simplify StageChain.specallocate_setup
[ieee754fpu.git] / src / add / singlepipe.py
1 """ Pipeline and BufferedHandshake implementation, conforming to the same API.
2 For multi-input and multi-output variants, see multipipe.
3
4 eq:
5 --
6
7 a strategically very important function that is identical in function
8 to nmigen's Signal.eq function, except it may take objects, or a list
9 of objects, or a tuple of objects, and where objects may also be
10 Records.
11
12 Stage API:
13 ---------
14
15 stage requires compliance with a strict API that may be
16 implemented in several means, including as a static class.
17 the methods of a stage instance must be as follows:
18
19 * ispec() - Input data format specification
20 returns an object or a list or tuple of objects, or
21 a Record, each object having an "eq" function which
22 takes responsibility for copying by assignment all
23 sub-objects
24 * ospec() - Output data format specification
25 requirements as for ospec
26 * process(m, i) - Processes an ispec-formatted object
27 returns a combinatorial block of a result that
28 may be assigned to the output, by way of the "eq"
29 function
30 * setup(m, i) - Optional function for setting up submodules
31 may be used for more complex stages, to link
32 the input (i) to submodules. must take responsibility
33 for adding those submodules to the module (m).
34 the submodules must be combinatorial blocks and
35 must have their inputs and output linked combinatorially.
36
37 Both StageCls (for use with non-static classes) and Stage (for use
38 by static classes) are abstract classes from which, for convenience
39 and as a courtesy to other developers, anything conforming to the
40 Stage API may *choose* to derive.
41
42 StageChain:
43 ----------
44
45 A useful combinatorial wrapper around stages that chains them together
46 and then presents a Stage-API-conformant interface. By presenting
47 the same API as the stages it wraps, it can clearly be used recursively.
48
49 RecordBasedStage:
50 ----------------
51
52 A convenience class that takes an input shape, output shape, a
53 "processing" function and an optional "setup" function. Honestly
54 though, there's not much more effort to just... create a class
55 that returns a couple of Records (see ExampleAddRecordStage in
56 examples).
57
58 PassThroughStage:
59 ----------------
60
61 A convenience class that takes a single function as a parameter,
62 that is chain-called to create the exact same input and output spec.
63 It has a process() function that simply returns its input.
64
65 Instances of this class are completely redundant if handed to
66 StageChain, however when passed to UnbufferedPipeline they
67 can be used to introduce a single clock delay.
68
69 ControlBase:
70 -----------
71
72 The base class for pipelines. Contains previous and next ready/valid/data.
73 Also has an extremely useful "connect" function that can be used to
74 connect a chain of pipelines and present the exact same prev/next
75 ready/valid/data API.
76
77 UnbufferedPipeline:
78 ------------------
79
80 A simple stalling clock-synchronised pipeline that has no buffering
81 (unlike BufferedHandshake). Data flows on *every* clock cycle when
82 the conditions are right (this is nominally when the input is valid
83 and the output is ready).
84
85 A stall anywhere along the line will result in a stall back-propagating
86 down the entire chain. The BufferedHandshake by contrast will buffer
87 incoming data, allowing previous stages one clock cycle's grace before
88 also having to stall.
89
90 An advantage of the UnbufferedPipeline over the Buffered one is
91 that the amount of logic needed (number of gates) is greatly
92 reduced (no second set of buffers basically)
93
94 The disadvantage of the UnbufferedPipeline is that the valid/ready
95 logic, if chained together, is *combinatorial*, resulting in
96 progressively larger gate delay.
97
98 RegisterPipeline:
99 ----------------
100
101 A convenience class that, because UnbufferedPipeline introduces a single
102 clock delay, when its stage is a PassThroughStage, it results in a Pipeline
103 stage that, duh, delays its (unmodified) input by one clock cycle.
104
105 BufferedHandshake:
106 ----------------
107
108 nmigen implementation of buffered pipeline stage, based on zipcpu:
109 https://zipcpu.com/blog/2017/08/14/strategies-for-pipelining.html
110
111 this module requires quite a bit of thought to understand how it works
112 (and why it is needed in the first place). reading the above is
113 *strongly* recommended.
