(no commit message)
[libreriscv.git] / openpower / sv / rfc / ls010.mdwn
1 # RFC ls009 SVP64 Zero-Overhead Loop Prefix Subsystem
2
3 Credits and acknowledgements:
4
5 * Luke Leighton
6 * Jacob Lifshay
7 * Hendrik Boom
8 * Richard Wilbur
9 * Alexandre Oliva
10 * Cesar Strauss
11 * NLnet Foundation, for funding
12 * OpenPOWER Foundation
13 * Paul Mackerras
14 * Toshaan Bharvani
15 * IBM for the Power ISA itself
16
17 Links:
18
19 * <https://bugs.libre-soc.org/show_bug.cgi?id=1045>
20
21 # Introduction
22
23 This document focuses on the encoding of [[SV|sv]], and assumes familiarity with the same. It does not cover how SV works (merely the instruction encoding), and is therefore best read in conjunction with the [[sv/overview]], as well as the [[sv/svp64_quirks]] section.
24 It is also crucial to note that whilst this format augments instruction
25 behaviour it works in conjunction with SVSTATE and other [[sv/sprs]].
26
27 Except where explicitly stated all bit numbers remain as in the Power ISA:
28 in MSB0 form (the bits are numbered from 0 at the MSB on the left
29 and counting up as you move rightwards to the LSB end). All bit ranges are inclusive
30 (so `4:6` means bits 4, 5, and 6, in MSB0 order). **All register numbering and
31 element numbering however is LSB0 ordering** which is a different convention used
32 elsewhere in the Power ISA.
33
34 64-bit instructions are split into two 32-bit words, the prefix and the
35 suffix. The prefix always comes before the suffix in PC order.
36
37 | 0:5 | 6:31 | 32:63 |
38 |--------|--------------|--------------|
39 | EXT01 | v3.1 Prefix | v3.0/1 Suffix |
40
41 svp64 fits into the "reserved" portions of the v3.1 prefix, making it possible for svp64, v3.0B (or v3.1 including 64 bit prefixed) instructions to co-exist in the same binary without conflict.
42
43 Subset implementations in hardware are permitted, as long as certain
44 rules are followed, allowing for full soft-emulation including future
45 revisions. Compliancy Subsets exist to ensure minimum levels of binary
46 interoperability expectations within certain environments.
47
48 ## Register files, elements, and Element-width Overrides
49
50 In the Upper Compliancy Levels the size of the GPR and FPR Register files are expanded
51 from 32 to 128 entries, and the number of CR Fields expanded from CR0-CR7 to CR0-CR127.
52
53 Memory access remains exactly the same: the effects of `MSR.LE` remain exactly the same,
54 affecting as they already do and remain **only** on the Load and Store memory-register
55 operation byte-order, and having nothing to do with the
56 ordering of the contents of register files or register-register operations.
57
58 Whilst the bits within the GPRs and FPRs are expected to be MSB0-ordered and for
59 numbering to be sequentially incremental the element offset numbering is naturally
60 **LSB0-sequentially-incrementing from zero not MSB0-incrementing.** Expressed exclusively in
61 MSB0-numbering, SVP64 is unnecessarily complex to understand: the required
62 subtractions from 63, 31, 15 and 7 unfortunately become a hostile minefield.
63 Therefore for the purposes of this section the more natural
64 **LSB0 numbering is assumed** and it is up to the reader to translate to MSB0 numbering.
65
66 The Canonical specification for how element-sequential numbering and element-width
67 overrides is defined is expressed in the following c structure, assuming a Little-Endian
68 system, and naturally using LSB0 numbering everywhere because the ANSI c specification
69 is inherently LSB0:
70
71 ```
72 #pragma pack
73 typedef union {
74 uint8_t b[]; // elwidth 8
75 uint16_t s[]; // elwidth 16
76 uint32_t i[]; // elwidth 32
77 uint64_t l[]; // elwidth 64
78 uint8_t actual_bytes[8];
79 } el_reg_t;
80
81 elreg_t int_regfile[128];
82
83 void get_register_element(el_reg_t* el, int gpr, int element, int width) {
84 switch (width) {
85 case 64: el->l = int_regfile[gpr].l[element];
86 case 32: el->i = int_regfile[gpr].i[element];
87 case 16: el->s = int_regfile[gpr].s[element];
88 case 8 : el->b = int_regfile[gpr].b[element];
89 }
90 }
91 void set_register_element(el_reg_t* el, int gpr, int element, int width) {
92 switch (width) {
93 case 64: int_regfile[gpr].l[element] = el->l;
94 case 32: int_regfile[gpr].i[element] = el->i;
95 case 16: int_regfile[gpr].s[element] = el->s;
96 case 8 : int_regfile[gpr].b[element] = el->b;
97 }
98 }
99 ```
100
101 Example add operation implementation when elwidths are 64-bit:
102
103 ```
104 # add RT, RA,RB using the "uint64_t" union member, "l"
105 for i in range(VL):
106 int_regfile[RT].l[i] = int_regfile[RA].l[i] + int_regfile[RB].l[i]
107 ```
108
109 However if elwidth overrides are set to 16 for both source and destination:
110
111 ```
112 # add RT, RA, RB using the "uint64_t" union member "s"
113 for i in range(VL):
114 int_regfile[RT].s[i] = int_regfile[RA].s[i] + int_regfile[RB].s[i]
115 ```
116
117 Hardware Architectural note: to avoid a Read-Modify-Write at the register file it is
118 strongly recommended to implement byte-level write-enable lines exactly as has been
119 implemented in DRAM ICs for many decades. Additionally the predicate mask bit is advised
120 to be associated with the element operation and ultimately passed to the register file.
