(no commit message)
[libreriscv.git] / resources.mdwn
1 # Resources and Specifications
2
3 This page aims to collect all the resources and specifications we need
4 in one place for quick access. We will try our best to keep links here
5 up-to-date. Feel free to add more links here.
6
7 [[!toc ]]
8
9 # Getting Started
10
11 This section is primarily a series of useful links found online
12
13 * [FSiC2019](https://wiki.f-si.org/index.php/FSiC2019)
14 * Fundamentals to learn to get started [[3d_gpu/tutorial]]
15
16 ## Is Open Source Hardware Profitable?
17 [RaptorCS on FOSS Hardware Interview](https://www.youtube.com/watch?v=o5Ihqg72T3c&feature=youtu.be)
18
19 # OpenPOWER ISA
20
21 * [3.0 PDF](https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0)
22 * [2.07 PDF](https://openpowerfoundation.org/?resource_lib=ibm-power-isa-version-2-07-b)
23
24 ## Overview of the user ISA:
25
26 [Raymond Chen's PowerPC series](https://devblogs.microsoft.com/oldnewthing/20180806-00/?p=99425)
27
28 ## OpenPOWER OpenFSI Spec (2016)
29
30 * [OpenPOWER OpenFSI Spec](http://openpowerfoundation.org/wp-content/uploads/resources/OpenFSI-spec-100/OpenFSI-spec-20161212.pdf)
31
32 * [OpenPOWER OpenFSI Compliance Spec](http://openpowerfoundation.org/wp-content/uploads/resources/openpower-fsi-thts-1.0/openpower-fsi-thts-20180130.pdf)
33
34 # Communities
35
36 * <https://www.reddit.com/r/OpenPOWER/>
37 * <http://lists.mailinglist.openpowerfoundation.org/pipermail/openpower-hdl-cores/>
38 * <http://lists.mailinglist.openpowerfoundation.org/pipermail/openpower-community-dev/>
39
40
41 # JTAG
42
43 * [Useful JTAG implementation reference: Design Of IEEE 1149.1 TAP Controller IP Core by Shelja, Nandakumar and Muruganantham, DOI:10.5121/csit.2016.60910](https://web.archive.org/web/20201021174944/https://airccj.org/CSCP/vol6/csit65610.pdf)
44
45 Abstract
46
47 "The objective of this work is to design and implement a TAP controller IP core compatible with IEEE 1149.1-2013 revision of the standard. The test logic architecture also includes the Test Mode Persistence controller and its associated logic. This work is expected to serve as a ready to use module that can be directly inserted in to a new digital IC designs with little modifications."
48
49 # Radix MMU
50 - [Qemu emulation](https://github.com/qemu/qemu/commit/d5fee0bbe68d5e61e2d2beb5ff6de0b9c1cfd182)
51
52 # D-Cache
53
54 ## D-Cache Possible Optimizations papers and links
55 - [ACDC: Small, Predictable and High-Performance Data Cache](https://dl.acm.org/doi/10.1145/2677093)
56
57 # BW Enhancing Shared L1 Cache Design research done in cooperation with AMD
58 - [Youtube video PACT 2020 - Analyzing and Leveraging Shared L1 Caches in GPUs](https://m.youtube.com/watch?v=CGIhOnt7F6s)
59 - [Url to PDF of paper on author's website (clicking will download the pdf)](https://adwaitjog.github.io/docs/pdf/sharedl1-pact20.pdf)
60
61
62 # RTL Arithmetic SQRT, FPU etc.