114
115 unlike john dawson's IEEE754 FPU STB/ACK signalling, which requires
116 the STB / ACK signals to raise and lower (on separate clocks) before
117 data may proceeed (thus only allowing one piece of data to proceed
118 on *ALTERNATE* cycles), the signalling here is a true pipeline
119 where data will flow on *every* clock when the conditions are right.
120
121 input acceptance conditions are when:
122 * incoming previous-stage strobe (p.i_valid) is HIGH
123 * outgoing previous-stage ready (p.o_ready) is LOW
124
125 output transmission conditions are when:
126 * outgoing next-stage strobe (n.o_valid) is HIGH
127 * outgoing next-stage ready (n.i_ready) is LOW
128
129 the tricky bit is when the input has valid data and the output is not
130 ready to accept it. if it wasn't for the clock synchronisation, it
131 would be possible to tell the input "hey don't send that data, we're
132 not ready". unfortunately, it's not possible to "change the past":
133 the previous stage *has no choice* but to pass on its data.
134
135 therefore, the incoming data *must* be accepted - and stored: that
136 is the responsibility / contract that this stage *must* accept.
137 on the same clock, it's possible to tell the input that it must
138 not send any more data. this is the "stall" condition.
139
140 we now effectively have *two* possible pieces of data to "choose" from:
141 the buffered data, and the incoming data. the decision as to which
142 to process and output is based on whether we are in "stall" or not.
143 i.e. when the next stage is no longer ready, the output comes from
144 the buffer if a stall had previously occurred, otherwise it comes
145 direct from processing the input.
146
147 this allows us to respect a synchronous "travelling STB" with what
148 dan calls a "buffered handshake".
149
150 it's quite a complex state machine!
151
152 SimpleHandshake
153 ---------------
154
155 Synchronised pipeline, Based on:
156 https://github.com/ZipCPU/dbgbus/blob/master/hexbus/rtl/hbdeword.v
157 """
158
159 from nmigen import Signal, Cat, Const, Mux, Module, Value
160 from nmigen.cli import verilog, rtlil
161 from nmigen.hdl.ast import ArrayProxy
162 from nmigen.hdl.rec import Record, Layout
163
164 from abc import ABCMeta, abstractmethod
165 from collections.abc import Sequence
166
167
168 class PrevControl:
169 """ contains signals that come *from* the previous stage (both in and out)
170 * i_valid: previous stage indicating all incoming data is valid.
171 may be a multi-bit signal, where all bits are required
172 to be asserted to indicate "valid".
173 * o_ready: output to next stage indicating readiness to accept data
174 * i_data : an input - added by the user of this class
175 """
176
177 def __init__(self, i_width=1, stage_ctl=False):
178 self.stage_ctl = stage_ctl
179 self.i_valid = Signal(i_width, name="p_i_valid") # prev >>in self
180 self._o_ready = Signal(name="p_o_ready") # prev <<out self
181 self.i_data = None # XXX MUST BE ADDED BY USER
182 if stage_ctl:
183 self.s_o_ready = Signal(name="p_s_o_rdy") # prev <<out self
184
185 @property
186 def o_ready(self):
187 """ public-facing API: indicates (externally) that stage is ready
188 """
189 if self.stage_ctl:
190 return self.s_o_ready # set dynamically by stage
191 return self._o_ready # return this when not under dynamic control
192
193 def _connect_in(self, prev):
194 """ internal helper function to connect stage to an input source.
195 do not use to connect stage-to-stage!