121 When element-width is set to 64-bit the relevant predicate mask bit may be repeated
122 eight times and pull all eight write-port byte-level lines HIGH. Clearly when element-width
123 is set to 8-bit the relevant predicate mask bit corresponds directly with one single
124 byte-level write-enable line. It is up to the Hardware Architect to then amortise (merge)
125 elements together into both PredicatedSIMD Pipelines as well as simultaneous non-overlapping
126 Register File writes, to achieve High Performance designs.
127
128 ## SVP64 encoding features
129
130 A number of features need to be compacted into a very small space of only 24 bits:
131
132 * Independent per-register Scalar/Vector tagging and range extension on every register
133 * Element width overrides on both source and destination
134 * Predication on both source and destination
135 * Two different sources of predication: INT and CR Fields
136 * SV Modes including saturation (for Audio, Video and DSP), mapreduce, fail-first and
137 predicate-result mode.
138
139 Different classes of operations require
140
141 # Definition of Reserved in this spec.
142
143 For the new fields added in SVP64, instructions that have any of their
144 fields set to a reserved value must cause an illegal instruction trap,
145 to allow emulation of future instruction sets, or for subsets of SVP64
146 to be implemented in hardware and the rest emulated.
147 This includes SVP64 SPRs: reading or writing values which are not
148 supported in hardware must also raise illegal instruction traps
149 in order to allow emulation.
150 Unless otherwise stated, reserved values are always all zeros.
151
152 This is unlike OpenPower ISA v3.1, which in many instances does not require a trap if reserved fields are nonzero. Where the standard Power ISA definition
153 is intended the red keyword `RESERVED` is used.
154
155 # Definition of "UnVectoriseable"
156
157 Any operation that inherently makes no sense if repeated is termed "UnVectoriseable"
158 or "UnVectorised". Examples include `sc` or `sync` which have no registers. `mtmsr` is
159 also classed as UnVectoriseable because there is only one `MSR`.
160
161 # Scalar Identity Behaviour
162
163 SVP64 is designed so that when the prefix is all zeros, and
164 VL=1, no effect or
165 influence occurs (no augmentation) such that all standard Power ISA
166 v3.0/v3 1 instructions covered by the prefix are "unaltered". This is termed `scalar identity behaviour` (based on the mathematical definition for "identity", as in, "identity matrix" or better "identity transformation").
167
168 Note that this is completely different from when VL=0. VL=0 turns all operations under its influence into `nops` (regardless of the prefix)
169 whereas when VL=1 and the SV prefix is all zeros, the operation simply acts as if SV had not been applied at all to the instruction (an "identity transformation").
170
171 # Register Naming and size
172
173 SV Registers are simply the INT, FP and CR register files extended
174 linearly to larger sizes; SV Vectorisation iterates sequentially through these registers.
175
176 Where the integer regfile in standard scalar
177 Power ISA v3.0B/v3.1B is r0 to r31, SV extends this as r0 to r127.
178 Likewise FP registers are extended to 128 (fp0 to fp127), and CR Fields
179 are
180 extended to 128 entries, CR0 thru CR127.
181
182 The names of the registers therefore reflects a simple linear extension
183 of the Power ISA v3.0B / v3.1B register naming, and in hardware this
184 would be reflected by a linear increase in the size of the underlying
185 SRAM used for the regfiles.
186
187 Note: when an EXTRA field (defined below) is zero, SV is deliberately designed
188 so that the register fields are identical to as if SV was not in effect
189 i.e. under these circumstances (EXTRA=0) the register field names RA,
190 RB etc. are interpreted and treated as v3.0B / v3.1B scalar registers. This is part of
191 `scalar identity behaviour` described above.
192
193 ## Future expansion.
194
195 With the way that EXTRA fields are defined and applied to register fields,
196 future versions of SV may involve 256 or greater registers. Backwards binary compatibility may be achieved with a PCR bit (Program Compatibility Register). Further discussion is out of scope for this version of SVP64.