63
64 ## Wallace vs Dadda Multipliers
65
66 * [Paper comparing efficiency of Wallace and Dadda Multipliers in RTL implementations (clicking will download the pdf from archive.org)](https://web.archive.org/web/20180717013227/http://ieeemilestones.ethw.org/images/d/db/A_comparison_of_Dadda_and_Wallace_multiplier_delays.pdf)
67
68 ## Sqrt
69 * [Fast Floating Point Square Root](https://pdfs.semanticscholar.org/5060/4e9aff0e37089c4ab9a376c3f35761ffe28b.pdf)
70 * [Reciprocal Square Root Algorithm](http://www.acsel-lab.com/arithmetic/arith15/papers/ARITH15_Takagi.pdf)
71 * [Fast Calculation of Cube and Inverse Cube Roots Using a Magic Constant and Its Implementation on Microcontrollers (clicking will download the pdf)](https://res.mdpi.com/d_attachment/energies/energies-14-01058/article_deploy/energies-14-01058-v2.pdf)
72 * [Modified Fast Inverse Square Root and Square Root Approximation Algorithms: The Method of Switching Magic Constants (clicking will download the pdf)](https://res.mdpi.com/d_attachment/computation/computation-09-00021/article_deploy/computation-09-00021-v3.pdf)
73
74
75 ## CORDIC and related algorithms
76
77 * <https://bugs.libre-soc.org/show_bug.cgi?id=127> research into CORDIC
78 * <https://bugs.libre-soc.org/show_bug.cgi?id=208>
79 * [BKM (log(x) and e^x)](https://en.wikipedia.org/wiki/BKM_algorithm)
80 * [CORDIC](http://www.andraka.com/files/crdcsrvy.pdf)
81 - Does not have an easy way of computing tan(x)
82 * [zipcpu CORDIC](https://zipcpu.com/dsp/2017/08/30/cordic.html)
83 * [Low latency and Low error floating point TCORDIC](https://ieeexplore.ieee.org/document/7784797) (email Michael or Cole if you don't have IEEE access)
84 * <http://www.myhdl.org/docs/examples/sinecomp/> MyHDL version of CORDIC
85 * <https://dspguru.com/dsp/faqs/cordic/>
86
87 ## IEEE Standard for Floating-Point Arithmetic (IEEE 754)
88
89 Almost all modern computers follow the IEEE Floating-Point Standard. Of
90 course, we will follow it as well for interoperability.
91
92 * IEEE 754-2019: <https://standards.ieee.org/standard/754-2019.html>
93
94 Note: Even though this is such an important standard used by everyone,
95 it is unfortunately not freely available and requires a payment to
96 access. However, each of the Libre-SOC members already have access
97 to the document.
98
99 * [Lecture notes - Floating Point Appreciation](http://pages.cs.wisc.edu/~markhill/cs354/Fall2008/notes/flpt.apprec.html)
100
101 Among other things, has a nice explanation on arithmetic, rounding modes and the sticky bit.
102
103 * [What Every Computer Scientist Should Know About Floating-Point Arithmetic](https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html)
104
105 Nice resource on rounding errors (ulps and epsilon) and the "table maker's dilemma".
106
107 ## Past FPU Mistakes to learn from
108
109 * [Intel Underestimates Error Bounds by 1.3 quintillion on
110 Random ASCII – tech blog of Bruce Dawson ](https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/)
111 * [Intel overstates FPU accuracy 06/01/2013](http://notabs.org/fpuaccuracy)
112 * How not to design an ISA
113 <https://player.vimeo.com/video/450406346>
114 Meester Forsyth <http://eelpi.gotdns.org/>
115
116 # Khronos Standards
117
118 The Khronos Group creates open standards for authoring and acceleration
119 of graphics, media, and computation. It is a requirement for our hybrid
120 CPU/GPU to be compliant with these standards *as well* as with IEEE754,
121 in order to be commercially-competitive in both areas: especially Vulkan
122 and OpenCL being the most important. SPIR-V is also important for the
123 Kazan driver.
124
125 Thus the [[zfpacc_proposal]] has been created which permits runtime dynamic
126 switching between different accuracy levels, in userspace applications.