196 """
197 return [self.i_valid.eq(prev.i_valid_test),
198 prev.o_ready.eq(self.o_ready),
199 eq(self.i_data, prev.i_data),
200 ]
201
202 @property
203 def i_valid_test(self):
204 vlen = len(self.i_valid)
205 if vlen > 1:
206 # multi-bit case: valid only when i_valid is all 1s
207 all1s = Const(-1, (len(self.i_valid), False))
208 i_valid = (self.i_valid == all1s)
209 else:
210 # single-bit i_valid case
211 i_valid = self.i_valid
212
213 # when stage indicates not ready, incoming data
214 # must "appear" to be not ready too
215 if self.stage_ctl:
216 i_valid = i_valid & self.s_o_ready
217
218 return i_valid
219
220
221 class NextControl:
222 """ contains the signals that go *to* the next stage (both in and out)
223 * o_valid: output indicating to next stage that data is valid
224 * i_ready: input from next stage indicating that it can accept data
225 * o_data : an output - added by the user of this class
226 """
227 def __init__(self, stage_ctl=False):
228 self.stage_ctl = stage_ctl
229 self.o_valid = Signal(name="n_o_valid") # self out>> next
230 self.i_ready = Signal(name="n_i_ready") # self <<in next
231 self.o_data = None # XXX MUST BE ADDED BY USER
232 #if self.stage_ctl:
233 self.d_valid = Signal(reset=1) # INTERNAL (data valid)
234
235 @property
236 def i_ready_test(self):
237 if self.stage_ctl:
238 return self.i_ready & self.d_valid
239 return self.i_ready
240
241 def connect_to_next(self, nxt):
242 """ helper function to connect to the next stage data/valid/ready.
243 data/valid is passed *TO* nxt, and ready comes *IN* from nxt.
244 use this when connecting stage-to-stage
245 """
246 return [nxt.i_valid.eq(self.o_valid),
247 self.i_ready.eq(nxt.o_ready),
248 eq(nxt.i_data, self.o_data),
249 ]
250
251 def _connect_out(self, nxt):
252 """ internal helper function to connect stage to an output source.
253 do not use to connect stage-to-stage!
254 """
255 return [nxt.o_valid.eq(self.o_valid),
256 self.i_ready.eq(nxt.i_ready_test),
257 eq(nxt.o_data, self.o_data),
258 ]
259
260
261 def eq(o, i):
262 """ makes signals equal: a helper routine which identifies if it is being
263 passed a list (or tuple) of objects, or signals, or Records, and calls
264 the objects' eq function.
265
266 complex objects (classes) can be used: they must follow the
267 convention of having an eq member function, which takes the
268 responsibility of further calling eq and returning a list of
269 eq assignments
270
271 Record is a special (unusual, recursive) case, where the input may be
272 specified as a dictionary (which may contain further dictionaries,
273 recursively), where the field names of the dictionary must match
274 the Record's field spec. Alternatively, an object with the same
275 member names as the Record may be assigned: it does not have to
276 *be* a Record.
277
278 ArrayProxy is also special-cased, it's a bit messy: whilst ArrayProxy
279 has an eq function, the object being assigned to it (e.g. a python
280 object) might not. despite the *input* having an eq function,
281 that doesn't help us, because it's the *ArrayProxy* that's being
282 assigned to. so.... we cheat. use the ports() function of the
283 python object, enumerate them, find out the list of Signals that way,
284 and assign them.
285 """
286 res = []
287 if isinstance(o, dict):
288 for (k, v) in o.items():
289 print ("d-eq", v, i[k])
290 res.append(v.eq(i[k]))
291 return res
292
293 if not isinstance(o, Sequence):
294 o, i = [o], [i]
295 for (ao, ai) in zip(o, i):
296 #print ("eq", ao, ai)
297 if isinstance(ao, Record):
298 for idx, (field_name, field_shape, _) in enumerate(ao.layout):
299 if isinstance(field_shape, Layout):
300 val = ai.fields
301 else:
302 val = ai
303 if hasattr(val, field_name): # check for attribute
304 val = getattr(val, field_name)
305 else:
306 val = val[field_name] # dictionary-style specification
307 rres = eq(ao.fields[field_name], val)
308 res += rres
309 elif isinstance(ao, ArrayProxy) and not isinstance(ai, Value):
310 for p in ai.ports():
311 op = getattr(ao, p.name)
312 #print (op, p, p.name)
313 rres = op.eq(p)
314 if not isinstance(rres, Sequence):
315 rres = [rres]
316 res += rres
317 else:
318 rres = ao.eq(ai)
319 if not isinstance(rres, Sequence):
320 rres = [rres]
321 res += rres
322 return res
323
324
325 class StageCls(metaclass=ABCMeta):
326 """ Class-based "Stage" API. requires instantiation (after derivation)
327
328 see "Stage API" above.. Note: python does *not* require derivation
329 from this class. All that is required is that the pipelines *have*
330 the functions listed in this class. Derivation from this class
331 is therefore merely a "courtesy" to maintainers.
