(no commit message)
[libreriscv.git] / resources.mdwn
1 # Resources and Specifications
2
3 This page aims to collect all the resources and specifications we need
4 in one place for quick access. We will try our best to keep links here
5 up-to-date. Feel free to add more links here.
6
7 [[!toc ]]
8
9 # Getting Started
10
11 This section is primarily a series of useful links found online
12
13 * [FSiC2019](https://wiki.f-si.org/index.php/FSiC2019)
14 * Fundamentals to learn to get started [[3d_gpu/tutorial]]
15
16 ## Is Open Source Hardware Profitable?
17 [RaptorCS on FOSS Hardware Interview](https://www.youtube.com/watch?v=o5Ihqg72T3c&feature=youtu.be)
18
19 # OpenPOWER ISA
20
21 * [3.0 PDF](https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0)
22 * [2.07 PDF](https://openpowerfoundation.org/?resource_lib=ibm-power-isa-version-2-07-b)
23
24 ## Overview of the user ISA:
25
26 [Raymond Chen's PowerPC series](https://devblogs.microsoft.com/oldnewthing/20180806-00/?p=99425)
27
28 # RISC-V Instruction Set Architecture
29
30 **PLEASE UPDATE** - we are no longer implementing full RISCV, only user-space
31 RISCV
32
33 The Libre RISC-V Project is building a hybrid CPU/GPU SoC. As the name
34 of the project implies, we will be following the RISC-V ISA I due to it
35 being open-source and also because of the huge software and hardware
36 ecosystem building around it. There are other open-source ISAs but none
37 of them have the same momentum and energy behind it as RISC-V.
38
39 To fully take advantage of the RISC-V ecosystem, it is important to be
40 compliant with the RISC-V standards. Doing so will allow us to to reuse
41 most software as-is and avoid major forks.
42
43 * [Official compiled PDFs of RISC-V ISA Manual]
44 (https://github.com/riscv/riscv-isa-manual/releases/latest)
45 * [Working draft of the proposed RISC-V Bitmanipulation extension](https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-draft.pdf)
46 * [RISC-V "V" Vector Extension](https://riscv.github.io/documents/riscv-v-spec/)
47 * [RISC-V Supervisor Binary Interface Specification](https://github.com/riscv/riscv-sbi-doc/blob/master/riscv-sbi.md)
48
49 Note: As far as I know, we aren't using the RISC-V V Extension directly
50 at the moment. However, there are many wiki pages that make a reference
51 to the V extension so it would be good to include it here as a reference
52 for comparative/informative purposes with regard to Simple-V.
53
54
55 # RTL Arithmetic SQRT, FPU etc.
56
57 ## Sqrt
58 * [Fast Floating Point Square Root](https://pdfs.semanticscholar.org/5060/4e9aff0e37089c4ab9a376c3f35761ffe28b.pdf)
59 * [Reciprocal Square Root Algorithm](http://www.acsel-lab.com/arithmetic/arith15/papers/ARITH15_Takagi.pdf)
60
61 ## CORDIC and related algorithms
62 * [BKM (log(x) and e^x)](https://en.wikipedia.org/wiki/BKM_algorithm)
63 * [CORDIC](http://www.andraka.com/files/crdcsrvy.pdf)
64 - Does not have an easy way of computing tan(x)
65 * [zipcpu CORDIC](https://zipcpu.com/dsp/2017/08/30/cordic.html)
66 * [Low latency and Low error floating point TCORDIC](https://ieeexplore.ieee.org/document/7784797) (email Michael or Cole if you don't have IEEE access)
67
68 ## IEEE Standard for Floating-Point Arithmetic (IEEE 754)
69
70 Almost all modern computers follow the IEEE Floating-Point Standard. Of
71 course, we will follow it as well for interoperability.
72
73 * IEEE 754-2019: <https://standards.ieee.org/standard/754-2019.html>
74
75 Note: Even though this is such an important standard used by everyone,
76 it is unfortunately not freely available and requires a payment to
77 access. However, each of the Libre RISC-V members already have access
78 to the document.
