create array of in_a, in_b and out_z
[ieee754fpu.git] / src / add / unit_test_single.py
1 from random import randint
2 from random import seed
3
4 import sys
5 from sfpy import Float32
6
7 def get_mantissa(x):
8 return 0x7fffff & x
9
10 def get_exponent(x):
11 return ((x & 0x7f800000) >> 23) - 127
12
13 def set_exponent(x, e):
14 return (x & ~0x7f800000) | ((e+127) << 23)
15
16 def get_sign(x):
17 return ((x & 0x80000000) >> 31)
18
19 def is_nan(x):
20 return get_exponent(x) == 128 and get_mantissa(x) != 0
21
22 def is_inf(x):
23 return get_exponent(x) == 128 and get_mantissa(x) == 0
24
25 def is_pos_inf(x):
26 return is_inf(x) and not get_sign(x)
27
28 def is_neg_inf(x):
29 return is_inf(x) and get_sign(x)
30
31 def match(x, y):
32 return (
33 (is_pos_inf(x) and is_pos_inf(y)) or
34 (is_neg_inf(x) and is_neg_inf(y)) or
35 (is_nan(x) and is_nan(y)) or
36 (x == y)
37 )
38
39 def get_case(dut, a, b, mid):
40 in_a, in_b, out_z = dut.rs[0]
41 yield dut.ids.in_mid.eq(mid)
42 yield in_a.v.eq(a)
43 yield in_a.stb.eq(1)
44 yield
45 yield
46 yield
47 yield
48 a_ack = (yield in_a.ack)
49 assert a_ack == 0
50
51 yield in_a.stb.eq(0)
52
53 yield in_b.v.eq(b)
54 yield in_b.stb.eq(1)
55 yield
56 yield
57 b_ack = (yield in_b.ack)
58 assert b_ack == 0
59
60 yield in_b.stb.eq(0)
61
62 yield out_z.ack.eq(1)
63
64 while True:
65 out_z_stb = (yield out_z.stb)
66 if not out_z_stb:
67 yield
68 continue
69 vout_z = yield out_z.v
70 out_mid = yield dut.ids.out_mid
71 yield out_z.ack.eq(0)
72 yield
73 break
74
75 return vout_z, out_mid
76
77 def check_case(dut, a, b, z, mid=None):
78 if mid is None:
79 mid = randint(0, 6)
80 out_z, out_mid = yield from get_case(dut, a, b, mid)
81 assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
82 assert out_mid == mid, "Output mid 0x%x != expected 0x%x" % (out_mid, mid)
83
84
85 def run_test(dut, stimulus_a, stimulus_b, op):
86
87 expected_responses = []
88 actual_responses = []
89 for a, b in zip(stimulus_a, stimulus_b):
90 mid = randint(0, 6)
91 af = Float32.from_bits(a)
92 bf = Float32.from_bits(b)
93 z = op(af, bf)
94 expected_responses.append((z.get_bits(), mid))
95 #print (af, bf, z)
96 actual = yield from get_case(dut, a, b, mid)
97 actual_responses.append(actual)
98
99 if len(actual_responses) < len(expected_responses):
100 print ("Fail ... not enough results")
101 exit(0)
102
103 for expected, actual, a, b in zip(expected_responses, actual_responses,
104 stimulus_a, stimulus_b):
105 passed = match(expected[0], actual[0])
106 if expected[1] != actual[1]: # check mid
107 print ("MID failed", expected[1], actual[1])
108 sys.exit(0)
109
110 if not passed:
111
112 print ("Fail ... expected:", hex(expected), "actual:", hex(actual))
113
114 print (hex(a))
115 print ("a mantissa:", a & 0x7fffff)
116 print ("a exponent:", ((a & 0x7f800000) >> 23) - 127)
117 print ("a sign:", ((a & 0x80000000) >> 31))
118
119 print (hex(b))
120 print ("b mantissa:", b & 0x7fffff)
121 print ("b exponent:", ((b & 0x7f800000) >> 23) - 127)
122 print ("b sign:", ((b & 0x80000000) >> 31))
123
124 print (hex(expected))
125 print ("expected mantissa:", expected & 0x7fffff)
126 print ("expected exponent:", ((expected & 0x7f800000) >> 23) - 127)
127 print ("expected sign:", ((expected & 0x80000000) >> 31))
128
129 print (hex(actual))
130 print ("actual mantissa:", actual & 0x7fffff)
131 print ("actual exponent:", ((actual & 0x7f800000) >> 23) - 127)
132 print ("actual sign:", ((actual & 0x80000000) >> 31))
133
134 sys.exit(0)
135
136 corner_cases = [0x80000000, 0x00000000, 0x7f800000, 0xff800000,
137 0x7fc00000, 0xffc00000]
138
139 def run_corner_cases(dut, count, op):
140 #corner cases
141 from itertools import permutations
142 stimulus_a = [i[0] for i in permutations(corner_cases, 2)]
143 stimulus_b = [i[1] for i in permutations(corner_cases, 2)]
144 yield from run_test(dut, stimulus_a, stimulus_b, op)
145 count += len(stimulus_a)
146 print (count, "vectors passed")
147
148 def run_test_2(dut, stimulus_a, stimulus_b, op):
149 yield from run_test(dut, stimulus_a, stimulus_b, op)
150 yield from run_test(dut, stimulus_b, stimulus_a, op)
151
152 def run_cases(dut, count, op, fixed_num, num_entries):
153 if isinstance(fixed_num, int):
154 stimulus_a = [fixed_num for i in range(num_entries)]
155 report = hex(fixed_num)
156 else:
157 stimulus_a = fixed_num
158 report = "random"
159
160 stimulus_b = [randint(0, 1<<32) for i in range(num_entries)]
161 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
162 count += len(stimulus_a)
163 print (count, "vectors passed 2^32", report)
164
165 # non-canonical NaNs.
166 stimulus_b = [set_exponent(randint(0, 1<<32), 128) \
167 for i in range(num_entries)]
168 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
169 count += len(stimulus_a)
170 print (count, "vectors passed Non-Canonical NaN", report)
171
172 # -127
173 stimulus_b = [set_exponent(randint(0, 1<<32), -127) \
174 for i in range(num_entries)]
175 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
176 count += len(stimulus_a)
177 print (count, "vectors passed exp=-127", report)
178
179 # nearly zero
180 stimulus_b = [set_exponent(randint(0, 1<<32), -126) \
181 for i in range(num_entries)]
182 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
183 count += len(stimulus_a)
184 print (count, "vectors passed exp=-126", report)
185
186 # nearly inf
187 stimulus_b = [set_exponent(randint(0, 1<<32), 127) \
188 for i in range(num_entries)]
189 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
190 count += len(stimulus_a)
191 print (count, "vectors passed exp=127", report)
192
193 return count
194
195 def run_edge_cases(dut, count, op):
196 #edge cases
197 for testme in corner_cases:
198 count = yield from run_cases(dut, count, op, testme, 10)
199
200 for i in range(100000):
201 stimulus_a = [randint(0, 1<<32) for i in range(10)]
202 count = yield from run_cases(dut, count, op, stimulus_a, 10)
203 return count
204