127
128 [**SPIR-V Main Page Link**](https://www.khronos.org/registry/spir-v/)
129
130 * [SPIR-V 1.5 Specification Revision 1](https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html)
131 * [SPIR-V OpenCL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.100.html)
132 * [SPIR-V GLSL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/GLSL.std.450.html)
133
134 [**Vulkan Main Page Link**](https://www.khronos.org/registry/vulkan/)
135
136 * [Vulkan 1.1.122](https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/index.html)
137
138 [**OpenCL Main Page**](https://www.khronos.org/registry/OpenCL/)
139
140 * [OpenCL 2.2 API Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html)
141 * [OpenCL 2.2 Extension Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Ext.html)
142 * [OpenCL 2.2 SPIR-V Environment Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Env.html)
143
144 * OpenCL released the proposed OpenCL 3.0 spec for comments in april 2020
145
146 * [Announcement video](https://youtu.be/h0_syTg6TtY)
147 * [Announcement video slides (PDF)](https://www.khronos.org/assets/uploads/apis/OpenCL-3.0-Launch-Apr20.pdf)
148
149 Note: We are implementing hardware accelerated Vulkan and
150 OpenCL while relying on other software projects to translate APIs to
151 Vulkan. E.g. Zink allows for OpenGL-to-Vulkan in software.
152
153 # Open Source (CC BY + MIT) DirectX specs (by Microsoft, but not official specs)
154
155 https://github.com/Microsoft/DirectX-Specs
156
157 # Graphics and Compute API Stack
158
159 I found this informative post that mentions Kazan and a whole bunch of
160 other stuff. It looks like *many* APIs can be emulated on top of Vulkan,
161 although performance is not evaluated.
162
163 <https://synappsis.wordpress.com/2017/06/03/opengl-over-vulkan-dev/>
164
165 * Pixilica is heading up an initiative to create a RISC-V graphical ISA
166
167 * [Pixilica 3D Graphical ISA Slides](https://b5792ddd-543e-4dd4-9b97-fe259caf375d.filesusr.com/ugd/841f2a_c8685ced353b4c3ea20dbb993c4d4d18.pdf)
168
169 # 3D Graphics Texture compression software and hardware
170
171 * [Proprietary Rad Game Tools Oddle Texture Software Compression](https://web.archive.org/web/20200913122043/http://www.radgametools.com/oodle.htm)
172
173 * [Blog post by one of the engineers who developed the proprietary Rad Game Tools Oddle Texture Software Compression and the Oodle Kraken decompression software and hardware decoder used in the ps5 ssd](https://archive.vn/oz0pG)
174
175 # Various POWER Communities
176 - [An effort to make a 100% Libre POWER Laptop](https://www.powerpc-notebook.org/en/)
177 The T2080 is a POWER8 chip.
178 - [Power Progress Community](https://www.powerprogress.org/campaigns/donations-to-all-the-power-progress-community-projects/)
179 Supporting/Raising awareness of various POWER related open projects on the FOSS
180 community
181 - [OpenPOWER](https://openpowerfoundation.org)
182 Promotes and ensure compliance with the Power ISA amongst members.
183 - [OpenCapi](https://opencapi.org)
184 High performance interconnect for POWER machines. One of the big advantages
185 of the POWER architecture. Notably more performant than PCIE Gen4, and is
186 designed to be layered on top of the physical PCIE link.
187 - [OpenPOWER “Virtual Coffee” Calls](https://openpowerfoundation.org/openpower-virtual-coffee-calls/)
188 Truly open bi-weekly teleconference lines for anybody interested in helping
189 advance or adopting the POWER architecture.
190
191 # Conferences
192
193 see [[conferences]]
194
195
196 # Coriolis2
197
198 * LIP6's Coriolis - a set of backend design tools:
199 <https://www-soc.lip6.fr/equipe-cian/logiciels/coriolis/>
200
201 Note: The rest of LIP6's website is in French, but there is a UK flag
202 in the corner that gives the English version.