79
80 ## Past FPU Mistakes to learn from
81
82 * [Intel Underestimates Error Bounds by 1.3 quintillion on
83 Random ASCII – tech blog of Bruce Dawson ](https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/)
84 * [Intel overstates FPU accuracy 06/01/2013](http://notabs.org/fpuaccuracy)
85
86 # Khronos Standards
87
88 The Khronos Group creates open standards for authoring and acceleration
89 of graphics, media, and computation. It is a requirement for our hybrid
90 CPU/GPU to be compliant with these standards *as well* as with IEEE754,
91 in order to be commercially-competitive in both areas: especially Vulkan
92 and OpenCL being the most important. SPIR-V is also important for the
93 Kazan driver.
94
95 Thus the [[zfpacc_proposal]] has been created which permits runtime dynamic
96 switching between different accuracy levels, in userspace applications.
97
98 [**SPIR-V Main Page Link**](https://www.khronos.org/registry/spir-v/)
99
100 * [SPIR-V 1.5 Specification Revision 1](https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html)
101 * [SPIR-V OpenCL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.100.html)
102 * [SPIR-V GLSL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/GLSL.std.450.html)
103
104 [**Vulkan Main Page Link**](https://www.khronos.org/registry/vulkan/)
105
106 * [Vulkan 1.1.122](https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/index.html)
107
108 [**OpenCL Main Page**](https://www.khronos.org/registry/OpenCL/)
109
110 * [OpenCL 2.2 API Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html)
111 * [OpenCL 2.2 Extension Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Ext.html)
112 * [OpenCL 2.2 SPIR-V Environment Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Env.html)
113
114 Note: We are implementing hardware accelerated Vulkan and
115 OpenCL while relying on other software projects to translate APIs to
116 Vulkan. E.g. Zink allows for OpenGL-to-Vulkan in software.
117
118 # Graphics and Compute API Stack
119
120 I found this informative post that mentions Kazan and a whole bunch of
121 other stuff. It looks like *many* APIs can be emulated on top of Vulkan,
122 although performance is not evaluated.
123
124 <https://synappsis.wordpress.com/2017/06/03/opengl-over-vulkan-dev/>
125
126 # Various POWER Communities
127 - [An effort to make a 100% Libre POWER Laptop](https://www.powerpc-notebook.org/en/)
128 The T2080 is a POWER8 chip.
129 - [Power Progress Community](https://www.powerprogress.org/campaigns/donations-to-all-the-power-progress-community-projects/)
130 Supporting/Raising awareness of various POWER related open projects on the FOSS
131 community
132 - [OpenPOWER](https://openpowerfoundation.org)
133 Promotes and ensure compliance with the Power ISA amongst members.
134 - [OpenCapi](https://opencapi.org)
135 High performance interconnect for POWER machines. One of the big advantages
136 of the POWER architecture. Notably more performant than PCIE Gen4, and is
137 designed to be layered on top of the physical PCIE link.
138 - [OpenPOWER “Virtual Coffee” Calls](https://openpowerfoundation.org/openpower-virtual-coffee-calls/)
139 Truly open bi-weekly teleconference lines for anybody interested in helping
140 advance or adopting the POWER architecture.
141
142 # Conferences
143
144 ## Free Silicon Conference
145
146 The conference brought together experts and enthusiasts who want to build
147 a complete Free and Open Source CAD ecosystem for designing analog and
148 digital integrated circuits. The conference covered the full spectrum of
149 the design process, from system architecture, to layout and verification.
150
151 * <https://wiki.f-si.org/index.php/FSiC2019#Foundries.2C_PDKs_and_cell_libraries>
152
153 * LIP6's Coriolis - a set of backend design tools:
154 <https://www-soc.lip6.fr/equipe-cian/logiciels/coriolis/>
155
156 Note: The rest of LIP6's website is in French, but there is a UK flag
157 in the corner that gives the English version.