332 """
333 @abstractmethod
334 def ispec(self): pass # REQUIRED
335 @abstractmethod
336 def ospec(self): pass # REQUIRED
337 #@abstractmethod
338 #def setup(self, m, i): pass # OPTIONAL
339 @abstractmethod
340 def process(self, i): pass # REQUIRED
341
342
343 class Stage(metaclass=ABCMeta):
344 """ Static "Stage" API. does not require instantiation (after derivation)
345
346 see "Stage API" above. Note: python does *not* require derivation
347 from this class. All that is required is that the pipelines *have*
348 the functions listed in this class. Derivation from this class
349 is therefore merely a "courtesy" to maintainers.
350 """
351 @staticmethod
352 @abstractmethod
353 def ispec(): pass
354
355 @staticmethod
356 @abstractmethod
357 def ospec(): pass
358
359 #@staticmethod
360 #@abstractmethod
361 #def setup(m, i): pass
362
363 @staticmethod
364 @abstractmethod
365 def process(i): pass
366
367
368 class RecordBasedStage(Stage):
369 """ convenience class which provides a Records-based layout.
370 honestly it's a lot easier just to create a direct Records-based
371 class (see ExampleAddRecordStage)
372 """
373 def __init__(self, in_shape, out_shape, processfn, setupfn=None):
374 self.in_shape = in_shape
375 self.out_shape = out_shape
376 self.__process = processfn
377 self.__setup = setupfn
378 def ispec(self): return Record(self.in_shape)
379 def ospec(self): return Record(self.out_shape)
380 def process(seif, i): return self.__process(i)
381 def setup(seif, m, i): return self.__setup(m, i)
382
383
384 class StageChain(StageCls):
385 """ pass in a list of stages, and they will automatically be
386 chained together via their input and output specs into a
387 combinatorial chain.
388
389 the end result basically conforms to the exact same Stage API.
390
391 * input to this class will be the input of the first stage
392 * output of first stage goes into input of second
393 * output of second goes into input into third (etc. etc.)
394 * the output of this class will be the output of the last stage
395 """
396 def __init__(self, chain, specallocate=False):
397 self.chain = chain
398 self.specallocate = specallocate
399
400 def ispec(self):
401 return self.chain[0].ispec()
402
403 def ospec(self):
404 return self.chain[-1].ospec()
405
406 def _specallocate_setup(self, m, i):
407 for (idx, c) in enumerate(self.chain):
408 if hasattr(c, "setup"):
409 c.setup(m, i) # stage may have some module stuff
410 o = self.chain[idx].ospec() # last assignment survives
411 m.d.comb += eq(o, c.process(i)) # process input into "o"
412 if idx == len(self.chain)-1:
413 break
414 i = self.chain[idx+1].ispec() # new input on next loop
415 m.d.comb += eq(i, o) # assign to next input
416 return o # last loop is the output
417
418 def _noallocate_setup(self, m, i):
419 for (idx, c) in enumerate(self.chain):
420 if hasattr(c, "setup"):
421 c.setup(m, i) # stage may have some module stuff
422 i = o = c.process(i) # store input into "o"
423 return o # last loop is the output
424
425 def setup(self, m, i):
426 if self.specallocate:
427 self.o = self._specallocate_setup(m, i)
428 else:
429 self.o = self._noallocate_setup(m, i)
430
431 def process(self, i):
432 return self.o # conform to Stage API: return last-loop output
433
434
435 class ControlBase:
436 """ Common functions for Pipeline API
437 """
438 def __init__(self, in_multi=None, stage_ctl=False):
439 """ Base class containing ready/valid/data to previous and next stages
440
441 * p: contains ready/valid to the previous stage
442 * n: contains ready/valid to the next stage
443
444 Except when calling Controlbase.connect(), user must also:
445 * add i_data member to PrevControl (p) and
446 * add o_data member to NextControl (n)
447 """
448 # set up input and output IO ACK (prev/next ready/valid)
449 self.p = PrevControl(in_multi, stage_ctl)
450 self.n = NextControl(stage_ctl)
451
452 def connect_to_next(self, nxt):
453 """ helper function to connect to the next stage data/valid/ready.