203
204 # Klayout
205
206 * KLayout - Layout viewer and editor: <https://www.klayout.de/>
207
208 # image to GDS-II
209
210 * https://nazca-design.org/convert-image-to-gds/
211
212 # The OpenROAD Project
213
214 OpenROAD seeks to develop and foster an autonomous, 24-hour, open-source
215 layout generation flow (RTL-to-GDS).
216
217 * <https://theopenroadproject.org/>
218
219 # Other RISC-V GPU attempts
220
221 * <https://fossi-foundation.org/2019/09/03/gsoc-64b-pointers-in-rv32>
222
223 * <http://bjump.org/manycore/>
224
225 * <https://resharma.github.io/RISCV32-GPU/>
226
227 TODO: Get in touch and discuss collaboration
228
229 # Tests, Benchmarks, Conformance, Compliance, Verification, etc.
230
231 ## RISC-V Tests
232
233 RISC-V Foundation is in the process of creating an official conformance
234 test. It's still in development as far as I can tell.
235
236 * //TODO LINK TO RISC-V CONFORMANCE TEST
237
238 ## IEEE 754 Testing/Emulation
239
240 IEEE 754 has no official tests for floating-point but there are
241 well-known third party tools to check such as John Hauser's TestFloat.
242
243 There is also his SoftFloat library, which is a software emulation
244 library for IEEE 754.
245
246 * <http://www.jhauser.us/arithmetic/>
247
248 Jacob is also working on an IEEE 754 software emulation library written
249 in Rust which also has Python bindings:
250
251 * Source: <https://salsa.debian.org/Kazan-team/simple-soft-float>
252 * Crate: <https://crates.io/crates/simple-soft-float>
253 * Autogenerated Docs: <https://docs.rs/simple-soft-float/>
254
255 A cool paper I came across in my research is "IeeeCC754++ : An Advanced
256 Set of Tools to Check IEEE 754-2008 Conformity" by Dr. Matthias Hüsken.
257
258 * Direct link to PDF:
259 <http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-7505/dc1735.pdf>
260
261 ## Khronos Tests
262
263 OpenCL Conformance Tests
264
265 * <https://github.com/KhronosGroup/OpenCL-CTS>
266
267 Vulkan Conformance Tests
268
269 * <https://github.com/KhronosGroup/VK-GL-CTS>
270
271 MAJOR NOTE: We are **not** allowed to say we are compliant with any of
272 the Khronos standards until we actually make an official submission,
273 do the paperwork, and pay the relevant fees.
274
275 ## Formal Verification
276
277 Formal verification of Libre RISC-V ensures that it is bug-free in
278 regards to what we specify. Of course, it is important to do the formal
279 verification as a final step in the development process before we produce
280 thousands or millions of silicon.
281
282 * Possible way to speed up our solvers for our formal proofs <https://web.archive.org/web/20201029205507/https://github.com/eth-sri/fastsmt>
283
284 * Algorithms (papers) submitted for 2018 International SAT Competition <https://web.archive.org/web/20201029205239/https://helda.helsinki.fi/bitstream/handle/10138/237063/sc2018_proceedings.pdf> <https://web.archive.org/web/20201029205637/http://www.satcompetition.org/>
285
286 Some learning resources I found in the community:
287
288 * ZipCPU: <http://zipcpu.com/> ZipCPU provides a comprehensive
289 tutorial for beginners and many exercises/quizzes/slides:
290 <http://zipcpu.com/tutorial/>
291 * Western Digital's SweRV CPU blog (I recommend looking at all their
292 posts): <https://tomverbeure.github.io/>
293 * <https://tomverbeure.github.io/risc-v/2018/11/19/A-Bug-Free-RISC-V-Core-without-Simulation.html>
294 * <https://tomverbeure.github.io/rtl/2019/01/04/Under-the-Hood-of-Formal-Verification.html>
295
296 ## Automation
297
298 * <https://www.ohwr.org/project/wishbone-gen>
299
300 # LLVM
301
302 ## Adding new instructions:
303
304 * <https://archive.fosdem.org/2015/schedule/event/llvm_internal_asm/>
305
306 # Branch Prediction
307
308 * <https://danluu.com/branch-prediction/>
309
310 # Python RTL Tools
311
312 * [Migen - a Python RTL](https://jeffrey.co.in/blog/2014/01/d-flip-flop-using-migen/)
313 * [LiTeX](https://github.com/timvideos/litex-buildenv/wiki/LiteX-for-Hardware-Engineers)
314 An SOC builder written in Python Migen DSL. Allows you to generate functional
315 RTL for a SOC configured with cache, a RISCV core, ethernet, DRAM support,
316 and parameterizeable CSRs.