158
159 * KLayout - Layout viewer and editor: <https://www.klayout.de/>
160
161 # The OpenROAD Project
162
163 OpenROAD seeks to develop and foster an autonomous, 24-hour, open-source
164 layout generation flow (RTL-to-GDS).
165
166 * <https://theopenroadproject.org/>
167
168 # Other RISC-V GPU attempts
169
170 * <https://fossi-foundation.org/2019/09/03/gsoc-64b-pointers-in-rv32>
171
172 * <http://bjump.org/manycore/>
173
174 * <https://resharma.github.io/RISCV32-GPU/>
175
176 TODO: Get in touch and discuss collaboration
177
178 # Tests, Benchmarks, Conformance, Compliance, Verification, etc.
179
180 ## RISC-V Tests
181
182 RISC-V Foundation is in the process of creating an official conformance
183 test. It's still in development as far as I can tell.
184
185 * //TODO LINK TO RISC-V CONFORMANCE TEST
186
187 ## IEEE 754 Testing/Emulation
188
189 IEEE 754 has no official tests for floating-point but there are
190 well-known third party tools to check such as John Hauser's TestFloat.
191
192 There is also his SoftFloat library, which is a software emulation library for IEEE 754.
193
194 * <http://www.jhauser.us/arithmetic/>
195
196 Jacob is also working on an IEEE 754 software emulation library written in Rust which also has Python bindings:
197
198 * Source: <https://salsa.debian.org/Kazan-team/simple-soft-float>
199 * Crate: <https://crates.io/crates/simple-soft-float>
200 * Autogenerated Docs: <https://docs.rs/simple-soft-float/>
201
202 A cool paper I came across in my research is "IeeeCC754++ : An Advanced
203 Set of Tools to Check IEEE 754-2008 Conformity" by Dr. Matthias Hüsken.
204
205 * Direct link to PDF:
206 <http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-7505/dc1735.pdf>
207
208 ## Khronos Tests
209
210 OpenCL Conformance Tests
211
212 * <https://github.com/KhronosGroup/OpenCL-CTS>
213
214 Vulkan Conformance Tests
215
216 * <https://github.com/KhronosGroup/VK-GL-CTS>
217
218 MAJOR NOTE: We are **not** allowed to say we are compliant with any of
219 the Khronos standards until we actually make an official submission,
220 do the paperwork, and pay the relevant fees.
221
222 ## Formal Verification
223
224 Formal verification of Libre RISC-V ensures that it is bug-free in
225 regards to what we specify. Of course, it is important to do the formal
226 verification as a final step in the development process before we produce
227 thousands or millions of silicon.
228
229 Some learning resources I found in the community:
230
231 * ZipCPU: <http://zipcpu.com/>
232
233 ZipCPU provides a comprehensive tutorial for beginners and many exercises/quizzes/slides: <http://zipcpu.com/tutorial/>
234
235
236 * Western Digital's SweRV CPU blog (I recommend looking at all their posts): <https://tomverbeure.github.io/>
237
238 <https://tomverbeure.github.io/risc-v/2018/11/19/A-Bug-Free-RISC-V-Core-without-Simulation.html>
239
240 <https://tomverbeure.github.io/rtl/2019/01/04/Under-the-Hood-of-Formal-Verification.html>
241
242 ## Automation
243
244 * <https://www.ohwr.org/project/wishbone-gen>
245
246 # LLVM
247
248 ## Adding new instructions:
249
250 * <https://archive.fosdem.org/2015/schedule/event/llvm_internal_asm/>
251
252 # Branch Prediction
253
254 * <https://danluu.com/branch-prediction/>
255
256
257 # Python RTL Tools
258 * [Migen - a Python RTL](https://jeffrey.co.in/blog/2014/01/d-flip-flop-using-migen/)
259 * [LiTeX](https://github.com/timvideos/litex-buildenv/wiki/LiteX-for-Hardware-Engineers)
260 An SOC builder written in Python Migen DSL. Allows you to generate functional
261 RTL for a SOC configured with cache, a RISCV core, ethernet, DRAM support,
262 and parameterizeable CSRs.