197
198 # Remapped Encoding (`RM[0:23]`)
199
200 To allow relatively easy remapping of which portions of the Prefix Opcode
201 Map are used for SVP64 without needing to rewrite a large portion of the
202 SVP64 spec, a mapping is defined from the OpenPower v3.1 prefix bits to
203 a new 24-bit Remapped Encoding denoted `RM[0]` at the MSB to `RM[23]`
204 at the LSB.
205
206 The mapping from the OpenPower v3.1 prefix bits to the Remapped Encoding
207 is defined in the Prefix Fields section.
208
209 ## Prefix Opcode Map (64-bit instruction encoding)
210
211 In the original table in the v3.1B Power ISA Spec on p1350, Table 12, prefix bits 6:11 are shown, with their allocations to different v3.1B pregix "modes".
212
213 The table below hows both PowerISA v3.1 instructions as well as new SVP instructions fit;
214 empty spaces are yet-to-be-allocated Illegal Instructions.
215
216 | 6:11 | ---000 | ---001 | ---010 | ---011 | ---100 | ---101 | ---110 | ---111 |
217 |------|--------|--------|--------|--------|--------|--------|--------|--------|
218 |000---| 8LS | 8LS | 8LS | 8LS | 8LS | 8LS | 8LS | 8LS |
219 |001---| | | | | | | | |
220 |010---| 8RR | | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
221 |011---| | | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
222 |100---| MLS | MLS | MLS | MLS | MLS | MLS | MLS | MLS |
223 |101---| | | | | | | | |
224 |110---| MRR | | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
225 |111---| | MMIRR | | | `SVP64`| `SVP64`| `SVP64`| `SVP64`|
226
227 Note that by taking up a block of 16, where in every case bits 7 and 9 are set, this allows svp64 to utilise four bits of the v3.1B Prefix space and "allocate" them to svp64's Remapped Encoding field, instead.
228
229 ## Prefix Fields
230
231 To "activate" svp64 (in a way that does not conflict with v3.1B 64 bit Prefix mode), fields within the v3.1B Prefix Opcode Map are set
232 (see Prefix Opcode Map, above), leaving 24 bits "free" for use by SV.
233 This is achieved by setting bits 7 and 9 to 1:
234
235 | Name | Bits | Value | Description |
236 |------------|---------|-------|--------------------------------|
237 | EXT01 | `0:5` | `1` | Indicates Prefixed 64-bit |
238 | `RM[0]` | `6` | | Bit 0 of Remapped Encoding |
239 | SVP64_7 | `7` | `1` | Indicates this is SVP64 |
240 | `RM[1]` | `8` | | Bit 1 of Remapped Encoding |
241 | SVP64_9 | `9` | `1` | Indicates this is SVP64 |
242 | `RM[2:23]` | `10:31` | | Bits 2-23 of Remapped Encoding |
243
244 Laid out bitwise, this is as follows, showing how the 32-bits of the prefix
245 are constructed:
246
247 | 0:5 | 6 | 7 | 8 | 9 | 10:31 |
248 |--------|-------|---|-------|---|----------|
249 | EXT01 | RM | 1 | RM | 1 | RM |
250 | 000001 | RM[0] | 1 | RM[1] | 1 | RM[2:23] |
251
252 Following the prefix will be the suffix: this is simply a 32-bit v3.0B / v3.1
253 instruction. That instruction becomes "prefixed" with the SVP context: the
254 Remapped Encoding field (RM).
255
256 It is important to note that unlike v3.1 64-bit prefixed instructions
257 there is insufficient space in `RM` to provide identification of
258 any SVP64 Fields without first partially decoding the
259 32-bit suffix. Similar to the "Forms" (X-Form, D-Form) the
260 `RM` format is individually associated with every instruction.
261
262 Extreme caution and care must therefore be taken
263 when extending SVP64 in future, to not create unnecessary relationships
264 between prefix and suffix that could complicate decoding, adding latency.
265
266 # Common RM fields
267
268 The following fields are common to all Remapped Encodings:
269
270 | Field Name | Field bits | Description |
271 |------------|------------|----------------------------------------|
272 | MASKMODE | `0` | Execution (predication) Mask Kind |
273 | MASK | `1:3` | Execution Mask |
274 | SUBVL | `8:9` | Sub-vector length |
275
276 The following fields are optional or encoded differently depending
277 on context after decoding of the Scalar suffix:
278
279 | Field Name | Field bits | Description |
280 |------------|------------|----------------------------------------|
281 | ELWIDTH | `4:5` | Element Width |
282 | ELWIDTH_SRC | `6:7` | Element Width for Source |
283 | EXTRA | `10:18` | Register Extra encoding |
284 | MODE | `19:23` | changes Vector behaviour |
285
286 * MODE changes the behaviour of the SV operation (result saturation, mapreduce)
287 * SUBVL groups elements together into vec2, vec3, vec4 for use in 3D and Audio/Video DSP work
288 * ELWIDTH and ELWIDTH_SRC overrides the instruction's destination and source operand width
289 * MASK (and MASK_SRC) and MASKMODE provide predication (two types of sources: scalar INT and Vector CR).