454 """
455 return self.n.connect_to_next(nxt.p)
456
457 def _connect_in(self, prev):
458 """ internal helper function to connect stage to an input source.
459 do not use to connect stage-to-stage!
460 """
461 return self.p._connect_in(prev.p)
462
463 def _connect_out(self, nxt):
464 """ internal helper function to connect stage to an output source.
465 do not use to connect stage-to-stage!
466 """
467 return self.n._connect_out(nxt.n)
468
469 def connect(self, pipechain):
470 """ connects a chain (list) of Pipeline instances together and
471 links them to this ControlBase instance:
472
473 in <----> self <---> out
474 | ^
475 v |
476 [pipe1, pipe2, pipe3, pipe4]
477 | ^ | ^ | ^
478 v | v | v |
479 out---in out--in out---in
480
481 Also takes care of allocating i_data/o_data, by looking up
482 the data spec for each end of the pipechain. i.e It is NOT
483 necessary to allocate self.p.i_data or self.n.o_data manually:
484 this is handled AUTOMATICALLY, here.
485
486 Basically this function is the direct equivalent of StageChain,
487 except that unlike StageChain, the Pipeline logic is followed.
488
489 Just as StageChain presents an object that conforms to the
490 Stage API from a list of objects that also conform to the
491 Stage API, an object that calls this Pipeline connect function
492 has the exact same pipeline API as the list of pipline objects
493 it is called with.
494
495 Thus it becomes possible to build up larger chains recursively.
496 More complex chains (multi-input, multi-output) will have to be
497 done manually.
498 """
499 eqs = [] # collated list of assignment statements
500
501 # connect inter-chain
502 for i in range(len(pipechain)-1):
503 pipe1 = pipechain[i]
504 pipe2 = pipechain[i+1]
505 eqs += pipe1.connect_to_next(pipe2)
506
507 # connect front of chain to ourselves
508 front = pipechain[0]
509 self.p.i_data = front.stage.ispec()
510 eqs += front._connect_in(self)
511
512 # connect end of chain to ourselves
513 end = pipechain[-1]
514 self.n.o_data = end.stage.ospec()
515 eqs += end._connect_out(self)
516
517 return eqs
518
519 def set_input(self, i):
520 """ helper function to set the input data
521 """
522 return eq(self.p.i_data, i)
523
524 def ports(self):
525 res = [self.p.i_valid, self.n.i_ready,
526 self.n.o_valid, self.p.o_ready,
527 ]
528 if hasattr(self.p.i_data, "ports"):
529 res += self.p.i_data.ports()
530 else:
531 res += self.p.i_data
532 if hasattr(self.n.o_data, "ports"):
533 res += self.n.o_data.ports()
534 else:
535 res += self.n.o_data
536 return res
537
538 def _elaborate(self, platform):
539 """ handles case where stage has dynamic ready/valid functions
540 """
541 m = Module()
542 if not self.p.stage_ctl:
543 return m
544
545 # intercept the previous (outgoing) "ready", combine with stage ready
546 m.d.comb += self.p.s_o_ready.eq(self.p._o_ready & self.stage.d_ready)
547
548 # intercept the next (incoming) "ready" and combine it with data valid
549 sdv = self.stage.d_valid(self.n.i_ready)
550 m.d.comb += self.n.d_valid.eq(self.n.i_ready & sdv)
551
552 return m
553
554
555 class BufferedHandshake(ControlBase):
556 """ buffered pipeline stage. data and strobe signals travel in sync.
557 if ever the input is ready and the output is not, processed data
558 is shunted in a temporary register.
