mid):
695 """ links module to inputs and outputs
696 """
697 self.mod.setup(m, in_a, in_b)
698 if self.in_mid is not None:
699 m.d.comb += self.in_mid.eq(in_mid)
700
701 def action(self, m):
702 self.idsync(m)
703 # NOTE: could be done as comb
704 m.d.sync += self.out_a.eq(self.mod.out_a)
705 m.d.sync += self.out_b.eq(self.mod.out_b)
706 m.next = "add_0"
707
708
709 class FPAddAlignSingleAdd(FPState, FPID):
710
711 def __init__(self, width, id_wid):
712 FPState.__init__(self, "align")
713 FPID.__init__(self, id_wid)
714 self.width = width
715 self.id_wid = id_wid
716 self.a1o = self.ospec()
717
718 def ispec(self):
719 return FPNumBase2Ops(self.width, self.id_wid) # AlignSingle ispec
720
721 def ospec(self):
722 return FPAddStage1Data(self.width, self.id_wid) # AddStage1 ospec
723
724 def setup(self, m, i, in_mid):
725 """ links module to inputs and outputs
726 """
727 mod = FPAddAlignSingleMod(self.width, self.id_wid)
728 mod.setup(m, i)
729 o = mod.ospec()
730 m.d.comb += o.eq(mod.o)
731
732 a0mod = FPAddStage0Mod(self.width, self.id_wid)
733 a0mod.setup(m, o)
734 a0o = a0mod.ospec()
735 m.d.comb += a0o.eq(a0mod.o)
736
737 a1mod = FPAddStage1Mod(self.width, self.id_wid)
738 a1mod.setup(m, a0o)
739 self.a1modo = a1mod.o
740
741 if self.in_mid is not None:
742 m.d.comb += self.in_mid.eq(in_mid)
743
744 def action(self, m):
745 self.idsync(m)
746 m.d.sync += self.a1o.eq(self.a1modo)
747 m.next = "normalise_1"
748
749
750 class FPAddStage0Data:
751
752 def __init__(self, width, id_wid):
753 self.z = FPNumBase(width, False)
754 self.tot = Signal(self.z.m_width + 4, reset_less=True)
755 self.mid = Signal(id_wid, reset_less=True)
756
757 def eq(self, i):
758 return [self.z.eq(i.z), self.tot.eq(i.tot), self.mid.eq(i.mid)]
759
760
761 class FPAddStage0Mod:
762
763 def __init__(self, width, id_wid):
764 self.width = width
765 self.id_wid = id_wid
766 self.i = self.ispec()
767 self.o = self.ospec()
768
769 def ispec(self):
770 return FPNumBase2Ops(self.width, self.id_wid)
771
772 def ospec(self):
773 return FPAddStage0Data(self.width, self.id_wid)
774
775 def setup(self, m, i):
776 """ links module to inputs and outputs
777 """
778 m.submodules.add0 = self
779 m.d.comb += self.i.eq(i)
780
781 def elaborate(self, platform):
782 m = Module()
783 m.submodules.add0_in_a = self.i.a
784 m.submodules.add0_in_b = self.i.b
785 m.submodules.add0_out_z = self.o.z
786
787 m.d.comb += self.o.z.e.eq(self.i.a.e)
788
789 # store intermediate tests (and zero-extended mantissas)
790 seq = Signal(reset_less=True)
791 mge = Signal(reset_less=True)
792 am0 = Signal(len(self.i.a.m)+1, reset_less=True)
793 bm0 = Signal(len(self.i.b.m)+1, reset_less=True)
794 m.d.comb += [seq.eq(self.i.a.s == self.i.b.s),
795 mge.eq(self.i.a.m >= self.i.b.m),
796 am0.eq(Cat(self.i.a.m, 0)),
797 bm0.eq(Cat(self.i.b.m, 0))
798 ]
799 # same-sign (both negative or both positive) add mantissas
800 with m.If(seq):
801 m.d.comb += [
802 self.o.tot.eq(am0 + bm0),
803 self.o.z.s.eq(self.i.a.s)
804 ]
805 # a mantissa greater than b, use a
806 with m.Elif(mge):
807 m.d.comb += [
808 self.o.tot.eq(am0 - bm0),
809 self.o.z.s.eq(self.i.a.s)
810 ]
811 # b mantissa greater than a, use b
812 with m.Else():
813 m.d.comb += [
814 self.o.tot.eq(bm0 - am0),
815 self.o.z.s.eq(self.i.b.s)
816 ]
817 return m
818
819
820 class FPAddStage0(FPState, FPID):
821 """ First stage of add. covers same-sign (add) and subtract
822 special-casing when mantissas are greater or equal, to
823 give greatest accuracy.
824 """
825
826 def __init__(self, width, id_wid):
827 FPState.__init__(self, "add_0")
828 FPID.__init__(self, id_wid)
829 self.mod = FPAddStage0Mod(width)
830 self.o = self.mod.ospec()
831
832 def setup(self, m, i, in_mid):
833 """ links module to inputs and outputs
834 """
835 self.mod.setup(m, i)
836 if self.in_mid is not None:
837 m.d.comb += self.in_mid.eq(in_mid)
838
839 def action(self, m):
840 self.idsync(m)
841 # NOTE: these could be done as combinatorial (merge add0+add1)
842 m.d.sync += self.o.eq(self.mod.o)
843 m.next = "add_1"
844
845
846 class FPAddStage1Data:
847
848 def __init__(self, width, id_wid):
849 self.z = FPNumBase(width, False)
850 self.of = Overflow()
851 self.mid = Signal(id_wid, reset_less=True)
852
853 def eq(self, i):
854 return [self.z.eq(i.z), self.of.eq(i.of), self.mid.eq(i.mid)]
855
856
857
858 class FPAddStage1Mod(FPState):
859 """ Second stage of add: preparation for normalisation.
