experimenting with dual add
[ieee754fpu.git] / src / add / unit_test_single.py
1 from random import randint
2 from random import seed
3
4 import sys
5 from sfpy import Float32
6
7 def get_mantissa(x):
8 return 0x7fffff & x
9
10 def get_exponent(x):
11 return ((x & 0x7f800000) >> 23) - 127
12
13 def set_exponent(x, e):
14 return (x & ~0x7f800000) | ((e+127) << 23)
15
16 def get_sign(x):
17 return ((x & 0x80000000) >> 31)
18
19 def is_nan(x):
20 return get_exponent(x) == 128 and get_mantissa(x) != 0
21
22 def is_inf(x):
23 return get_exponent(x) == 128 and get_mantissa(x) == 0
24
25 def is_pos_inf(x):
26 return is_inf(x) and not get_sign(x)
27
28 def is_neg_inf(x):
29 return is_inf(x) and get_sign(x)
30
31 def match(x, y):
32 return (
33 (is_pos_inf(x) and is_pos_inf(y)) or
34 (is_neg_inf(x) and is_neg_inf(y)) or
35 (is_nan(x) and is_nan(y)) or
36 (x == y)
37 )
38
39 def get_case(dut, a, b):
40 yield dut.in_a.v.eq(a)
41 yield dut.in_a.stb.eq(1)
42 yield
43 yield
44 a_ack = (yield dut.in_a.ack)
45 assert a_ack == 0
46 yield dut.in_b.v.eq(b)
47 yield dut.in_b.stb.eq(1)
48 b_ack = (yield dut.in_b.ack)
49 assert b_ack == 0
50
51 while True:
52 yield
53 out_z_stb = (yield dut.out_z.stb)
54 if not out_z_stb:
55 continue
56 out_z = yield dut.out_z.v
57 yield dut.out_z.ack.eq(0)
58 yield dut.in_a.stb.eq(0)
59 yield dut.in_b.stb.eq(0)
60 yield
61 yield dut.out_z.ack.eq(1)
62 break
63
64 return out_z
65
66 def check_case(dut, a, b, z):
67 out_z = yield from get_case(dut, a, b)
68 assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
69
70
71 def run_test(dut, stimulus_a, stimulus_b, op):
72
73 expected_responses = []
74 actual_responses = []
75 for a, b in zip(stimulus_a, stimulus_b):
76 af = Float32.from_bits(a)
77 bf = Float32.from_bits(b)
78 z = op(af, bf)
79 expected_responses.append(z.get_bits())
80 #print (af, bf, z)
81 actual = yield from get_case(dut, a, b)
82 actual_responses.append(actual)
83
84 if len(actual_responses) < len(expected_responses):
85 print ("Fail ... not enough results")
86 exit(0)
87
88 for expected, actual, a, b in zip(expected_responses, actual_responses,
89 stimulus_a, stimulus_b):
90 passed = match(expected, actual)
91
92 if not passed:
93
94 print ("Fail ... expected:", hex(expected), "actual:", hex(actual))
95
96 print (hex(a))
97 print ("a mantissa:", a & 0x7fffff)
98 print ("a exponent:", ((a & 0x7f800000) >> 23) - 127)
99 print ("a sign:", ((a & 0x80000000) >> 31))
100
101 print (hex(b))
102 print ("b mantissa:", b & 0x7fffff)
103 print ("b exponent:", ((b & 0x7f800000) >> 23) - 127)
104 print ("b sign:", ((b & 0x80000000) >> 31))
105
106 print (hex(expected))
107 print ("expected mantissa:", expected & 0x7fffff)
108 print ("expected exponent:", ((expected & 0x7f800000) >> 23) - 127)
109 print ("expected sign:", ((expected & 0x80000000) >> 31))
110
111 print (hex(actual))
112 print ("actual mantissa:", actual & 0x7fffff)
113 print ("actual exponent:", ((actual & 0x7f800000) >> 23) - 127)
114 print ("actual sign:", ((actual & 0x80000000) >> 31))
115
116 sys.exit(0)
117
118 corner_cases = [0x80000000, 0x00000000, 0x7f800000, 0xff800000,
119 0x7fc00000, 0xffc00000]
120
121 def run_corner_cases(dut, count, op):
122 #corner cases
123 from itertools import permutations
124 stimulus_a = [i[0] for i in permutations(corner_cases, 2)]
125 stimulus_b = [i[1] for i in permutations(corner_cases, 2)]
126 yield from run_test(dut, stimulus_a, stimulus_b, op)
127 count += len(stimulus_a)
128 print (count, "vectors passed")
129
130 def run_test_2(dut, stimulus_a, stimulus_b, op):
131 yield from run_test(dut, stimulus_a, stimulus_b, op)
132 yield from run_test(dut, stimulus_b, stimulus_a, op)
133
134 def run_cases(dut, count, op, fixed_num, num_entries):
135 if isinstance(fixed_num, int):
136 stimulus_a = [fixed_num for i in range(num_entries)]
137 report = hex(fixed_num)
138 else:
139 stimulus_a = fixed_num
140 report = "random"
141
142 stimulus_b = [randint(0, 1<<32) for i in range(num_entries)]
143 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
144 count += len(stimulus_a)
145 print (count, "vectors passed 2^32", report)
146
147 # non-canonical NaNs.
148 stimulus_b = [set_exponent(randint(0, 1<<32), 128) \
149 for i in range(num_entries)]
150 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
151 count += len(stimulus_a)
152 print (count, "vectors passed Non-Canonical NaN", report)
153
154 # -127
155 stimulus_b = [set_exponent(randint(0, 1<<32), -127) \
156 for i in range(num_entries)]
157 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
158 count += len(stimulus_a)
159 print (count, "vectors passed exp=-127", report)
160
161 # nearly zero
162 stimulus_b = [set_exponent(randint(0, 1<<32), -126) \
163 for i in range(num_entries)]
164 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
165 count += len(stimulus_a)
166 print (count, "vectors passed exp=-126", report)
167
168 # nearly inf
169 stimulus_b = [set_exponent(randint(0, 1<<32), 127) \
170 for i in range(num_entries)]
171 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
172 count += len(stimulus_a)
173 print (count, "vectors passed exp=127", report)
174
175 return count
176
177 def run_edge_cases(dut, count, op):
178 #edge cases
179 for testme in corner_cases:
180 count = yield from run_cases(dut, count, op, testme, 1000)
181
182 for i in range(100000):
183 stimulus_a = [randint(0, 1<<32) for i in range(1000)]
184 count = yield from run_cases(dut, count, op, stimulus_a, 1000)
185 return count
186