559
560 Argument: stage. see Stage API above
561
562 stage-1 p.i_valid >>in stage n.o_valid out>> stage+1
563 stage-1 p.o_ready <<out stage n.i_ready <<in stage+1
564 stage-1 p.i_data >>in stage n.o_data out>> stage+1
565 | |
566 process --->----^
567 | |
568 +-- r_data ->-+
569
570 input data p.i_data is read (only), is processed and goes into an
571 intermediate result store [process()]. this is updated combinatorially.
572
573 in a non-stall condition, the intermediate result will go into the
574 output (update_output). however if ever there is a stall, it goes
575 into r_data instead [update_buffer()].
576
577 when the non-stall condition is released, r_data is the first
578 to be transferred to the output [flush_buffer()], and the stall
579 condition cleared.
580
581 on the next cycle (as long as stall is not raised again) the
582 input may begin to be processed and transferred directly to output.
583
584 """
585 def __init__(self, stage, stage_ctl=False):
586 ControlBase.__init__(self, stage_ctl=stage_ctl)
587 self.stage = stage
588
589 # set up the input and output data
590 self.p.i_data = stage.ispec() # input type
591 self.n.o_data = stage.ospec()
592
593 def elaborate(self, platform):
594
595 self.m = ControlBase._elaborate(self, platform)
596
597 result = self.stage.ospec()
598 r_data = self.stage.ospec()
599 if hasattr(self.stage, "setup"):
600 self.stage.setup(self.m, self.p.i_data)
601
602 # establish some combinatorial temporaries
603 o_n_validn = Signal(reset_less=True)
604 n_i_ready = Signal(reset_less=True, name="n_i_rdy_data")
605 i_p_valid_o_p_ready = Signal(reset_less=True)
606 p_i_valid = Signal(reset_less=True)
607 self.m.d.comb += [p_i_valid.eq(self.p.i_valid_test),
608 o_n_validn.eq(~self.n.o_valid),
609 i_p_valid_o_p_ready.eq(p_i_valid & self.p.o_ready),
610 n_i_ready.eq(self.n.i_ready_test),
611 ]
612
613 # store result of processing in combinatorial temporary
614 self.m.d.comb += eq(result, self.stage.process(self.p.i_data))
615
616 # if not in stall condition, update the temporary register
617 with self.m.If(self.p.o_ready): # not stalled
618 self.m.d.sync += eq(r_data, result) # update buffer
619
620 with self.m.If(n_i_ready): # next stage is ready
621 with self.m.If(self.p._o_ready): # not stalled
622 # nothing in buffer: send (processed) input direct to output
623 self.m.d.sync += [self.n.o_valid.eq(p_i_valid),
624 eq(self.n.o_data, result), # update output
625 ]
626 with self.m.Else(): # p.o_ready is false, and data in buffer
627 # Flush the [already processed] buffer to the output port.
628 self.m.d.sync += [self.n.o_valid.eq(1), # reg empty
629 eq(self.n.o_data, r_data), # flush buffer
630 self.p._o_ready.eq(1), # clear stall
631 ]
632 # ignore input, since p.o_ready is also false.
633
634 # (n.i_ready) is false here: next stage is ready
635 with self.m.Elif(o_n_validn): # next stage being told "ready"
636 self.m.d.sync += [self.n.o_valid.eq(p_i_valid),
637 self.p._o_ready.eq(1), # Keep the buffer empty
638 eq(self.n.o_data, result), # set output data
639 ]
640
641 # (n.i_ready) false and (n.o_valid) true:
642 with self.m.Elif(i_p_valid_o_p_ready):
643 # If next stage *is* ready, and not stalled yet, accept input
644 self.m.d.sync += self.p._o_ready.eq(~(p_i_valid & self.n.o_valid))
645
646 return self.m
647
648
649 class SimpleHandshake(ControlBase):
650 """ simple handshake control. data and strobe signals travel in sync.
651 implements the protocol used by Wishbone and AXI4.