860 detects when tot sum is too big (tot[27] is kinda a carry bit)
861 """
862
863 def __init__(self, width, id_wid):
864 self.width = width
865 self.id_wid = id_wid
866 self.i = self.ispec()
867 self.o = self.ospec()
868
869 def ispec(self):
870 return FPAddStage0Data(self.width, self.id_wid)
871
872 def ospec(self):
873 return FPAddStage1Data(self.width, self.id_wid)
874
875 def setup(self, m, i):
876 """ links module to inputs and outputs
877 """
878 m.submodules.add1 = self
879 m.submodules.add1_out_overflow = self.o.of
880
881 m.d.comb += self.i.eq(i)
882
883 def elaborate(self, platform):
884 m = Module()
885 #m.submodules.norm1_in_overflow = self.in_of
886 #m.submodules.norm1_out_overflow = self.out_of
887 #m.submodules.norm1_in_z = self.in_z
888 #m.submodules.norm1_out_z = self.out_z
889 m.d.comb += self.o.z.eq(self.i.z)
890 # tot[-1] (MSB) gets set when the sum overflows. shift result down
891 with m.If(self.i.tot[-1]):
892 m.d.comb += [
893 self.o.z.m.eq(self.i.tot[4:]),
894 self.o.of.m0.eq(self.i.tot[4]),
895 self.o.of.guard.eq(self.i.tot[3]),
896 self.o.of.round_bit.eq(self.i.tot[2]),
897 self.o.of.sticky.eq(self.i.tot[1] | self.i.tot[0]),
898 self.o.z.e.eq(self.i.z.e + 1)
899 ]
900 # tot[-1] (MSB) zero case
901 with m.Else():
902 m.d.comb += [
903 self.o.z.m.eq(self.i.tot[3:]),
904 self.o.of.m0.eq(self.i.tot[3]),
905 self.o.of.guard.eq(self.i.tot[2]),
906 self.o.of.round_bit.eq(self.i.tot[1]),
907 self.o.of.sticky.eq(self.i.tot[0])
908 ]
909 return m
910
911
912 class FPAddStage1(FPState, FPID):
913
914 def __init__(self, width, id_wid):
915 FPState.__init__(self, "add_1")
916 FPID.__init__(self, id_wid)
917 self.mod = FPAddStage1Mod(width)
918 self.out_z = FPNumBase(width, False)
919 self.out_of = Overflow()
920 self.norm_stb = Signal()
921
922 def setup(self, m, i, in_mid):
923 """ links module to inputs and outputs
924 """
925 self.mod.setup(m, i)
926
927 m.d.sync += self.norm_stb.eq(0) # sets to zero when not in add1 state
928
929 if self.in_mid is not None:
930 m.d.comb += self.in_mid.eq(in_mid)
931
932 def action(self, m):
933 self.idsync(m)
934 m.d.sync += self.out_of.eq(self.mod.out_of)
935 m.d.sync += self.out_z.eq(self.mod.out_z)
936 m.d.sync += self.norm_stb.eq(1)
937 m.next = "normalise_1"
938
939
940 class FPNormaliseModSingle:
941
942 def __init__(self, width):
943 self.width = width
944 self.in_z = self.ispec()
945 self.out_z = self.ospec()
946
947 def ispec(self):
948 return FPNumBase(self.width, False)
949
950 def ospec(self):
951 return FPNumBase(self.width, False)
952
953 def setup(self, m, i):
954 """ links module to inputs and outputs
955 """
956 m.submodules.normalise = self
957 m.d.comb += self.i.eq(i)
958
959 def elaborate(self, platform):
960 m = Module()
961
962 mwid = self.out_z.m_width+2
963 pe = PriorityEncoder(mwid)
964 m.submodules.norm_pe = pe
965
966 m.submodules.norm1_out_z = self.out_z
967 m.submodules.norm1_in_z = self.in_z
968
969 in_z = FPNumBase(self.width, False)
970 in_of = Overflow()
971 m.submodules.norm1_insel_z = in_z
972 m.submodules.norm1_insel_overflow = in_of
973
974 espec = (len(in_z.e), True)
975 ediff_n126 = Signal(espec, reset_less=True)
976 msr = MultiShiftRMerge(mwid, espec)
977 m.submodules.multishift_r = msr
978
979 m.d.comb += in_z.eq(self.in_z)
980 m.d.comb += in_of.eq(self.in_of)
981 # initialise out from in (overridden below)
982 m.d.comb += self.out_z.eq(in_z)
983 m.d.comb += self.out_of.eq(in_of)
984 # normalisation decrease condition
985 decrease = Signal(reset_less=True)
986 m.d.comb += decrease.eq(in_z.m_msbzero)
987 # decrease exponent
988 with m.If(decrease):
989 # *sigh* not entirely obvious: count leading zeros (clz)
990 # with a PriorityEncoder: to find from the MSB
991 # we reverse the order of the bits.
