reorganise unit test single to do much more comprehensive test cases.
[ieee754fpu.git] / src / add / unit_test_single.py
1 from random import randint
2 from random import seed
3
4 import sys
5 from sfpy import Float32
6
7 def get_mantissa(x):
8 return 0x7fffff & x
9
10 def get_exponent(x):
11 return ((x & 0x7f800000) >> 23) - 127
12
13 def set_exponent(x, e):
14 return (x & ~0x7f800000) | ((e+127) << 23)
15
16 def get_sign(x):
17 return ((x & 0x80000000) >> 31)
18
19 def is_nan(x):
20 return get_exponent(x) == 128 and get_mantissa(x) != 0
21
22 def is_inf(x):
23 return get_exponent(x) == 128 and get_mantissa(x) == 0
24
25 def is_pos_inf(x):
26 return is_inf(x) and not get_sign(x)
27
28 def is_neg_inf(x):
29 return is_inf(x) and get_sign(x)
30
31 def match(x, y):
32 return (
33 (is_pos_inf(x) and is_pos_inf(y)) or
34 (is_neg_inf(x) and is_neg_inf(y)) or
35 (is_nan(x) and is_nan(y)) or
36 (x == y)
37 )
38
39 def get_case(dut, a, b):
40 yield dut.in_a.v.eq(a)
41 yield dut.in_a.stb.eq(1)
42 yield
43 yield
44 a_ack = (yield dut.in_a.ack)
45 assert a_ack == 0
46 yield dut.in_b.v.eq(b)
47 yield dut.in_b.stb.eq(1)
48 b_ack = (yield dut.in_b.ack)
49 assert b_ack == 0
50
51 while True:
52 yield
53 out_z_stb = (yield dut.out_z.stb)
54 if not out_z_stb:
55 continue
56 yield dut.in_a.stb.eq(0)
57 yield dut.in_b.stb.eq(0)
58 yield dut.out_z.ack.eq(1)
59 yield
60 yield dut.out_z.ack.eq(0)
61 yield
62 yield
63 break
64
65 out_z = yield dut.out_z.v
66 return out_z
67
68 def check_case(dut, a, b, z):
69 out_z = yield from get_case(dut, a, b)
70 assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
71
72
73 def run_test(dut, stimulus_a, stimulus_b, op):
74
75 expected_responses = []
76 actual_responses = []
77 for a, b in zip(stimulus_a, stimulus_b):
78 af = Float32.from_bits(a)
79 bf = Float32.from_bits(b)
80 z = op(af, bf)
81 expected_responses.append(z.get_bits())
82 #print (af, bf, z)
83 actual = yield from get_case(dut, a, b)
84 actual_responses.append(actual)
85
86 if len(actual_responses) < len(expected_responses):
87 print ("Fail ... not enough results")
88 exit(0)
89
90 for expected, actual, a, b in zip(expected_responses, actual_responses,
91 stimulus_a, stimulus_b):
92 passed = match(expected, actual)
93
94 if not passed:
95
96 print ("Fail ... expected:", hex(expected), "actual:", hex(actual))
97
98 print (hex(a))
99 print ("a mantissa:", a & 0x7fffff)
100 print ("a exponent:", ((a & 0x7f800000) >> 23) - 127)
101 print ("a sign:", ((a & 0x80000000) >> 31))
102
103 print (hex(b))
104 print ("b mantissa:", b & 0x7fffff)
105 print ("b exponent:", ((b & 0x7f800000) >> 23) - 127)
106 print ("b sign:", ((b & 0x80000000) >> 31))
107
108 print (hex(expected))
109 print ("expected mantissa:", expected & 0x7fffff)
110 print ("expected exponent:", ((expected & 0x7f800000) >> 23) - 127)
111 print ("expected sign:", ((expected & 0x80000000) >> 31))
112
113 print (hex(actual))
114 print ("actual mantissa:", actual & 0x7fffff)
115 print ("actual exponent:", ((actual & 0x7f800000) >> 23) - 127)
116 print ("actual sign:", ((actual & 0x80000000) >> 31))
117
118 sys.exit(0)
119
120 corner_cases = [0x80000000, 0x00000000, 0x7f800000, 0xff800000,
121 0x7fc00000, 0xffc00000]
122
123 def run_corner_cases(dut, count, op):
124 #corner cases
125 from itertools import permutations
126 stimulus_a = [i[0] for i in permutations(corner_cases, 2)]
127 stimulus_b = [i[1] for i in permutations(corner_cases, 2)]
128 yield from run_test(dut, stimulus_a, stimulus_b, op)
129 count += len(stimulus_a)
130 print (count, "vectors passed")
131
132 def run_test_2(dut, stimulus_a, stimulus_b, op):
133 yield from run_test(dut, stimulus_a, stimulus_b, op)
134 yield from run_test(dut, stimulus_b, stimulus_a, op)
135
136 def run_cases(dut, count, op, fixed_num, num_entries):
137 if isinstance(fixed_num, int):
138 stimulus_a = [fixed_num for i in range(num_entries)]
139 report = hex(fixed_num)
140 else:
141 stimulus_a = fixed_num
142 report = "random"
143
144 stimulus_b = [randint(0, 1<<32) for i in range(num_entries)]
145 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
146 count += len(stimulus_a)
147 print (count, "vectors passed 2^32", report)
148
149 # non-canonical NaNs.
150 stimulus_b = [set_exponent(randint(0, 1<<32), 128) \
151 for i in range(num_entries)]
152 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
153 count += len(stimulus_a)
154 print (count, "vectors passed Non-Canonical NaN", report)
155
156 # -127
157 stimulus_b = [set_exponent(randint(0, 1<<32), -127) \
158 for i in range(num_entries)]
159 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
160 count += len(stimulus_a)
161 print (count, "vectors passed exp=-127", report)
162
163 # nearly zero
164 stimulus_b = [set_exponent(randint(0, 1<<32), -126) \
165 for i in range(num_entries)]
166 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
167 count += len(stimulus_a)
168 print (count, "vectors passed exp=-126", report)
169
170 # nearly inf
171 stimulus_b = [set_exponent(randint(0, 1<<32), 127) \
172 for i in range(num_entries)]
173 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
174 count += len(stimulus_a)
175 print (count, "vectors passed exp=127", report)
176
177 return count
178
179 def run_edge_cases(dut, count, op):
180 #edge cases
181 for testme in corner_cases:
182 count = yield from run_cases(dut, count, op, testme, 1000)
183
184 for i in range(100000):
185 stimulus_a = [randint(0, 1<<32) for i in range(1000)]
186 count = yield from run_cases(dut, count, op, stimulus_a, 1000)
187 return count
188