290 * Bits 10 to 18 (EXTRA) are further decoded depending on the RM category for the instruction, which is determined only by decoding the Scalar 32 bit suffix.
291
292 Similar to Power ISA `X-Form` etc. EXTRA bits are given designations, such as `RM-1P-3S1D` which indicates for this example that the operation is to be single-predicated and that there are 3 source operand EXTRA tags and one destination operand tag.
293
294 Note that if ELWIDTH != ELWIDTH_SRC this may result in reduced performance or increased latency in some implementations due to lane-crossing.
295
296 # Mode
297
298 Mode is an augmentation of SV behaviour. Different types of
299 instructions have different needs, similar to Power ISA
300 v3.1 64 bit prefix 8LS and MTRR formats apply to different
301 instruction types. Modes include Reduction, Iteration, arithmetic
302 saturation, and Fail-First. More specific details in each
303 section and in the [[svp64/appendix]]
304
305 * For condition register operations see [[sv/cr_ops]]
306 * For LD/ST Modes, see [[sv/ldst]].
307 * For Branch modes, see [[sv/branches]]
308 * For arithmetic and logical, see [[sv/normal]]
309
310 # ELWIDTH Encoding
311
312 Default behaviour is set to 0b00 so that zeros follow the convention of
313 `scalar identity behaviour`. In this case it means that elwidth overrides
314 are not applicable. Thus if a 32 bit instruction operates on 32 bit,
315 `elwidth=0b00` specifies that this behaviour is unmodified. Likewise
316 when a processor is switched from 64 bit to 32 bit mode, `elwidth=0b00`
317 states that, again, the behaviour is not to be modified.
318
319 Only when elwidth is nonzero is the element width overridden to the
320 explicitly required value.
321
322 ## Elwidth for Integers:
323
324 | Value | Mnemonic | Description |
325 |-------|----------------|------------------------------------|
326 | 00 | DEFAULT | default behaviour for operation |
327 | 01 | `ELWIDTH=w` | Word: 32-bit integer |
328 | 10 | `ELWIDTH=h` | Halfword: 16-bit integer |
329 | 11 | `ELWIDTH=b` | Byte: 8-bit integer |
330
331 This encoding is chosen such that the byte width may be computed as
332 `8<<(3-ew)`
333
334 ## Elwidth for FP Registers:
335
336 | Value | Mnemonic | Description |
337 |-------|----------------|------------------------------------|
338 | 00 | DEFAULT | default behaviour for FP operation |
339 | 01 | `ELWIDTH=f32` | 32-bit IEEE 754 Single floating-point |
340 | 10 | `ELWIDTH=f16` | 16-bit IEEE 754 Half floating-point |
341 | 11 | `ELWIDTH=bf16` | Reserved for `bf16` |
342
343 Note:
344 [`bf16`](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format)
345 is reserved for a future implementation of SV
346
347 Note that any IEEE754 FP operation in Power ISA ending in "s" (`fadds`) shall
348 perform its operation at **half** the ELWIDTH then padded back out
349 to ELWIDTH. `sv.fadds/ew=f32` shall perform an IEEE754 FP16 operation that is then "padded" to fill out to an IEEE754 FP32. When ELWIDTH=DEFAULT
350 clearly the behaviour of `sv.fadds` is performed at 32-bit accuracy
351 then padded back out to fit in IEEE754 FP64, exactly as for Scalar
352 v3.0B "single" FP. Any FP operation ending in "s" where ELWIDTH=f16
353 or ELWIDTH=bf16 is reserved and must raise an illegal instruction
354 (IEEE754 FP8 or BF8 are not defined).
355
356 ## Elwidth for CRs:
357
358 Element-width overrides for CR Fields has no meaning. The bits
359 are therefore used for other purposes, or when Rc=1, the Elwidth
360 applies to the result being tested (a GPR or FPR), but not to the
361 Vector of CR Fields.
362
363 # SUBVL Encoding
364
365 the default for SUBVL is 1 and its encoding is 0b00 to indicate that
366 SUBVL is effectively disabled (a SUBVL for-loop of only one element). this
367 lines up in combination with all other "default is all zeros" behaviour.
368
369 | Value | Mnemonic | Subvec | Description |
370 |-------|-----------|---------|------------------------|
371 | 00 | `SUBVL=1` | single | Sub-vector length of 1 |
372 | 01 | `SUBVL=2` | vec2 | Sub-vector length of 2 |
373 | 10 | `SUBVL=3` | vec3 | Sub-vector length of 3 |
374 | 11 | `SUBVL=4` | vec4 | Sub-vector length of 4 |
375
376 The SUBVL encoding value may be thought of as an inclusive range of a
377 sub-vector. SUBVL=2 represents a vec2, its encoding is 0b01, therefore
378 this may be considered to be elements 0b00 to 0b01 inclusive.