992 temp_m = Signal(mwid, reset_less=True)
993 temp_s = Signal(mwid+1, reset_less=True)
994 clz = Signal((len(in_z.e), True), reset_less=True)
995 m.d.comb += [
996 # cat round and guard bits back into the mantissa
997 temp_m.eq(Cat(in_of.round_bit, in_of.guard, in_z.m)),
998 pe.i.eq(temp_m[::-1]), # inverted
999 clz.eq(pe.o), # count zeros from MSB down
1000 temp_s.eq(temp_m << clz), # shift mantissa UP
1001 self.out_z.e.eq(in_z.e - clz), # DECREASE exponent
1002 self.out_z.m.eq(temp_s[2:]), # exclude bits 0&1
1003 ]
1004
1005 return m
1006
1007 class FPNorm1Data:
1008
1009 def __init__(self, width, id_wid):
1010 self.roundz = Signal(reset_less=True)
1011 self.z = FPNumBase(width, False)
1012 self.mid = Signal(id_wid, reset_less=True)
1013
1014 def eq(self, i):
1015 return [self.z.eq(i.z), self.roundz.eq(i.roundz), self.mid.eq(i.mid)]
1016
1017
1018 class FPNorm1ModSingle:
1019
1020 def __init__(self, width, id_wid):
1021 self.width = width
1022 self.id_wid = id_wid
1023 self.i = self.ispec()
1024 self.o = self.ospec()
1025
1026 def ispec(self):
1027 return FPAddStage1Data(self.width, self.id_wid)
1028
1029 def ospec(self):
1030 return FPNorm1Data(self.width, self.id_wid)
1031
1032 def setup(self, m, i):
1033 """ links module to inputs and outputs
1034 """
1035 m.submodules.normalise_1 = self
1036 m.d.comb += self.i.eq(i)
1037
1038 def elaborate(self, platform):
1039 m = Module()
1040
1041 mwid = self.o.z.m_width+2
1042 pe = PriorityEncoder(mwid)
1043 m.submodules.norm_pe = pe
1044
1045 of = Overflow()
1046 m.d.comb += self.o.roundz.eq(of.roundz)
1047
1048 m.submodules.norm1_out_z = self.o.z
1049 m.submodules.norm1_out_overflow = of
1050 m.submodules.norm1_in_z = self.i.z
1051 m.submodules.norm1_in_overflow = self.i.of
1052
1053 i = self.ispec()
1054 m.submodules.norm1_insel_z = i.z
1055 m.submodules.norm1_insel_overflow = i.of
1056
1057 espec = (len(i.z.e), True)
1058 ediff_n126 = Signal(espec, reset_less=True)
1059 msr = MultiShiftRMerge(mwid, espec)
1060 m.submodules.multishift_r = msr
1061
1062 m.d.comb += i.eq(self.i)
1063 # initialise out from in (overridden below)
1064 m.d.comb += self.o.z.eq(i.z)
1065 m.d.comb += of.eq(i.of)
1066 # normalisation increase/decrease conditions
1067 decrease = Signal(reset_less=True)
1068 increase = Signal(reset_less=True)
1069 m.d.comb += decrease.eq(i.z.m_msbzero & i.z.exp_gt_n126)
1070 m.d.comb += increase.eq(i.z.exp_lt_n126)
1071 # decrease exponent
1072 with m.If(decrease):
1073 # *sigh* not entirely obvious: count leading zeros (clz)
1074 # with a PriorityEncoder: to find from the MSB
1075 # we reverse the order of the bits.
1076 temp_m = Signal(mwid, reset_less=True)
1077 temp_s = Signal(mwid+1, reset_less=True)
1078 clz = Signal((len(i.z.e), True), reset_less=True)
1079 # make sure that the amount to decrease by does NOT
1080 # go below the minimum non-INF/NaN exponent
1081 limclz = Mux(i.z.exp_sub_n126 > pe.o, pe.o,
1082 i.z.exp_sub_n126)
1083 m.d.comb += [
1084 # cat round and guard bits back into the mantissa
1085 temp_m.eq(Cat(i.of.round_bit, i.of.guard, i.z.m)),
1086 pe.i.eq(temp_m[::-1]), # inverted
1087 clz.eq(limclz), # count zeros from MSB down
1088 temp_s.eq(temp_m << clz), # shift mantissa UP
1089 self.o.z.e.eq(i.z.e - clz), # DECREASE exponent
1090 self.o.z.m.eq(temp_s[2:]), # exclude bits 0&1
1091 of.m0.eq(temp_s[2]), # copy of mantissa[0]
1092 # overflow in bits 0..1: got shifted too (leave sticky)
1093 of.guard.eq(temp_s[1]), # guard
1094 of.round_bit.eq(temp_s[0]), # round
1095 ]
1096 # increase exponent
1097 with m.Elif(increase):
1098 temp_m = Signal(mwid+1, reset_less=True)
1099 m.d.comb += [
1100 temp_m.eq(Cat(i.of.sticky, i.of.round_bit, i.of.guard,
1101 i.z.m)),
1102 ediff_n126.eq(i.z.N126 - i.z.e),
1103 # connect multi-shifter to inp/out mantissa (and ediff)
1104 msr.inp.eq(temp_m),
1105 msr.diff.eq(ediff_n126),
1106 self.o.z.m.eq(msr.m[3:]),
1107 of.m0.eq(temp_s[3]), # copy of mantissa[0]
1108 # overflow in bits 0..1: got shifted too (leave sticky)
1109 of.guard.eq(temp_s[2]), # guard
1110 of.round_bit.eq(temp_s[1]), # round
1111 of.sticky.eq(temp_s[0]), # sticky
1112 self.o.z.e.eq(i.z.e + ediff_n126),
1113 ]
1114
1115 return m
1116
1117
1118 class FPNorm1ModMulti:
1119
1120 def __init__(self, width, single_cycle=True):
1121 self.width = width