317 * [Migen Tutorial](http://blog.lambdaconcept.com/doku.php?id=migen:tutorial>)
318 * There is a great guy, Robert Baruch, who has a good
319 [tutorial](https://github.com/RobertBaruch/nmigen-tutorial) on nMigen.
320 He also build an FPGA-proven Motorola 6800 CPU clone with nMigen and put
321 [the code](https://github.com/RobertBaruch/n6800) and
322 [instructional videos](https://www.youtube.com/playlist?list=PLEeZWGE3PwbbjxV7_XnPSR7ouLR2zjktw)
323 online.
324 * [Minerva](https://github.com/lambdaconcept/minerva)
325 An SOC written in Python nMigen DSL
326 * Minerva example using nmigen-soc
327 <https://github.com/jfng/minerva-examples/blob/master/hello/core.py>
328 * [Using our Python Unit Tests(old)](http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-March/000705.html)
329 * <https://chisel.eecs.berkeley.edu/api/latest/chisel3/util/DecoupledIO.html>
330 * <http://www.clifford.at/papers/2016/yosys-synth-formal/slides.pdf>
331
332 # Other
333
334 * <https://debugger.medium.com/why-is-apples-m1-chip-so-fast-3262b158cba2> N1
335 * <https://codeberg.org/tok/librecell> Libre Cell Library
336 * <https://wiki.f-si.org/index.php/FSiC2019>
337 * <https://fusesoc.net>
338 * <https://www.lowrisc.org/open-silicon/>
339 * <http://fpgacpu.ca/fpga/Pipeline_Skid_Buffer.html> pipeline skid buffer
340 * <https://pyvcd.readthedocs.io/en/latest/vcd.gtkw.html> GTKwave
341 * <http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_Resets.pdf>
342 Synchronous Resets? Asynchronous Resets? I am so confused! How will I
343 ever know which to use? by Clifford E. Cummings
344 * <http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf>
345 Clock Domain Crossing (CDC) Design & Verification Techniques Using
346 SystemVerilog, by Clifford E. Cummings
347 In particular, see section 5.8.2: Multi-bit CDC signal passing using
348 1-deep / 2-register FIFO synchronizer.
349 * <http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.pdf>
350 Understanding Latency Hiding on GPUs, by Vasily Volkov
351 * Efabless "Openlane" <https://github.com/efabless/openlane>
352 * example of openlane with nmigen
353 <https://gist.github.com/lethalbit/e65e296bc6a3810280d1b256c9df591b>
354 * Co-simulation plugin for verilator, transferring to ECP5
355 <https://github.com/vmware/cascade>
356 * Multi-read/write ported memories
357 <https://tomverbeure.github.io/2019/08/03/Multiport-Memories.html>
358 * Data-dependent fail-on-first aka "Fault-tolerant speculative vectorisation"
359 <https://arxiv.org/pdf/1803.06185.pdf>
360 * OpenPOWER Foundation Membership
361 <https://openpowerfoundation.org/membership/how-to-join/membership-kit-9-27-16-4/>
362 * Clock switching (and formal verification)
363 <https://zipcpu.com/formal/2018/05/31/clkswitch.html>
364 * Circuit of Compunit <http://home.macintosh.garden/~mepy2/libre-soc/comp_unit_req_rel.html>
365 * Circuitverse 16-bit <https://circuitverse.org/users/17603/projects/54486>
366 * Nice example model of a Tomasulo-based architecture, with multi-issue, in-order issue, out-of-order execution, in-order commit, with reservation stations and reorder buffers, and hazard avoidance.