379
380 # MASK/MASK_SRC & MASKMODE Encoding
381
382 TODO: rename MASK_KIND to MASKMODE
383
384 One bit (`MASKMODE`) indicates the mode: CR or Int predication. The two
385 types may not be mixed.
386
387 Special note: to disable predication this field must
388 be set to zero in combination with Integer Predication also being set
389 to 0b000. this has the effect of enabling "all 1s" in the predicate
390 mask, which is equivalent to "not having any predication at all"
391 and consequently, in combination with all other default zeros, fully
392 disables SV (`scalar identity behaviour`).
393
394 `MASKMODE` may be set to one of 2 values:
395
396 | Value | Description |
397 |-----------|------------------------------------------------------|
398 | 0 | MASK/MASK_SRC are encoded using Integer Predication |
399 | 1 | MASK/MASK_SRC are encoded using CR-based Predication |
400
401 Integer Twin predication has a second set of 3 bits that uses the same
402 encoding thus allowing either the same register (r3, r10 or r31) to be used
403 for both src and dest, or different regs (one for src, one for dest).
404
405 Likewise CR based twin predication has a second set of 3 bits, allowing
406 a different test to be applied.
407
408 Note that it is assumed that Predicate Masks (whether INT or CR)
409 are read *before* the operations proceed. In practice (for CR Fields)
410 this creates an unnecessary block on parallelism. Therefore,
411 it is up to the programmer to ensure that the CR fields used as
412 Predicate Masks are not being written to by any parallel Vector Loop.
413 Doing so results in **UNDEFINED** behaviour, according to the definition
414 outlined in the Power ISA v3.0B Specification.
415
416 Hardware Implementations are therefore free and clear to delay reading
417 of individual CR fields until the actual predicated element operation
418 needs to take place, safe in the knowledge that no programmer will
419 have issued a Vector Instruction where previous elements could have
420 overwritten (destroyed) not-yet-executed CR-Predicated element operations.
421
422 ## Integer Predication (MASKMODE=0)
423
424 When the predicate mode bit is zero the 3 bits are interpreted as below.
425 Twin predication has an identical 3 bit field similarly encoded.
426
427 `MASK` and `MASK_SRC` may be set to one of 8 values, to provide the following meaning:
428
429 | Value | Mnemonic | Element `i` enabled if: |
430 |-------|----------|------------------------------|
431 | 000 | ALWAYS | predicate effectively all 1s |
432 | 001 | 1 << R3 | `i == R3` |
433 | 010 | R3 | `R3 & (1 << i)` is non-zero |
434 | 011 | ~R3 | `R3 & (1 << i)` is zero |
435 | 100 | R10 | `R10 & (1 << i)` is non-zero |
436 | 101 | ~R10 | `R10 & (1 << i)` is zero |
437 | 110 | R30 | `R30 & (1 << i)` is non-zero |
438 | 111 | ~R30 | `R30 & (1 << i)` is zero |
439
440 r10 and r30 are at the high end of temporary and unused registers, so as not to interfere with register allocation from ABIs.
441
442 ## CR-based Predication (MASKMODE=1)
443
444 When the predicate mode bit is one the 3 bits are interpreted as below.
445 Twin predication has an identical 3 bit field similarly encoded.
446
447 `MASK` and `MASK_SRC` may be set to one of 8 values, to provide the following meaning:
448
449 | Value | Mnemonic | Element `i` is enabled if |
450 |-------|----------|--------------------------|
451 | 000 | lt | `CR[offs+i].LT` is set |
452 | 001 | nl/ge | `CR[offs+i].LT` is clear |
453 | 010 | gt | `CR[offs+i].GT` is set |
454 | 011 | ng/le | `CR[offs+i].GT` is clear |
455 | 100 | eq | `CR[offs+i].EQ` is set |
456 | 101 | ne | `CR[offs+i].EQ` is clear |
457 | 110 | so/un | `CR[offs+i].FU` is set |
458 | 111 | ns/nu | `CR[offs+i].FU` is clear |
459
460 CR based predication. TODO: select alternate CR for twin predication? see
461 [[discussion]] Overlap of the two CR based predicates must be taken
462 into account, so the starting point for one of them must be suitably
463 high, or accept that for twin predication VL must not exceed the range
464 where overlap will occur, *or* that they use the same starting point
465 but select different *bits* of the same CRs
466
467 `offs` is defined as CR32 (4x8) so as to mesh cleanly with Vectorised Rc=1 operations (see below). Rc=1 operations start from CR8 (TBD).