1122 self.in_select = Signal(reset_less=True)
1123 self.in_z = FPNumBase(width, False)
1124 self.in_of = Overflow()
1125 self.temp_z = FPNumBase(width, False)
1126 self.temp_of = Overflow()
1127 self.out_z = FPNumBase(width, False)
1128 self.out_of = Overflow()
1129
1130 def elaborate(self, platform):
1131 m = Module()
1132
1133 m.submodules.norm1_out_z = self.out_z
1134 m.submodules.norm1_out_overflow = self.out_of
1135 m.submodules.norm1_temp_z = self.temp_z
1136 m.submodules.norm1_temp_of = self.temp_of
1137 m.submodules.norm1_in_z = self.in_z
1138 m.submodules.norm1_in_overflow = self.in_of
1139
1140 in_z = FPNumBase(self.width, False)
1141 in_of = Overflow()
1142 m.submodules.norm1_insel_z = in_z
1143 m.submodules.norm1_insel_overflow = in_of
1144
1145 # select which of temp or in z/of to use
1146 with m.If(self.in_select):
1147 m.d.comb += in_z.eq(self.in_z)
1148 m.d.comb += in_of.eq(self.in_of)
1149 with m.Else():
1150 m.d.comb += in_z.eq(self.temp_z)
1151 m.d.comb += in_of.eq(self.temp_of)
1152 # initialise out from in (overridden below)
1153 m.d.comb += self.out_z.eq(in_z)
1154 m.d.comb += self.out_of.eq(in_of)
1155 # normalisation increase/decrease conditions
1156 decrease = Signal(reset_less=True)
1157 increase = Signal(reset_less=True)
1158 m.d.comb += decrease.eq(in_z.m_msbzero & in_z.exp_gt_n126)
1159 m.d.comb += increase.eq(in_z.exp_lt_n126)
1160 m.d.comb += self.out_norm.eq(decrease | increase) # loop-end
1161 # decrease exponent
1162 with m.If(decrease):
1163 m.d.comb += [
1164 self.out_z.e.eq(in_z.e - 1), # DECREASE exponent
1165 self.out_z.m.eq(in_z.m << 1), # shift mantissa UP
1166 self.out_z.m[0].eq(in_of.guard), # steal guard (was tot[2])
1167 self.out_of.guard.eq(in_of.round_bit), # round (was tot[1])
1168 self.out_of.round_bit.eq(0), # reset round bit
1169 self.out_of.m0.eq(in_of.guard),
1170 ]
1171 # increase exponent
1172 with m.Elif(increase):
1173 m.d.comb += [
1174 self.out_z.e.eq(in_z.e + 1), # INCREASE exponent
1175 self.out_z.m.eq(in_z.m >> 1), # shift mantissa DOWN
1176 self.out_of.guard.eq(in_z.m[0]),
1177 self.out_of.m0.eq(in_z.m[1]),
1178 self.out_of.round_bit.eq(in_of.guard),
1179 self.out_of.sticky.eq(in_of.sticky | in_of.round_bit)
1180 ]
1181
1182 return m
1183
1184
1185 class FPNorm1Single(FPState, FPID):
1186
1187 def __init__(self, width, id_wid, single_cycle=True):
1188 FPID.__init__(self, id_wid)
1189 FPState.__init__(self, "normalise_1")
1190 self.mod = FPNorm1ModSingle(width)
1191 self.out_z = FPNumBase(width, False)
1192 self.out_roundz = Signal(reset_less=True)
1193
1194 def setup(self, m, i, in_mid):
1195 """ links module to inputs and outputs
1196 """
1197 self.mod.setup(m, i, self.out_z)
1198
1199 if self.in_mid is not None:
1200 m.d.comb += self.in_mid.eq(in_mid)
1201
1202 def action(self, m):
1203 self.idsync(m)
1204 m.d.sync += self.out_roundz.eq(self.mod.out_of.roundz)
1205 m.next = "round"
1206
1207
1208 class FPNorm1Multi(FPState, FPID):
1209
1210 def __init__(self, width, id_wid):
1211 FPID.__init__(self, id_wid)
1212 FPState.__init__(self, "normalise_1")
1213 self.mod = FPNorm1ModMulti(width)
1214 self.stb = Signal(reset_less=True)
1215 self.ack = Signal(reset=0, reset_less=True)
1216 self.out_norm = Signal(reset_less=True)
1217 self.in_accept = Signal(reset_less=True)
1218 self.temp_z = FPNumBase(width)
1219 self.temp_of = Overflow()
1220 self.out_z = FPNumBase(width)
1221 self.out_roundz = Signal(reset_less=True)
1222
1223 def setup(self, m, in_z, in_of, norm_stb, in_mid):
1224 """ links module to inputs and outputs
1225 """
1226 self.mod.setup(m, in_z, in_of, norm_stb,
1227 self.in_accept, self.temp_z, self.temp_of,
1228 self.out_z, self.out_norm)
1229
1230 m.d.comb += self.stb.eq(norm_stb)
1231 m.d.sync += self.ack.eq(0) # sets to zero when not in normalise_1 state
1232
1233 if self.in_mid is not None:
1234 m.d.comb += self.in_mid.eq(in_mid)
1235
1236 def action(self, m):
1237 self.idsync(m)
1238 m.d.comb += self.in_accept.eq((~self.ack) & (self.stb))
1239 m.d.sync += self.temp_of.eq(self.mod.out_of)
1240 m.d.sync += self.temp_z.eq(self.out_z)
1241 with m.If(self.out_norm):
1242 with m.If(self.in_accept):
1243 m.d.sync += [
1244 self.ack.eq(1),
1245 ]
1246 with m.Else():
1247 m.d.sync += self.ack.eq(0)
1248 with m.Else():
1249 # normalisation not required (or done).