367 <https://www.brown.edu/Departments/Engineering/Courses/En164/Tomasulo_10.pdf>
368 # Real/Physical Projects
369
370 * [Samuel's KC5 code](http://chiselapp.com/user/kc5tja/repository/kestrel-3/dir?ci=6c559135a301f321&name=cores/cpu)
371 * <https://chips4makers.io/blog/>
372 * <https://hackaday.io/project/7817-zynqberry>
373 * <https://github.com/efabless/raven-picorv32>
374 * <https://efabless.com>
375 * <https://efabless.com/design_catalog/default>
376 * <https://wiki.f-si.org/index.php/The_Raven_chip:_First-time_silicon_success_with_qflow_and_efabless>
377 * <https://mshahrad.github.io/openpiton-asplos16.html>
378
379 # ASIC tape-out pricing
380
381 * <https://europractice-ic.com/wp-content/uploads/2020/05/General-MPW-EUROPRACTICE-200505-v8.pdf>
382
383 # Funding
384
385 * <https://toyota-ai.ventures/>
386 * [NLNet Applications](http://bugs.libre-riscv.org/buglist.cgi?columnlist=assigned_to%2Cbug_status%2Cresolution%2Cshort_desc%2Ccf_budget&f1=cf_nlnet_milestone&o1=equals&query_format=advanced&resolution=---&v1=NLnet.2019.02)
387
388 # Good Programming/Design Practices
389
390 * [Liskov Substitution Principle](https://en.wikipedia.org/wiki/Liskov_substitution_principle)
391 * [Principle of Least Astonishment](https://en.wikipedia.org/wiki/Principle_of_least_astonishment)
392 * <https://peertube.f-si.org/videos/watch/379ef007-40b7-4a51-ba1a-0db4f48e8b16>
393 * [Rust-Lang Philosophy and Consensus](http://smallcultfollowing.com/babysteps/blog/2019/04/19/aic-adventures-in-consensus/)
394
395 * <https://youtu.be/o5Ihqg72T3c>
396 * <http://flopoco.gforge.inria.fr/>
397 * Fundamentals of Modern VLSI Devices
398 <https://groups.google.com/a/groups.riscv.org/d/msg/hw-dev/b4pPvlzBzu0/7hDfxArEAgAJ>
399
400 # 12 skills summary
401
402 * <https://www.crnhq.org/cr-kit/>
403
404 # Analog Simulation
405
406 * <https://github.com/Isotel/mixedsim>
407 * <http://www.vlsiacademy.org/open-source-cad-tools.html>
408 * <http://ngspice.sourceforge.net/adms.html>
409 * <https://en.wikipedia.org/wiki/Verilog-AMS#Open_Source_Implementations>
410
411 # Libre-SOC Standards
412
413 This list auto-generated from a page tag "standards":
414
415 [[!inline pages="tagged(standards)" actions="no" archive="yes" quick="yes"]]
416
417 # Server setup
418
419 * [[resources/server-setup/web-server]]
420 * [[resources/server-setup/git-mirroring]]
421 * [[resources/server-setup/nagios-monitoring]]
422
423 # Testbeds
424
425 * <https://www.fed4fire.eu/testbeds/>
426
427 # Really Useful Stuff
428
429 * <https://github.com/im-tomu/fomu-workshop/blob/master/docs/requirements.txt>
430 * <https://github.com/im-tomu/fomu-workshop/blob/master/docs/conf.py#L39-L47>
431
432 # Digilent Arty
433
434 * https://store.digilentinc.com/pmod-sf3-32-mb-serial-nor-flash/
435 * https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
436 * https://store.digilentinc.com/pmod-vga-video-graphics-array/
437 * https://store.digilentinc.com/pmod-microsd-microsd-card-slot/
438 * https://store.digilentinc.com/pmod-rtcc-real-time-clock-calendar/
439 * https://store.digilentinc.com/pmod-i2s2-stereo-audio-input-and-output/
440