263 * [Migen Tutorial](http://blog.lambdaconcept.com/doku.php?id=migen:tutorial>)
264
265 * There is a great guy, Robert Baruch, who has a good [tutorial](https://github.com/RobertBaruch/nmigen-tutorial) on nMigen. He also build an FPGA-proven Motorola 6800 CPU clone with nMigen and put [the code](https://github.com/RobertBaruch/n6800) and [instructional videos](https://www.youtube.com/playlist?list=PLEeZWGE3PwbbjxV7_XnPSR7ouLR2zjktw) online.
266
267 * [Minerva](https://github.com/lambdaconcept/minerva)
268 An SOC written in Python nMigen DSL
269
270 * [Using our Python Unit Tests(old)](http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-March/000705.html)
271 * <https://chisel.eecs.berkeley.edu/api/latest/chisel3/util/DecoupledIO.html>
272 * <http://www.clifford.at/papers/2016/yosys-synth-formal/slides.pdf>
273
274
275 ## Other
276 * <https://wiki.f-si.org/index.php/FSiC2019>
277
278 # Real/Physical Projects
279 * [Samuel's KC5 code](http://chiselapp.com/user/kc5tja/repository/kestrel-3/dir?ci=6c559135a301f321&name=cores/cpu)
280 * <https://chips4makers.io/blog/>
281 * <https://hackaday.io/project/7817-zynqberry>
282 * <https://github.com/efabless/raven-picorv32>
283 * <https://efabless.com>
284 * <https://efabless.com/design_catalog/default>
285 * <https://wiki.f-si.org/index.php/The_Raven_chip:_First-time_silicon_success_with_qflow_and_efabless>
286 * <https://mshahrad.github.io/openpiton-asplos16.html>
287
288 # Funding
289 * <https://toyota-ai.ventures/>
290 * [NLNet Applications](http://bugs.libre-riscv.org/buglist.cgi?columnlist=assigned_to%2Cbug_status%2Cresolution%2Cshort_desc%2Ccf_budget&f1=cf_nlnet_milestone&o1=equals&query_format=advanced&resolution=---&v1=NLnet.2019.02)
291
292 # Good Programming/Design Practices
293 * [Liskov Substitution Principle](https://en.wikipedia.org/wiki/Liskov_substitution_principle)
294 * [Principle of Least Astonishment](https://en.wikipedia.org/wiki/Principle_of_least_astonishment)
295 * <https://peertube.f-si.org/videos/watch/379ef007-40b7-4a51-ba1a-0db4f48e8b16>
296 * [Rust-Lang Philosophy and Consensus](http://smallcultfollowing.com/babysteps/blog/2019/04/19/aic-adventures-in-consensus/)
297
298
299
300 * <https://youtu.be/o5Ihqg72T3c>
301 * <http://flopoco.gforge.inria.fr/>
302 * Fundamentals of Modern VLSI Devices <https://groups.google.com/a/groups.riscv.org/d/msg/hw-dev/b4pPvlzBzu0/7hDfxArEAgAJ>
303
304 # Broken Links
305 * <http://www.crnhq.org/12-Skills-Summary.aspx?rw=c>
306
307 # Analog Simulation
308
309 * <https://github.com/Isotel/mixedsim>
310 * <http://www.vlsiacademy.org/open-source-cad-tools.html>
311 * <http://ngspice.sourceforge.net/adms.html>
312 * <https://en.wikipedia.org/wiki/Verilog-AMS#Open_Source_Implementations>
313
314 # Libre-RISC-V Standards
315
316 This list auto-generated from a page tag "standards":
317
318 [[!inline pages="tagged(standards)" actions="no" archive="yes" quick="yes"]]
319
320 # Server setup
321
322 [[resources/server-setup/web-server]]
323
324 [[resources/server-setup/git-mirroring]]
325
326 [[resources/server-setup/nagios-monitoring]]
327