1250 m.next = "round"
1251 m.d.sync += self.ack.eq(1)
1252 m.d.sync += self.out_roundz.eq(self.mod.out_of.roundz)
1253
1254
1255 class FPNormToPack(FPState, FPID):
1256
1257 def __init__(self, width, id_wid):
1258 FPID.__init__(self, id_wid)
1259 FPState.__init__(self, "normalise_1")
1260 self.id_wid = id_wid
1261 self.width = width
1262
1263 def ispec(self):
1264 return FPAddStage1Data(self.width, self.id_wid) # Norm1ModSingle ispec
1265
1266 def ospec(self):
1267 return FPPackData(self.width, self.id_wid) # FPPackMod ospec
1268
1269 def setup(self, m, i, in_mid):
1270 """ links module to inputs and outputs
1271 """
1272
1273 # Normalisation (chained to input in_z+in_of)
1274 nmod = FPNorm1ModSingle(self.width, self.id_wid)
1275 nmod.setup(m, i)
1276 n_out = nmod.ospec()
1277 m.d.comb += n_out.eq(nmod.o)
1278
1279 # Rounding (chained to normalisation)
1280 rmod = FPRoundMod(self.width, self.id_wid)
1281 rmod.setup(m, n_out)
1282 r_out_z = rmod.ospec()
1283 m.d.comb += r_out_z.eq(rmod.out_z)
1284
1285 # Corrections (chained to rounding)
1286 cmod = FPCorrectionsMod(self.width, self.id_wid)
1287 cmod.setup(m, r_out_z)
1288 c_out_z = cmod.ospec()
1289 m.d.comb += c_out_z.eq(cmod.out_z)
1290
1291 # Pack (chained to corrections)
1292 self.pmod = FPPackMod(self.width, self.id_wid)
1293 self.pmod.setup(m, c_out_z)
1294 self.out_z = self.pmod.ospec()
1295
1296 # Multiplex ID
1297 if self.in_mid is not None:
1298 m.d.comb += self.in_mid.eq(in_mid)
1299
1300 def action(self, m):
1301 self.idsync(m) # copies incoming ID to outgoing
1302 m.d.sync += self.out_z.z.v.eq(self.pmod.o.z.v) # outputs packed result
1303 m.next = "pack_put_z"
1304
1305
1306 class FPRoundData:
1307
1308 def __init__(self, width, id_wid):
1309 self.z = FPNumBase(width, False)
1310 self.mid = Signal(id_wid, reset_less=True)
1311
1312 def eq(self, i):
1313 return [self.z.eq(i.z), self.mid.eq(i.mid)]
1314
1315
1316 class FPRoundMod:
1317
1318 def __init__(self, width, id_wid):
1319 self.width = width
1320 self.id_wid = id_wid
1321 self.i = self.ispec()
1322 self.out_z = self.ospec()
1323
1324 def ispec(self):
1325 return FPNorm1Data(self.width, self.id_wid)
1326
1327 def ospec(self):
1328 return FPRoundData(self.width, self.id_wid)
1329
1330 def setup(self, m, i):
1331 m.submodules.roundz = self
1332 m.d.comb += self.i.eq(i)
1333
1334 def elaborate(self, platform):
1335 m = Module()
1336 m.d.comb += self.out_z.eq(self.i)
1337 with m.If(self.i.roundz):
1338 m.d.comb += self.out_z.z.m.eq(self.i.z.m + 1) # mantissa rounds up
1339 with m.If(self.i.z.m == self.i.z.m1s): # all 1s
1340 m.d.comb += self.out_z.z.e.eq(self.i.z.e + 1) # exponent up
1341 return m
1342
1343
1344 class FPRound(FPState, FPID):
1345
1346 def __init__(self, width, id_wid):
1347 FPState.__init__(self, "round")
1348 FPID.__init__(self, id_wid)
1349 self.mod = FPRoundMod(width)
1350 self.out_z = self.ospec()
1351
1352 def ispec(self):
1353 return self.mod.ispec()
1354
1355 def ospec(self):
1356 return self.mod.ospec()
1357
1358 def setup(self, m, i, in_mid):
1359 """ links module to inputs and outputs
1360 """
1361 self.mod.setup(m, i)
1362
1363 if self.in_mid is not None:
1364 m.d.comb += self.in_mid.eq(in_mid)
1365
1366 def action(self, m):
1367 self.idsync(m)
1368 m.d.sync += self.out_z.eq(self.mod.out_z)
1369 m.next = "corrections"
1370
1371
1372 class FPCorrectionsMod:
1373
1374 def __init__(self, width, id_wid):
1375 self.width = width
1376 self.id_wid = id_wid
1377 self.i = self.ispec()
1378 self.out_z = self.ospec()
1379
1380 def ispec(self):
1381 return FPRoundData(self.width, self.id_wid)
1382
1383 def ospec(self):
1384 return FPRoundData(self.width, self.id_wid)
1385
1386 def setup(self, m, i):
1387 """ links module to inputs and outputs
1388 """
1389 m.submodules.corrections = self
1390 m.d.comb += self.i.eq(i)
1391
1392 def elaborate(self, platform):
1393 m = Module()
1394 m.submodules.corr_in_z = self.i.z
1395 m.submodules.corr_out_z = self.out_z.z
1396 m.d.comb += self.out_z.eq(self.i)
1397 with m.If(self.i.z.is_denormalised):
1398 m.d.comb += self.out_z.z.e.eq(self.i.z.N127)
1399 return m
1400
1401
1402 class FPCorrections(FPState, FPID):
1403
1404 def __init__(self, width, id_wid):
1405 FPState.__init__(self, "corrections")
1406 FPID.__init__(self, id_wid)
1407 self.mod = FPCorrectionsMod(width)
1408 self.out_z = self.ospec()
1409
1410 def ispec(self):
1411 return self.mod.ispec()
1412
1413 def ospec(self):
1414 return self.mod.ospec()
1415
1416 def setup(self, m, in_z, in_mid):
1417 """ links module to inputs and outputs
1418 """
1419 self.mod.setup(m, in_z)
1420 if self.in_mid is not None:
1421 m.d.comb += self.in_mid.eq(in_mid)
1422
1423 def action(self, m):
1424 self.idsync(m)
1425 m.d.sync += self.out_z.eq(self.mod.out_z)
1426 m.next = "pack"
1427
1428
1429 class FPPackData:
1430
1431 def __init__(self, width, id_wid):
1432 self.z = FPNumOut(width, False)
1433 self.mid = Signal(id_wid, reset_less=True)