468
469 The CR Predicates chosen must start on a boundary that Vectorised
470 CR operations can access cleanly, in full.
471 With EXTRA2 restricting starting points
472 to multiples of 8 (CR0, CR8, CR16...) both Vectorised Rc=1 and CR Predicate
473 Masks have to be adapted to fit on these boundaries as well.
474
475 # Extra Remapped Encoding <a name="extra_remap"> </a>
476
477 Shows all instruction-specific fields in the Remapped Encoding `RM[10:18]` for all instruction variants. Note that due to the very tight space, the encoding mode is *not* included in the prefix itself. The mode is "applied", similar to Power ISA "Forms" (X-Form, D-Form) on a per-instruction basis, and, like "Forms" are given a designation (below) of the form `RM-nP-nSnD`. The full list of which instructions use which remaps is here [[opcode_regs_deduped]]. (*Machine-readable CSV files have been provided which will make the task of creating SV-aware ISA decoders easier*).
478
479 These mappings are part of the SVP64 Specification in exactly the same
480 way as X-Form, D-Form. New Scalar instructions added to the Power ISA
481 will need a corresponding SVP64 Mapping, which can be derived by-rote
482 from examining the Register "Profile" of the instruction.
483
484 There are two categories: Single and Twin Predication.
485 Due to space considerations further subdivision of Single Predication
486 is based on whether the number of src operands is 2 or 3. With only
487 9 bits available some compromises have to be made.
488
489 * `RM-1P-3S1D` Single Predication dest/src1/2/3, applies to 4-operand instructions (fmadd, isel, madd).
490 * `RM-1P-2S1D` Single Predication dest/src1/2 applies to 3-operand instructions (src1 src2 dest)
491 * `RM-2P-1S1D` Twin Predication (src=1, dest=1)
492 * `RM-2P-2S1D` Twin Predication (src=2, dest=1) primarily for LDST (Indexed)
493 * `RM-2P-1S2D` Twin Predication (src=1, dest=2) primarily for LDST Update
494
495 ## RM-1P-3S1D
496
497 | Field Name | Field bits | Description |
498 |------------|------------|----------------------------------------|
499 | Rdest\_EXTRA2 | `10:11` | extends Rdest (R\*\_EXTRA2 Encoding) |
500 | Rsrc1\_EXTRA2 | `12:13` | extends Rsrc1 (R\*\_EXTRA2 Encoding) |
501 | Rsrc2\_EXTRA2 | `14:15` | extends Rsrc2 (R\*\_EXTRA2 Encoding) |
502 | Rsrc3\_EXTRA2 | `16:17` | extends Rsrc3 (R\*\_EXTRA2 Encoding) |
503 | EXTRA2_MODE | `18` | used by `divmod2du` and `maddedu` for RS |
504
505 These are for 3 operand in and either 1 or 2 out instructions.
506 3-in 1-out includes `madd RT,RA,RB,RC`. (DRAFT) instructions
507 such as `maddedu` have an implicit second destination, RS, the
508 selection of which is determined by bit 18.
509
510 ## RM-1P-2S1D
511
512 | Field Name | Field bits | Description |
513 |------------|------------|-------------------------------------------|
514 | Rdest\_EXTRA3 | `10:12` | extends Rdest |
515 | Rsrc1\_EXTRA3 | `13:15` | extends Rsrc1 |
516 | Rsrc2\_EXTRA3 | `16:18` | extends Rsrc3 |
517
518 These are for 2 operand 1 dest instructions, such as `add RT, RA,
519 RB`. However also included are unusual instructions with an implicit dest
520 that is identical to its src reg, such as `rlwinmi`.
521
522 Normally, with instructions such as `rlwinmi`, the scalar v3.0B ISA would not have sufficient bit fields to allow
523 an alternative destination. With SV however this becomes possible.
524 Therefore, the fact that the dest is implicitly also a src should not
525 mislead: due to the *prefix* they are different SV regs.
526
527 * `rlwimi RA, RS, ...`
528 * Rsrc1_EXTRA3 applies to RS as the first src
529 * Rsrc2_EXTRA3 applies to RA as the secomd src
530 * Rdest_EXTRA3 applies to RA to create an **independent** dest.
531
532 With the addition of the EXTRA bits, the three registers
533 each may be *independently* made vector or scalar, and be independently
534 augmented to 7 bits in length.
535
536 ## RM-2P-1S1D/2S
537
538 | Field Name | Field bits | Description |
539 |------------|------------|----------------------------|
540 | Rdest_EXTRA3 | `10:12` | extends Rdest |
541 | Rsrc1_EXTRA3 | `13:15` | extends Rsrc1 |
542 | MASK_SRC | `16:18` | Execution Mask for Source |
543
544 `RM-2P-2S` is for `stw` etc. and is Rsrc1 Rsrc2.
545
546 ## RM-1P-2S1D
547
548 single-predicate, three registers (2 read, 1 write)
549
550 | Field Name | Field bits | Description |
551 |------------|------------|----------------------------|
552 | Rdest_EXTRA3 | `10:12` | extends Rdest |
553 | Rsrc1_EXTRA3 | `13:15` | extends Rsrc1 |
554 | Rsrc2_EXTRA3 | `16:18` | extends Rsrc2 |
555
556 ## RM-2P-2S1D/1S2D/3S
557
558 The primary purpose for this encoding is for Twin Predication on LOAD
559 and STORE operations. see [[sv/ldst]] for detailed anslysis.
