ca567dbe4e64a1d1291c34b58a1e66c3e6eb6dfa
[riscv-isa-sim.git] / riscv / gdbserver.cc
1 #include <arpa/inet.h>
2 #include <errno.h>
3 #include <fcntl.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <sys/socket.h>
7 #include <sys/types.h>
8 #include <unistd.h>
9
10 #include <algorithm>
11 #include <cassert>
12 #include <cinttypes>
13 #include <cstdio>
14 #include <vector>
15
16 #include "disasm.h"
17 #include "sim.h"
18 #include "gdbserver.h"
19 #include "mmu.h"
20
21 #define C_EBREAK 0x9002
22 #define EBREAK 0x00100073
23
24 //////////////////////////////////////// Utility Functions
25
26 #undef DEBUG
27 #ifdef DEBUG
28 # define D(x) x
29 #else
30 # define D(x)
31 #endif // DEBUG
32
33 void die(const char* msg)
34 {
35 fprintf(stderr, "gdbserver code died: %s\n", msg);
36 abort();
37 }
38
39 // gdb's register list is defined in riscv_gdb_reg_names gdb/riscv-tdep.c in
40 // its source tree. We must interpret the numbers the same here.
41 enum {
42 REG_XPR0 = 0,
43 REG_XPR31 = 31,
44 REG_PC = 32,
45 REG_FPR0 = 33,
46 REG_FPR31 = 64,
47 REG_CSR0 = 65,
48 REG_CSR4095 = 4160,
49 REG_PRIV = 4161
50 };
51
52 //////////////////////////////////////// Functions to generate RISC-V opcodes.
53
54 // TODO: Does this already exist somewhere?
55
56 #define ZERO 0
57 // Using regnames.cc as source. The RVG Calling Convention of the 2.0 RISC-V
58 // spec says it should be 2 and 3.
59 #define S0 8
60 #define S1 9
61 static uint32_t bits(uint32_t value, unsigned int hi, unsigned int lo) {
62 return (value >> lo) & ((1 << (hi+1-lo)) - 1);
63 }
64
65 static uint32_t bit(uint32_t value, unsigned int b) {
66 return (value >> b) & 1;
67 }
68
69 static uint32_t jal(unsigned int rd, uint32_t imm) {
70 return (bit(imm, 20) << 31) |
71 (bits(imm, 10, 1) << 21) |
72 (bit(imm, 11) << 20) |
73 (bits(imm, 19, 12) << 12) |
74 (rd << 7) |
75 MATCH_JAL;
76 }
77
78 static uint32_t csrsi(unsigned int csr, uint16_t imm) {
79 return (csr << 20) |
80 (bits(imm, 4, 0) << 15) |
81 MATCH_CSRRSI;
82 }
83
84 static uint32_t csrci(unsigned int csr, uint16_t imm) {
85 return (csr << 20) |
86 (bits(imm, 4, 0) << 15) |
87 MATCH_CSRRCI;
88 }
89
90 static uint32_t csrr(unsigned int rd, unsigned int csr) {
91 return (csr << 20) | (rd << 7) | MATCH_CSRRS;
92 }
93
94 static uint32_t csrw(unsigned int source, unsigned int csr) {
95 return (csr << 20) | (source << 15) | MATCH_CSRRW;
96 }
97
98 static uint32_t fence_i()
99 {
100 return MATCH_FENCE_I;
101 }
102
103 static uint32_t sb(unsigned int src, unsigned int base, uint16_t offset)
104 {
105 return (bits(offset, 11, 5) << 25) |
106 (src << 20) |
107 (base << 15) |
108 (bits(offset, 4, 0) << 7) |
109 MATCH_SB;
110 }
111
112 static uint32_t sh(unsigned int src, unsigned int base, uint16_t offset)
113 {
114 return (bits(offset, 11, 5) << 25) |
115 (src << 20) |
116 (base << 15) |
117 (bits(offset, 4, 0) << 7) |
118 MATCH_SH;
119 }
120
121 static uint32_t sw(unsigned int src, unsigned int base, uint16_t offset)
122 {
123 return (bits(offset, 11, 5) << 25) |
124 (src << 20) |
125 (base << 15) |
126 (bits(offset, 4, 0) << 7) |
127 MATCH_SW;
128 }
129
130 static uint32_t sd(unsigned int src, unsigned int base, uint16_t offset)
131 {
132 return (bits(offset, 11, 5) << 25) |
133 (bits(src, 4, 0) << 20) |
134 (base << 15) |
135 (bits(offset, 4, 0) << 7) |
136 MATCH_SD;
137 }
138
139 static uint32_t sq(unsigned int src, unsigned int base, uint16_t offset)
140 {
141 #if 0