1434
1435 def eq(self, i):
1436 return [self.z.eq(i.z), self.mid.eq(i.mid)]
1437
1438
1439 class FPPackMod:
1440
1441 def __init__(self, width, id_wid):
1442 self.width = width
1443 self.id_wid = id_wid
1444 self.i = self.ispec()
1445 self.o = self.ospec()
1446
1447 def ispec(self):
1448 return FPRoundData(self.width, self.id_wid)
1449
1450 def ospec(self):
1451 return FPPackData(self.width, self.id_wid)
1452
1453 def setup(self, m, in_z):
1454 """ links module to inputs and outputs
1455 """
1456 m.submodules.pack = self
1457 m.d.comb += self.i.eq(in_z)
1458
1459 def elaborate(self, platform):
1460 m = Module()
1461 m.submodules.pack_in_z = self.i.z
1462 with m.If(self.i.z.is_overflowed):
1463 m.d.comb += self.o.z.inf(self.i.z.s)
1464 with m.Else():
1465 m.d.comb += self.o.z.create(self.i.z.s, self.i.z.e, self.i.z.m)
1466 return m
1467
1468
1469 class FPPackData:
1470 def __init__(self, width, id_wid):
1471 self.z = FPNumOut(width, False)
1472 self.mid = Signal(id_wid, reset_less=True)
1473
1474 def eq(self, i):
1475 return [self.z.eq(i.z), self.mid.eq(i.mid)]
1476
1477
1478 class FPPack(FPState, FPID):
1479
1480 def __init__(self, width, id_wid):
1481 FPState.__init__(self, "pack")
1482 FPID.__init__(self, id_wid)
1483 self.mod = FPPackMod(width)
1484 self.out_z = self.ospec()
1485
1486 def ispec(self):
1487 return self.mod.ispec()
1488
1489 def ospec(self):
1490 return self.mod.ospec()
1491
1492 def setup(self, m, in_z, in_mid):
1493 """ links module to inputs and outputs
1494 """
1495 self.mod.setup(m, in_z)
1496 if self.in_mid is not None:
1497 m.d.comb += self.in_mid.eq(in_mid)
1498
1499 def action(self, m):
1500 self.idsync(m)
1501 m.d.sync += self.out_z.v.eq(self.mod.out_z.v)
1502 m.next = "pack_put_z"
1503
1504
1505 class FPPutZ(FPState):
1506
1507 def __init__(self, state, in_z, out_z, in_mid, out_mid, to_state=None):
1508 FPState.__init__(self, state)
1509 if to_state is None:
1510 to_state = "get_ops"
1511 self.to_state = to_state
1512 self.in_z = in_z
1513 self.out_z = out_z
1514 self.in_mid = in_mid
1515 self.out_mid = out_mid
1516
1517 def action(self, m):
1518 if self.in_mid is not None:
1519 m.d.sync += self.out_mid.eq(self.in_mid)
1520 m.d.sync += [
1521 self.out_z.z.v.eq(self.in_z.v)
1522 ]
1523 with m.If(self.out_z.z.stb & self.out_z.z.ack):
1524 m.d.sync += self.out_z.z.stb.eq(0)
1525 m.next = self.to_state
1526 with m.Else():
1527 m.d.sync += self.out_z.z.stb.eq(1)
1528
1529
1530 class FPPutZIdx(FPState):
1531
1532 def __init__(self, state, in_z, out_zs, in_mid, to_state=None):
1533 FPState.__init__(self, state)
1534 if to_state is None:
1535 to_state = "get_ops"
1536 self.to_state = to_state
1537 self.in_z = in_z
1538 self.out_zs = out_zs
1539 self.in_mid = in_mid
1540
1541 def action(self, m):
1542 outz_stb = Signal(reset_less=True)
1543 outz_ack = Signal(reset_less=True)
1544 m.d.comb += [outz_stb.eq(self.out_zs[self.in_mid].stb),
1545 outz_ack.eq(self.out_zs[self.in_mid].ack),
1546 ]
1547 m.d.sync += [
1548 self.out_zs[self.in_mid].v.eq(self.in_z.v)
1549 ]
1550 with m.If(outz_stb & outz_ack):
1551 m.d.sync += self.out_zs[self.in_mid].stb.eq(0)
1552 m.next = self.to_state
1553 with m.Else():
1554 m.d.sync += self.out_zs[self.in_mid].stb.eq(1)
1555
1556 class FPADDBaseData:
1557
1558 def __init__(self, width, id_wid):
1559 self.width = width
1560 self.id_wid = id_wid
1561 self.a = Signal(width)
1562 self.b = Signal(width)
1563 self.mid = Signal(id_wid, reset_less=True)
1564
1565 def eq(self, i):
1566 return [self.a.eq(i.a), self.b.eq(i.b), self.mid.eq(i.mid)]
1567
1568
1569 class FPOpData:
1570 def __init__(self, width, id_wid):
1571 self.z = FPOp(width)
1572 self.mid = Signal(id_wid, reset_less=True)
1573
1574 def eq(self, i):
1575 return [self.z.eq(i.z), self.mid.eq(i.mid)]
1576
1577
1578 class FPADDBaseMod(FPID):
1579
1580 def __init__(self, width, id_wid=None, single_cycle=False, compact=True):
1581 """ IEEE754 FP Add
1582
1583 * width: bit-width of IEEE754. supported: 16, 32, 64
1584 * id_wid: an identifier that is sync-connected to the input
1585 * single_cycle: True indicates each stage to complete in 1 clock
1586 * compact: True indicates a reduced number of stages
1587 """
1588 FPID.__init__(self, id_wid)
1589 self.width = width
1590 self.id_wid = id_wid
1591 self.single_cycle = single_cycle
1592 self.compact = compact
1593
1594 self.in_t = Trigger()
1595 self.i = self.ispec()
1596 self.o = self.ospec()
1597
1598 self.states = []
1599
1600 def ispec(self):
1601 return FPADDBaseData(self.width, self.id_wid)
1602
1603 def ospec(self):
1604 return FPOpData(self.width, self.id_wid)
1605
1606 def add_state(self, state):
1607 self.states.append(state)
1608 return state
1609
1610 def get_fragment(self, platform=None):
1611 """ creates the HDL code-fragment for FPAdd
1612 """
1613 m = Module()
1614 m.submodules.out_z = self.o.z
1615 m.submodules.in_t = self.in_t
1616 if self.compact:
1617 self.get_compact_fragment(m, platform)
1618 else:
1619 self.get_longer_fragment(m, platform)
1620
1621 with m.FSM() as fsm:
1622
1623 for state in self.states:
1624 with m.State(state.state_from):
1625 state.action(m)
1626
1627 return m
1628
1629 def get_longer_fragment(self, m, platform=None):
1630
1631 get = self.add_state(FPGet2Op("get_ops", "special_cases",
1632 self.width))
1633 get.setup(m, self.i, self.in_t.stb, self.in_t.ack)
1634 a = get.out_op1
1635 b = get.out_op2
1636
1637 sc = self.add_state(FPAddSpecialCases(self.width, self.id_wid))
1638 sc.setup(m, a, b, self.in_mid)
1639
1640 dn = self.add_state(FPAddDeNorm(self.width, self.id_wid))
1641 dn.setup(m, a, b, sc.in_mid)
1642
1643 if self.single_cycle:
1644 alm = self.add_state(FPAddAlignSingle(self.width, self.id_wid))
1645 alm.setup(m, dn.out_a, dn.out_b, dn.in_mid)
1646 else:
1647 alm = self.add_state(FPAddAlignMulti(self.width, self.id_wid))
1648 alm.setup(m, dn.out_a, dn.out_b, dn.in_mid)
1649
1650 add0 = self.add_state(FPAddStage0(self.width, self.id_wid))
1651 add0.setup(m, alm.out_a, alm.out_b, alm.in_mid)
1652
1653 add1 = self.add_state(FPAddStage1(self.width, self.id_wid))
1654 add1.setup(m, add0.out_tot, add0.out_z, add0.in_mid)
1655
1656 if self.single_cycle:
1657 n1 = self.add_state(FPNorm1Single(self.width, self.id_wid))
1658 n1.setup(m, add1.out_z, add1.out_of, add0.in_mid)
1659 else:
1660 n1 = self.add_state(FPNorm1Multi(self.width, self.id_wid))
1661 n1.setup(m, add1.out_z, add1.out_of, add1.norm_stb, add0.in_mid)
1662
1663 rn = self.add_state(FPRound(self.width, self.id_wid))
1664 rn.setup(m, n1.out_z, n1.out_roundz, n1.in_mid)
1665
1666 cor = self.add_state(FPCorrections(self.width, self.id_wid))
1667 cor.setup(m, rn.out_z, rn.in_mid)
1668
1669 pa = self.add_state(FPPack(self.width, self.id_wid))
1670 pa.setup(m, cor.out_z, rn.in_mid)
1671
1672 ppz = self.add_state(FPPutZ("pack_put_z", pa.out_z, self.out_z,
1673 pa.in_mid, self.out_mid))
1674
1675 pz = self.add_state(FPPutZ("put_z", sc.out_z, self.out_z,
1676 pa.in_mid, self.out_mid))
1677
1678 def get_compact_fragment(self, m, platform=None):
1679
1680 get = self.add_state(FPGet2Op("get_ops", "special_cases",
1681 self.width, self.id_wid))
1682 get.setup(m, self.i, self.in_t.stb, self.in_t.ack)
1683
1684 sc = self.add_state(FPAddSpecialCasesDeNorm(self.width, self.id_wid))
1685 sc.setup(m, get.o, self.in_mid)
1686
1687 alm = self.add_state(FPAddAlignSingleAdd(self.width, self.id_wid))
1688 alm.setup(m, sc.o, sc.in_mid)
1689
1690 n1 = self.add_state(FPNormToPack(self.width, self.id_wid))
1691 n1.setup(m, alm.a1o, alm.in_mid)
1692
1693 ppz = self.add_state(FPPutZ("pack_put_z", n1.out_z.z, self.o,
1694 n1.in_mid, self.out_mid))
1695
1696 pz = self.add_state(FPPutZ("put_z", sc.out_z.z, self.o,
1697 sc.in_mid, self.out_mid))
1698
1699
1700 class FPADDBase(FPState, FPID):
1701
1702 def __init__(self, width, id_wid=None, single_cycle=False):
1703 """ IEEE754 FP Add
1704
1705 * width: bit-width of IEEE754. supported: 16, 32, 64
1706 * id_wid: an identifier that is sync-connected to the input
1707 * single_cycle: True indicates each stage to complete in 1 clock
1708 """
1709 FPID.__init__(self, id_wid)
1710 FPState.__init__(self, "fpadd")
1711 self.width = width
1712 self.single_cycle = single_cycle
1713 self.mod = FPADDBaseMod(width, id_wid, single_cycle)
1714 self.o = self.ospec()
1715
1716 self.in_t = Trigger()
1717 self.i = self.ispec()
1718
1719 self.z_done = Signal(reset_less=True) # connects to out_z Strobe
1720 self.in_accept = Signal(reset_less=True)
1721 self.add_stb = Signal(reset_less=True)
1722 self.add_ack = Signal(reset=0, reset_less=True)
1723
1724 def ispec(self):
1725 return self.mod.ispec()
1726
1727 def ospec(self):
1728 return self.mod.ospec()
1729
1730 def setup(self, m, i, add_stb, in_mid):
1731 m.d.comb += [self.i.eq(i),
1732 self.mod.i.eq(self.i),
1733 self.in_mid.eq(in_mid),
1734 self.mod.in_mid.eq(self.in_mid),
1735 self.z_done.eq(self.mod.o.z.trigger),
1736 #self.add_stb.eq(add_stb),
1737 self.mod.in_t.stb.eq(self.in_t.stb),
1738 self.in_t.ack.eq(self.mod.in_t.ack),
1739 self.o.mid.eq(self.mod.o.mid),
1740 self.o.z.v.eq(self.mod.o.z.v),
1741 self.o.z.stb.eq(self.mod.o.z.stb),
1742 self.mod.o.z.ack.eq(self.o.z.ack),
1743 ]
1744
1745 m.d.sync += self.add_stb.eq(add_stb)
1746 m.d.sync += self.add_ack.eq(0) # sets to zero when not in active state
1747 m.d.sync += self.o.z.ack.eq(0) # likewise
1748 #m.d.sync += self.in_t.stb.eq(0)
1749
1750 m.submodules.fpadd = self.mod
1751
1752 def action(self, m):
1753
1754 # in_accept is set on incoming strobe HIGH and ack LOW.
1755 m.d.comb += self.in_accept.eq((~self.add_ack) & (self.add_stb))
1756
1757 #with m.If(self.in_t.ack):
1758 # m.d.sync += self.in_t.stb.eq(0)
1759 with m.If(~self.z_done):
1760 # not done: test for accepting an incoming operand pair
1761 with m.If(self.in_accept):
1762 m.d.sync += [
1763 self.add_ack.eq(1), # acknowledge receipt...