560
561 RM-2P-2S1D:
562
563 | Field Name | Field bits | Description |
564 |------------|------------|----------------------------|
565 | Rdest_EXTRA2 | `10:11` | extends Rdest (R\*\_EXTRA2 Encoding) |
566 | Rsrc1_EXTRA2 | `12:13` | extends Rsrc1 (R\*\_EXTRA2 Encoding) |
567 | Rsrc2_EXTRA2 | `14:15` | extends Rsrc2 (R\*\_EXTRA2 Encoding) |
568 | MASK_SRC | `16:18` | Execution Mask for Source |
569
570 Note that for 1S2P the EXTRA2 dest and src names are switched (Rsrc_EXTRA2
571 is in bits 10:11, Rdest1_EXTRA2 in 12:13)
572
573 Also that for 3S (to cover `stdx` etc.) the names are switched to 3 src: Rsrc1_EXTRA2, Rsrc2_EXTRA2, Rsrc3_EXTRA2.
574
575 Note also that LD with update indexed, which takes 2 src and 2 dest
576 (e.g. `lhaux RT,RA,RB`), does not have room for 4 registers and also
577 Twin Predication. therefore these are treated as RM-2P-2S1D and the
578 src spec for RA is also used for the same RA as a dest.
579
580 Note that if ELWIDTH != ELWIDTH_SRC this may result in reduced performance or increased latency in some implementations due to lane-crossing.
581
582 # R\*\_EXTRA2/3
583
584 EXTRA is the means by which two things are achieved:
585
586 1. Registers are marked as either Vector *or Scalar*
587 2. Register field numbers (limited typically to 5 bit)
588 are extended in range, both for Scalar and Vector.
589
590 The register files are therefore extended:
591
592 * INT is extended from r0-31 to r0-127
593 * FP is extended from fp0-32 to fp0-fp127
594 * CR Fields are extended from CR0-7 to CR0-127
595
596 However due to pressure in `RM.EXTRA` not all these registers
597 are accessible by all instructions, particularly those with
598 a large number of operands (`madd`, `isel`).
599
600 In the following tables register numbers are constructed from the
601 standard v3.0B / v3.1B 32 bit register field (RA, FRA) and the EXTRA2
602 or EXTRA3 field from the SV Prefix, determined by the specific
603 RM-xx-yyyy designation for a given instruction.
604 The prefixing is arranged so that
605 interoperability between prefixing and nonprefixing of scalar registers
606 is direct and convenient (when the EXTRA field is all zeros).
607
608 A pseudocode algorithm explains the relationship, for INT/FP (see [[svp64/appendix]] for CRs)
609
610 ```
611 if extra3_mode:
612 spec = EXTRA3
613 else:
614 spec = EXTRA2 << 1 # same as EXTRA3, shifted
615 if spec[0]: # vector
616 return (RA << 2) | spec[1:2]
617 else: # scalar
618 return (spec[1:2] << 5) | RA
619 ```
620
621 Future versions may extend to 256 by shifting Vector numbering up.
622 Scalar will not be altered.
623
624 Note that in some cases the range of starting points for Vectors
625 is limited.
626
627 ## INT/FP EXTRA3
628
629 If EXTRA3 is zero, maps to
630 "scalar identity" (scalar Power ISA field naming).
631
632 Fields are as follows:
633
634 * Value: R_EXTRA3
635 * Mode: register is tagged as scalar or vector
636 * Range/Inc: the range of registers accessible from this EXTRA
637 encoding, and the "increment" (accessibility). "/4" means
638 that this EXTRA encoding may only give access (starting point)
639 every 4th register.
640 * MSB..LSB: the bit field showing how the register opcode field
641 combines with EXTRA to give (extend) the register number (GPR)
642
643 | Value | Mode | Range/Inc | 6..0 |
644 |-----------|-------|---------------|---------------------|
645 | 000 | Scalar | `r0-r31`/1 | `0b00 RA` |
646 | 001 | Scalar | `r32-r63`/1 | `0b01 RA` |
647 | 010 | Scalar | `r64-r95`/1 | `0b10 RA` |
648 | 011 | Scalar | `r96-r127`/1 | `0b11 RA` |
649 | 100 | Vector | `r0-r124`/4 | `RA 0b00` |
650 | 101 | Vector | `r1-r125`/4 | `RA 0b01` |
651 | 110 | Vector | `r2-r126`/4 | `RA 0b10` |
652 | 111 | Vector | `r3-r127`/4 | `RA 0b11` |
653
654 ## INT/FP EXTRA2
655
656 If EXTRA2 is zero will map to
657 "scalar identity behaviour" i.e Scalar Power ISA register naming:
658
659 | Value | Mode | Range/inc | 6..0 |
660 |-----------|-------|---------------|-----------|
661 | 00 | Scalar | `r0-r31`/1 | `0b00 RA` |
662 | 01 | Scalar | `r32-r63`/1 | `0b01 RA` |
663 | 10 | Vector | `r0-r124`/4 | `RA 0b00` |
664 | 11 | Vector | `r2-r126`/4 | `RA 0b10` |
665
666 **Note that unlike in EXTRA3, in EXTRA2**:
667
668 * the GPR Vectors may only start from
669 `r0, r2, r4, r6, r8` and likewise FPR Vectors.