142 return (bits(offset, 11, 5) << 25) |
143 (bits(src, 4, 0) << 20) |
144 (base << 15) |
145 (bits(offset, 4, 0) << 7) |
146 MATCH_SQ;
147 #else
148 abort();
149 #endif
150 }
151
152 static uint32_t lq(unsigned int rd, unsigned int base, uint16_t offset)
153 {
154 #if 0
155 return (bits(offset, 11, 0) << 20) |
156 (base << 15) |
157 (bits(rd, 4, 0) << 7) |
158 MATCH_LQ;
159 #else
160 abort();
161 #endif
162 }
163
164 static uint32_t ld(unsigned int rd, unsigned int base, uint16_t offset)
165 {
166 return (bits(offset, 11, 0) << 20) |
167 (base << 15) |
168 (bits(rd, 4, 0) << 7) |
169 MATCH_LD;
170 }
171
172 static uint32_t lw(unsigned int rd, unsigned int base, uint16_t offset)
173 {
174 return (bits(offset, 11, 0) << 20) |
175 (base << 15) |
176 (bits(rd, 4, 0) << 7) |
177 MATCH_LW;
178 }
179
180 static uint32_t lh(unsigned int rd, unsigned int base, uint16_t offset)
181 {
182 return (bits(offset, 11, 0) << 20) |
183 (base << 15) |
184 (bits(rd, 4, 0) << 7) |
185 MATCH_LH;
186 }
187
188 static uint32_t lb(unsigned int rd, unsigned int base, uint16_t offset)
189 {
190 return (bits(offset, 11, 0) << 20) |
191 (base << 15) |
192 (bits(rd, 4, 0) << 7) |
193 MATCH_LB;
194 }
195
196 static uint32_t fsw(unsigned int src, unsigned int base, uint16_t offset)
197 {
198 return (bits(offset, 11, 5) << 25) |
199 (bits(src, 4, 0) << 20) |
200 (base << 15) |
201 (bits(offset, 4, 0) << 7) |
202 MATCH_FSW;
203 }
204
205 static uint32_t fsd(unsigned int src, unsigned int base, uint16_t offset)
206 {
207 return (bits(offset, 11, 5) << 25) |
208 (bits(src, 4, 0) << 20) |
209 (base << 15) |
210 (bits(offset, 4, 0) << 7) |
211 MATCH_FSD;
212 }
213
214 static uint32_t flw(unsigned int src, unsigned int base, uint16_t offset)
215 {
216 return (bits(offset, 11, 5) << 25) |
217 (bits(src, 4, 0) << 20) |
218 (base << 15) |
219 (bits(offset, 4, 0) << 7) |
220 MATCH_FLW;
221 }
222
223 static uint32_t fld(unsigned int src, unsigned int base, uint16_t offset)
224 {
225 return (bits(offset, 11, 5) << 25) |
226 (bits(src, 4, 0) << 20) |
227 (base << 15) |
228 (bits(offset, 4, 0) << 7) |
229 MATCH_FLD;
230 }
231
232 static uint32_t addi(unsigned int dest, unsigned int src, uint16_t imm)
233 {
234 return (bits(imm, 11, 0) << 20) |
235 (src << 15) |
236 (dest << 7) |
237 MATCH_ADDI;
238 }
239
240 static uint32_t ori(unsigned int dest, unsigned int src, uint16_t imm)
241 {
242 return (bits(imm, 11, 0) << 20) |
243 (src << 15) |
244 (dest << 7) |
245 MATCH_ORI;
246 }
247
248 static uint32_t xori(unsigned int dest, unsigned int src, uint16_t imm)
249 {
250 return (bits(imm, 11, 0) << 20) |
251 (src << 15) |
252 (dest << 7) |
253 MATCH_XORI;
254 }
255
256 static uint32_t srli(unsigned int dest, unsigned int src, uint8_t shamt)
257 {
258 return (bits(shamt, 4, 0) << 20) |
259 (src << 15) |
260 (dest << 7) |
261 MATCH_SRLI;
262 }
263
264
265 static uint32_t nop()
266 {
267 return addi(0, 0, 0);
268 }
269
270 template <typename T>
271 unsigned int circular_buffer_t<T>::size() const
272 {
273 if (end >= start)
274 return end - start;
275 else
276 return end + capacity - start;
277 }
278
279 template <typename T>
280 void circular_buffer_t<T>::consume(unsigned int bytes)
281 {
282 start = (start + bytes) % capacity;
283 }
284
285 template <typename T>
286 unsigned int circular_buffer_t<T>::contiguous_empty_size() const
287 {
288 if (end >= start)
289 if (start == 0)
290 return capacity - end - 1;
291 else