1764 self.in_t.stb.eq(1), # initiate add
1765 ]
1766 with m.Else():
1767 m.d.sync += [self.add_ack.eq(0),
1768 self.in_t.stb.eq(0),
1769 self.o.z.ack.eq(1),
1770 ]
1771 with m.Else():
1772 # done: acknowledge, and write out id and value
1773 m.d.sync += [self.add_ack.eq(1),
1774 self.in_t.stb.eq(0)
1775 ]
1776 m.next = "put_z"
1777
1778 return
1779
1780 if self.in_mid is not None:
1781 m.d.sync += self.out_mid.eq(self.mod.out_mid)
1782
1783 m.d.sync += [
1784 self.out_z.v.eq(self.mod.out_z.v)
1785 ]
1786 # move to output state on detecting z ack
1787 with m.If(self.out_z.trigger):
1788 m.d.sync += self.out_z.stb.eq(0)
1789 m.next = "put_z"
1790 with m.Else():
1791 m.d.sync += self.out_z.stb.eq(1)
1792
1793
1794 class ResArray:
1795 def __init__(self, width, id_wid):
1796 self.width = width
1797 self.id_wid = id_wid
1798 res = []
1799 for i in range(rs_sz):
1800 out_z = FPOp(width)
1801 out_z.name = "out_z_%d" % i
1802 res.append(out_z)
1803 self.res = Array(res)
1804 self.in_z = FPOp(width)
1805 self.in_mid = Signal(self.id_wid, reset_less=True)
1806
1807 def setup(self, m, in_z, in_mid):
1808 m.d.comb += [self.in_z.eq(in_z),
1809 self.in_mid.eq(in_mid)]
1810
1811 def get_fragment(self, platform=None):
1812 """ creates the HDL code-fragment for FPAdd
1813 """
1814 m = Module()
1815 m.submodules.res_in_z = self.in_z
1816 m.submodules += self.res
1817
1818 return m
1819
1820 def ports(self):
1821 res = []
1822 for z in self.res:
1823 res += z.ports()
1824 return res
1825
1826
1827 class FPADD(FPID):
1828 """ FPADD: stages as follows:
1829
1830 FPGetOp (a)
1831 |
1832 FPGetOp (b)
1833 |
1834 FPAddBase---> FPAddBaseMod
1835 | |
1836 PutZ GetOps->Specials->Align->Add1/2->Norm->Round/Pack->PutZ
1837
1838 FPAddBase is tricky: it is both a stage and *has* stages.
1839 Connection to FPAddBaseMod therefore requires an in stb/ack
1840 and an out stb/ack. Just as with Add1-Norm1 interaction, FPGetOp
1841 needs to be the thing that raises the incoming stb.
1842 """
1843
1844 def __init__(self, width, id_wid=None, single_cycle=False, rs_sz=2):
1845 """ IEEE754 FP Add
1846
1847 * width: bit-width of IEEE754. supported: 16, 32, 64
1848 * id_wid: an identifier that is sync-connected to the input
1849 * single_cycle: True indicates each stage to complete in 1 clock
1850 """
1851 self.width = width
1852 self.id_wid = id_wid
1853 self.single_cycle = single_cycle
1854
1855 #self.out_z = FPOp(width)
1856 self.ids = FPID(id_wid)
1857
1858 rs = []
1859 for i in range(rs_sz):
1860 in_a = FPOp(width)
1861 in_b = FPOp(width)
1862 in_a.name = "in_a_%d" % i
1863 in_b.name = "in_b_%d" % i
1864 rs.append((in_a, in_b))
1865 self.rs = Array(rs)
1866
1867 res = []
1868 for i in range(rs_sz):
1869 out_z = FPOp(width)
1870 out_z.name = "out_z_%d" % i
1871 res.append(out_z)
1872 self.res = Array(res)
1873
1874 self.states = []
1875
1876 def add_state(self, state):
1877 self.states.append(state)
1878 return state
1879
1880 def get_fragment(self, platform=None):
1881 """ creates the HDL code-fragment for FPAdd
1882 """
1883 m = Module()
1884 m.submodules += self.rs
1885
1886 in_a = self.rs[0][0]
1887 in_b = self.rs[0][1]
1888
1889 geta = self.add_state(FPGetOp("get_a", "get_b",
1890 in_a, self.width))
1891 geta.setup(m, in_a)
1892 a = geta.out_op
1893
1894 getb = self.add_state(FPGetOp("get_b", "fpadd",
1895 in_b, self.width))
1896 getb.setup(m, in_b)
1897 b = getb.out_op
1898
1899 ab = FPADDBase(self.width, self.id_wid, self.single_cycle)
1900 ab = self.add_state(ab)
1901 abd = ab.ispec() # create an input spec object for FPADDBase
1902 m.d.sync += [abd.a.eq(a), abd.b.eq(b), abd.mid.eq(self.ids.in_mid)]
1903 ab.setup(m, abd, getb.out_decode, self.ids.in_mid)
1904 o = ab.o
1905
1906 pz = self.add_state(FPPutZIdx("put_z", o.z, self.res,
1907 o.mid, "get_a"))
1908
1909 with m.FSM() as fsm:
1910
1911 for state in self.states:
1912 with m.State(state.state_from):
1913 state.action(m)
1914
1915 return m
1916
1917
1918 if __name__ == "__main__":
1919 if True:
1920 alu = FPADD(width=32, id_wid=5, single_cycle=True)
1921 main(alu, ports=alu.rs[0][0].ports() + \
1922 alu.rs[0][1].ports() + \
1923 alu.res[0].ports() + \
1924 [alu.ids.in_mid, alu.ids.out_mid])
1925 else:
1926 alu = FPADDBase(width=32, id_wid=5, single_cycle=True)
1927 main(alu, ports=[alu.in_a, alu.in_b] + \
1928 alu.in_t.ports() + \
1929 alu.out_z.ports() + \
1930 [alu.in_mid, alu.out_mid])
1931
1932
1933 # works... but don't use, just do "python fname.py convert -t v"
1934 #print (verilog.convert(alu, ports=[
1935 # ports=alu.in_a.ports() + \
1936 # alu.in_b.ports() + \
1937 # alu.out_z.ports())