441 # CircuitJS experiments
442
443 * [[resources/high-speed-serdes-in-circuitjs]]
444
445 # Logic Simulator 2
446 * <https://github.com/dkilfoyle/logic2>
447 [Live web version](https://dkilfoyle.github.io/logic2/)
448
449 > ## Features
450 > 1. Micro-subset verilog-like DSL for coding the array of logic gates (parsed using Antlr)
451 > 2. Monaco-based code editor with automatic linting/error reporting, smart indentation, code folding, hints
452 > 3. IDE docking ui courtesy of JupyterLab's Lumino widgets
453 > 4. Schematic visualisation courtesy of d3-hwschematic
454 > 5. Testbench simulation with graphical trace output and schematic animation
455 > 6. Circuit description as gates, boolean logic or verilog behavioural model
456 > 7. Generate arbitrary outputs from truth table and Sum of Products or Karnaugh Map
457
458 [from the GitHub page. As of 2021/03/29]
459
460 # ASIC Timing and Design flow resources
461
462 * <https://www.linkedin.com/pulse/asic-design-flow-introduction-timing-constraints-mahmoud-abdellatif/>
463 * <https://www.icdesigntips.com/2020/10/setup-and-hold-time-explained.html>
464 * <https://www.vlsiguide.com/2018/07/clock-tree-synthesis-cts.html>
465 * <https://en.wikipedia.org/wiki/Frequency_divider>
466
467 # Geometric Haskell Library
468
469 * <https://github.com/julialongtin/hslice/blob/master/Graphics/Slicer/Math/GeometricAlgebra.hs>
470 * <https://github.com/julialongtin/hslice/blob/master/Graphics/Slicer/Math/PGA.hs>
471 * <https://arxiv.org/pdf/1501.06511.pdf>
472 * <https://bivector.net/index.html>
473
474 # TODO investigate
475
476 ```
477 https://github.com/idea-fasoc/OpenFASOC
478 https://www.quicklogic.com/2020/06/18/the-tipping-point/
479 https://www.quicklogic.com/blog/
480 https://www.quicklogic.com/2020/09/15/why-open-source-ecosystems-make-good-business-sense/
481 https://www.quicklogic.com/qorc/
482 https://en.wikipedia.org/wiki/RAD750
483 The RAD750 system has a price that is comparable to the RAD6000, the latter of which as of 2002 was listed at US$200,000 (equivalent to $284,292 in 2019).
484 https://theamphour.com/525-open-fpga-toolchains-and-machine-learning-with-brian-faith-of-quicklogic/
485 https://github.blog/2021-03-22-open-innovation-winning-strategy-digital-sovereignty-human-progress/
486 https://github.com/olofk/edalize
487 https://github.com/hdl/containers
488 https://twitter.com/OlofKindgren/status/1374848733746192394
489 You might also want to check out https://umarcor.github.io/osvb/index.html
490 https://www.linkedin.com/pulse/1932021-python-now-replaces-tcl-all-besteda-apis-avidan-efody/
491 “TCL has served us well, over the years, allowing us to provide an API, and at the same time ensure nobody will ever use it. I will miss it”.
492 https://sphinxcontrib-hdl-diagrams.readthedocs.io/en/latest/examples/comb-full-adder.html
493 https://sphinxcontrib-hdl-diagrams.readthedocs.io/en/latest/examples/carry4.html
494 FuseSoC is used by MicroWatt and Western Digital cores
495 OpenTitan also uses FuseSoC
496 LowRISC is UK based
497 https://antmicro.com/blog/2020/12/ibex-support-in-verilator-yosys-via-uhdm-surelog/
498 ```