652
653 Argument: stage. see Stage API above
654
655 stage-1 p.i_valid >>in stage n.o_valid out>> stage+1
656 stage-1 p.o_ready <<out stage n.i_ready <<in stage+1
657 stage-1 p.i_data >>in stage n.o_data out>> stage+1
658 | |
659 +--process->--^
660 """
661 def __init__(self, stage, stage_ctl=False):
662 ControlBase.__init__(self, stage_ctl=stage_ctl)
663 self.stage = stage
664
665 # set up the input and output data
666 self.p.i_data = stage.ispec() # input type
667 self.n.o_data = stage.ospec()
668
669 def elaborate(self, platform):
670
671 self.m = ControlBase._elaborate(self, platform)
672
673 r_busy = Signal()
674 result = self.stage.ospec()
675 if hasattr(self.stage, "setup"):
676 self.stage.setup(self.m, self.p.i_data)
677
678 # establish some combinatorial temporaries
679 n_i_ready = Signal(reset_less=True, name="n_i_rdy_data")
680 p_i_valid_p_o_ready = Signal(reset_less=True)
681 p_i_valid = Signal(reset_less=True)
682 self.m.d.comb += [p_i_valid.eq(self.p.i_valid_test),
683 n_i_ready.eq(self.n.i_ready_test),
684 p_i_valid_p_o_ready.eq(p_i_valid & self.p.o_ready),
685 ]
686
687 # store result of processing in combinatorial temporary
688 self.m.d.comb += eq(result, self.stage.process(self.p.i_data))
689
690 # previous valid and ready
691 with self.m.If(p_i_valid_p_o_ready):
692 self.m.d.sync += [r_busy.eq(1), # output valid
693 #self.n.o_valid.eq(1), # output valid
694 eq(self.n.o_data, result), # update output
695 ]
696 # previous invalid or not ready, however next is accepting
697 with self.m.Elif(n_i_ready):
698 self.m.d.sync += [ eq(self.n.o_data, result)]
699 # TODO: could still send data here (if there was any)
700 #self.m.d.sync += self.n.o_valid.eq(0) # ...so set output invalid
701 self.m.d.sync += r_busy.eq(0) # ...so set output invalid
702
703 self.m.d.comb += self.n.o_valid.eq(r_busy)
704 # if next is ready, so is previous
705 self.m.d.comb += self.p._o_ready.eq(n_i_ready)
706
707 return self.m
708
709
710 class UnbufferedPipeline(ControlBase):
711 """ A simple pipeline stage with single-clock synchronisation
712 and two-way valid/ready synchronised signalling.
713
714 Note that a stall in one stage will result in the entire pipeline
715 chain stalling.
716
717 Also that unlike BufferedHandshake, the valid/ready signalling does NOT
718 travel synchronously with the data: the valid/ready signalling
719 combines in a *combinatorial* fashion. Therefore, a long pipeline
720 chain will lengthen propagation delays.