292 return capacity - end;
293 else
294 return start - end - 1;
295 }
296
297 template <typename T>
298 unsigned int circular_buffer_t<T>::contiguous_data_size() const
299 {
300 if (end >= start)
301 return end - start;
302 else
303 return capacity - start;
304 }
305
306 template <typename T>
307 void circular_buffer_t<T>::data_added(unsigned int bytes)
308 {
309 end += bytes;
310 assert(end <= capacity);
311 if (end == capacity)
312 end = 0;
313 }
314
315 template <typename T>
316 void circular_buffer_t<T>::reset()
317 {
318 start = 0;
319 end = 0;
320 }
321
322 template <typename T>
323 void circular_buffer_t<T>::append(const T *src, unsigned int count)
324 {
325 unsigned int copy = std::min(count, contiguous_empty_size());
326 memcpy(contiguous_empty(), src, copy * sizeof(T));
327 data_added(copy);
328 count -= copy;
329 if (count > 0) {
330 assert(count < contiguous_empty_size());
331 memcpy(contiguous_empty(), src, count * sizeof(T));
332 data_added(count);
333 }
334 }
335
336 ////////////////////////////// Debug Operations
337
338 class halt_op_t : public operation_t
339 {
340 public:
341 halt_op_t(gdbserver_t& gdbserver, bool send_status=false) :
342 operation_t(gdbserver), send_status(send_status),
343 state(ST_ENTER) {};
344
345 void write_dpc_program() {
346 gs.dr_write32(0, csrsi(CSR_DCSR, DCSR_HALT));
347 gs.dr_write32(1, csrr(S0, CSR_DPC));
348 gs.dr_write_store(2, S0, SLOT_DATA0);
349 gs.dr_write_jump(3);
350 gs.set_interrupt(0);
351 }
352
353 bool perform_step(unsigned int step) {
354 switch (state) {
355 gs.tselect_valid = false;
356 case ST_ENTER:
357 if (gs.xlen == 0) {
358 gs.dr_write32(0, xori(S1, ZERO, -1));
359 gs.dr_write32(1, srli(S1, S1, 31));
360 // 0x00000001 0x00000001:ffffffff 0x00000001:ffffffff:ffffffff:ffffffff
361 gs.dr_write32(2, sw(S1, ZERO, DEBUG_RAM_START));
362 gs.dr_write32(3, srli(S1, S1, 31));
363 // 0x00000000 0x00000000:00000003 0x00000000:00000003:ffffffff:ffffffff
364 gs.dr_write32(4, sw(S1, ZERO, DEBUG_RAM_START + 4));
365 gs.dr_write_jump(5);
366 gs.set_interrupt(0);
367 state = ST_XLEN;
368
369 } else {
370 write_dpc_program();
371 state = ST_DPC;
372 }
373 return false;
374
375 case ST_XLEN:
376 {
377 uint32_t word0 = gs.dr_read32(0);
378 uint32_t word1 = gs.dr_read32(1);
379
380 if (word0 == 1 && word1 == 0) {
381 gs.xlen = 32;
382 } else if (word0 == 0xffffffff && word1 == 3) {
383 gs.xlen = 64;
384 } else if (word0 == 0xffffffff && word1 == 0xffffffff) {
385 gs.xlen = 128;
386 }
387
388 write_dpc_program();
389 state = ST_DPC;
390 return false;
391 }
392
393 case ST_DPC:
394 gs.dpc = gs.dr_read(SLOT_DATA0);
395 gs.dr_write32(0, csrr(S0, CSR_MSTATUS));
396 gs.dr_write_store(1, S0, SLOT_DATA0);
397 gs.dr_write_jump(2);
398 gs.set_interrupt(0);
399 state = ST_MSTATUS;
400 return false;
401
402 case ST_MSTATUS:
403 gs.mstatus = gs.dr_read(SLOT_DATA0);
404 gs.dr_write32(0, csrr(S0, CSR_DCSR));
405 gs.dr_write32(1, sw(S0, 0, (uint16_t) DEBUG_RAM_START + 16));
406 gs.dr_write_jump(2);
407 gs.set_interrupt(0);
408 state = ST_DCSR;
409 return false;
410
411 case ST_DCSR:
412 gs.dcsr = gs.dr_read32(4);
413
414 gs.sptbr_valid = false;
415 gs.pte_cache.clear();
416
417 if (send_status) {
418 switch (get_field(gs.dcsr, DCSR_CAUSE)) {
419 case DCSR_CAUSE_NONE:
420 fprintf(stderr, "Internal error. Processor halted without reason.\n");
421 abort();
422
423 case DCSR_CAUSE_DEBUGINT:
424 gs.send_packet("S02"); // Pretend program received SIGINT.