670 * the GPR Scalars may only go from `r0, r1, r2.. r63` and likewise FPR Scalars.
671
672 as there is insufficient bits to cover the full range.
673
674 ## CR Field EXTRA3
675
676 CR Field encoding is essentially the same but made more complex due to CRs being bit-based. See [[svp64/appendix]] for explanation and pseudocode.
677 Note that Vectors may only start from `CR0, CR4, CR8, CR12, CR16, CR20`...
678 and Scalars may only go from `CR0, CR1, ... CR31`
679
680 Encoding shown MSB down to LSB
681
682 For a 5-bit operand (BA, BB, BT):
683
684 | Value | Mode | Range/Inc | 8..5 | 4..2 | 1..0 |
685 |-------|------|---------------|-----------| --------|---------|
686 | 000 | Scalar | `CR0-CR7`/1 | 0b0000 | BA[4:2] | BA[1:0] |
687 | 001 | Scalar | `CR8-CR15`/1 | 0b0001 | BA[4:2] | BA[1:0] |
688 | 010 | Scalar | `CR16-CR23`/1 | 0b0010 | BA[4:2] | BA[1:0] |
689 | 011 | Scalar | `CR24-CR31`/1 | 0b0011 | BA[4:2] | BA[1:0] |
690 | 100 | Vector | `CR0-CR112`/16 | BA[4:2] 0 | 0b000 | BA[1:0] |
691 | 101 | Vector | `CR4-CR116`/16 | BA[4:2] 0 | 0b100 | BA[1:0] |
692 | 110 | Vector | `CR8-CR120`/16 | BA[4:2] 1 | 0b000 | BA[1:0] |
693 | 111 | Vector | `CR12-CR124`/16 | BA[4:2] 1 | 0b100 | BA[1:0] |
694
695 For a 3-bit operand (e.g. BFA):
696
697 | Value | Mode | Range/Inc | 6..3 | 2..0 |
698 |-------|------|---------------|-----------| --------|
699 | 000 | Scalar | `CR0-CR7`/1 | 0b0000 | BFA |
700 | 001 | Scalar | `CR8-CR15`/1 | 0b0001 | BFA |
701 | 010 | Scalar | `CR16-CR23`/1 | 0b0010 | BFA |
702 | 011 | Scalar | `CR24-CR31`/1 | 0b0011 | BFA |
703 | 100 | Vector | `CR0-CR112`/16 | BFA 0 | 0b000 |
704 | 101 | Vector | `CR4-CR116`/16 | BFA 0 | 0b100 |
705 | 110 | Vector | `CR8-CR120`/16 | BFA 1 | 0b000 |
706 | 111 | Vector | `CR12-CR124`/16 | BFA 1 | 0b100 |
707
708 ## CR EXTRA2
709
710 CR encoding is essentially the same but made more complex due to CRs being bit-based. See separate section for explanation and pseudocode.
711 Note that Vectors may only start from CR0, CR8, CR16, CR24, CR32...
712
713
714 Encoding shown MSB down to LSB
715
716 For a 5-bit operand (BA, BB, BC):
717
718 | Value | Mode | Range/Inc | 8..5 | 4..2 | 1..0 |
719 |-------|--------|----------------|---------|---------|---------|
720 | 00 | Scalar | `CR0-CR7`/1 | 0b0000 | BA[4:2] | BA[1:0] |
721 | 01 | Scalar | `CR8-CR15`/1 | 0b0001 | BA[4:2] | BA[1:0] |
722 | 10 | Vector | `CR0-CR112`/16 | BA[4:2] 0 | 0b000 | BA[1:0] |
723 | 11 | Vector | `CR8-CR120`/16 | BA[4:2] 1 | 0b000 | BA[1:0] |
724
725 For a 3-bit operand (e.g. BFA):
726
727 | Value | Mode | Range/Inc | 6..3 | 2..0 |
728 |-------|------|---------------|-----------| --------|
729 | 00 | Scalar | `CR0-CR7`/1 | 0b0000 | BFA |
730 | 01 | Scalar | `CR8-CR15`/1 | 0b0001 | BFA |
731 | 10 | Vector | `CR0-CR112`/16 | BFA 0 | 0b000 |
732 | 11 | Vector | `CR8-CR120`/16 | BFA 1 | 0b000 |
733
734 # Appendix
735
736 Now at its own page: [[svp64/appendix]]
737