721
722 Argument: stage. see Stage API, above
723
724 stage-1 p.i_valid >>in stage n.o_valid out>> stage+1
725 stage-1 p.o_ready <<out stage n.i_ready <<in stage+1
726 stage-1 p.i_data >>in stage n.o_data out>> stage+1
727 | |
728 r_data result
729 | |
730 +--process ->-+
731
732 Attributes:
733 -----------
734 p.i_data : StageInput, shaped according to ispec
735 The pipeline input
736 p.o_data : StageOutput, shaped according to ospec
737 The pipeline output
738 r_data : input_shape according to ispec
739 A temporary (buffered) copy of a prior (valid) input.
740 This is HELD if the output is not ready. It is updated
741 SYNCHRONOUSLY.
742 result: output_shape according to ospec
743 The output of the combinatorial logic. it is updated
744 COMBINATORIALLY (no clock dependence).
745 """
746
747 def __init__(self, stage, stage_ctl=False):
748 ControlBase.__init__(self, stage_ctl=stage_ctl)
749 self.stage = stage
750
751 # set up the input and output data
752 self.p.i_data = stage.ispec() # input type
753 self.n.o_data = stage.ospec() # output type
754
755 def elaborate(self, platform):
756 self.m = ControlBase._elaborate(self, platform)
757
758 data_valid = Signal() # is data valid or not
759 r_data = self.stage.ispec() # input type
760 if hasattr(self.stage, "setup"):
761 self.stage.setup(self.m, r_data)
762
763 # some temporaries
764 p_i_valid = Signal(reset_less=True)
765 pv = Signal(reset_less=True)
766 self.m.d.comb += p_i_valid.eq(self.p.i_valid_test)
767 self.m.d.comb += pv.eq(self.p.i_valid & self.p.o_ready)
768
769 self.m.d.comb += self.n.o_valid.eq(data_valid)
770 self.m.d.comb += self.p._o_ready.eq(~data_valid | self.n.i_ready_test)
771 self.m.d.sync += data_valid.eq(p_i_valid | \
772 (~self.n.i_ready_test & data_valid))
773 with self.m.If(pv):
774 self.m.d.sync += eq(r_data, self.p.i_data)
775 self.m.d.comb += eq(self.n.o_data, self.stage.process(r_data))
776 return self.m
777
778
779 class UnbufferedPipeline2(ControlBase):
780 """ A simple pipeline stage with single-clock synchronisation
781 and two-way valid/ready synchronised signalling.
782
783 Note that a stall in one stage will result in the entire pipeline
784 chain stalling.
785
786 Also that unlike BufferedHandshake, the valid/ready signalling does NOT
787 travel synchronously with the data: the valid/ready signalling
788 combines in a *combinatorial* fashion. Therefore, a long pipeline
789 chain will lengthen propagation delays.
790
791 Argument: stage. see Stage API, above
792
793 stage-1 p.i_valid >>in stage n.o_valid out>> stage+1
794 stage-1 p.o_ready <<out stage n.i_ready <<in stage+1
795 stage-1 p.i_data >>in stage n.o_data out>> stage+1
796 | |
797 r_data result
798 | |
799 +--process ->-+
800
801 Attributes:
802 -----------
803 p.i_data : StageInput, shaped according to ispec
804 The pipeline input
805 p.o_data : StageOutput, shaped according to ospec
806 The pipeline output
807 buf : output_shape according to ospec
808 A temporary (buffered) copy of a valid output
809 This is HELD if the output is not ready. It is updated
810 SYNCHRONOUSLY.
811 """
812
813 def __init__(self, stage, stage_ctl=False):
814 ControlBase.__init__(self, stage_ctl=stage_ctl)
815 self.stage = stage
816
817 # set up the input and output data
818 self.p.i_data = stage.ispec() # input type
819 self.n.o_data = stage.ospec() # output type
820
821 def elaborate(self, platform):
822 self.m = ControlBase._elaborate(self, platform)
823
824 buf_full = Signal() # is data valid or not
825 buf = self.stage.ospec() # output type
826 if hasattr(self.stage, "setup"):
827 self.stage.setup(self.m, self.p.i_data)
828
829 # some temporaries
830 p_i_valid = Signal(reset_less=True)
831 self.m.d.comb += p_i_valid.eq(self.p.i_valid_test)
832
833 self.m.d.comb += self.n.o_valid.eq(buf_full | p_i_valid)
834 self.m.d.comb += self.p._o_ready.eq(~buf_full)
835 self.m.d.sync += buf_full.eq(~self.n.i_ready_test & self.n.o_valid)
836
837 odata = Mux(buf_full, buf, self.stage.process(self.p.i_data))
838 self.m.d.comb += eq(self.n.o_data, odata)
839 self.m.d.sync += eq(buf, self.n.o_data)
840
841 return self.m
842
843
844 class PassThroughStage(StageCls):
845 """ a pass-through stage which has its input data spec equal to its output,
846 and "passes through" its data from input to output.
847 """
848 def __init__(self, iospecfn):
849 self.iospecfn = iospecfn
850 def ispec(self): return self.iospecfn()
851 def ospec(self): return self.iospecfn()
852 def process(self, i): return i
853
854
855 class RegisterPipeline(UnbufferedPipeline):
856 """ A pipeline stage that delays by one clock cycle, creating a
857 sync'd latch out of o_data and o_valid as an indirect byproduct
858 of using PassThroughStage
859 """
860 def __init__(self, iospecfn):
861 UnbufferedPipeline.__init__(self, PassThroughStage(iospecfn))
862