425 break;
426
427 case DCSR_CAUSE_HWBP:
428 case DCSR_CAUSE_STEP:
429 case DCSR_CAUSE_HALT:
430 // There's no gdb code for this.
431 gs.send_packet("T05");
432 break;
433 case DCSR_CAUSE_SWBP:
434 gs.send_packet("T05swbreak:;");
435 break;
436 }
437 }
438 return true;
439
440 default:
441 assert(0);
442 }
443 }
444
445 private:
446 bool send_status;
447 enum {
448 ST_ENTER,
449 ST_XLEN,
450 ST_DPC,
451 ST_MSTATUS,
452 ST_DCSR
453 } state;
454 };
455
456 class continue_op_t : public operation_t
457 {
458 public:
459 continue_op_t(gdbserver_t& gdbserver, bool single_step) :
460 operation_t(gdbserver), single_step(single_step) {};
461
462 bool perform_step(unsigned int step) {
463 D(fprintf(stderr, "continue step %d\n", step));
464 switch (step) {
465 case 0:
466 gs.dr_write_load(0, S0, SLOT_DATA0);
467 gs.dr_write32(1, csrw(S0, CSR_DPC));
468 // TODO: Isn't there a fence.i in Debug ROM already?
469 if (gs.fence_i_required) {
470 gs.dr_write32(2, fence_i());
471 gs.dr_write_jump(3);
472 gs.fence_i_required = false;
473 } else {
474 gs.dr_write_jump(2);
475 }
476 gs.dr_write(SLOT_DATA0, gs.dpc);
477 gs.set_interrupt(0);
478 return false;
479
480 case 1:
481 gs.dr_write_load(0, S0, SLOT_DATA0);
482 gs.dr_write32(1, csrw(S0, CSR_MSTATUS));
483 gs.dr_write_jump(2);
484 gs.dr_write(SLOT_DATA0, gs.mstatus);
485 gs.set_interrupt(0);
486 return false;
487
488 case 2:
489 gs.dr_write32(0, lw(S0, 0, (uint16_t) DEBUG_RAM_START+16));
490 gs.dr_write32(1, csrw(S0, CSR_DCSR));
491 gs.dr_write_jump(2);
492
493 reg_t dcsr = set_field(gs.dcsr, DCSR_HALT, 0);
494 dcsr = set_field(dcsr, DCSR_STEP, single_step);
495 // Software breakpoints should go here.
496 dcsr = set_field(dcsr, DCSR_EBREAKM, 1);
497 dcsr = set_field(dcsr, DCSR_EBREAKH, 1);
498 dcsr = set_field(dcsr, DCSR_EBREAKS, 1);
499 dcsr = set_field(dcsr, DCSR_EBREAKU, 1);
500 gs.dr_write32(4, dcsr);
501
502 gs.set_interrupt(0);
503 return true;
504 }
505 return false;
506 }
507
508 private:
509 bool single_step;
510 };
511
512 class general_registers_read_op_t : public operation_t
513 {
514 // Register order that gdb expects is:
515 // "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
516 // "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
517 // "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
518 // "x24", "x25", "x26", "x27", "x28", "x29", "x30", "x31",
519
520 // Each byte of register data is described by two hex digits. The bytes with
521 // the register are transmitted in target byte order. The size of each
522 // register and their position within the ‘g’ packet are determined by the
523 // gdb internal gdbarch functions DEPRECATED_REGISTER_RAW_SIZE and
524 // gdbarch_register_name.
525
526 public:
527 general_registers_read_op_t(gdbserver_t& gdbserver) :
528 operation_t(gdbserver) {};
529
530 bool perform_step(unsigned int step)
531 {
532 D(fprintf(stderr, "register_read step %d\n", step));
533 if (step == 0) {
534 gs.start_packet();
535
536 // x0 is always zero.
537 if (gs.xlen == 32) {
538 gs.send((uint32_t) 0);
539 } else {
540 gs.send((uint64_t) 0);
541 }
542
543 gs.dr_write_store(0, 1, SLOT_DATA0);
544 gs.dr_write_store(1, 2, SLOT_DATA1);
545 gs.dr_write_jump(2);
546 gs.set_interrupt(0);
547 return false;
548 }
549
550 if (gs.xlen == 32) {
551 gs.send((uint32_t) gs.dr_read(SLOT_DATA0));
552 } else {
553 gs.send((uint64_t) gs.dr_read(SLOT_DATA0));
554 }
555 if (step >= 16) {
556 gs.end_packet();
557 return true;
558 }
559
560 if (gs.xlen == 32) {
561 gs.send((uint32_t) gs.dr_read(SLOT_DATA1));
562 } else {
563 gs.send((uint64_t) gs.dr_read(SLOT_DATA1));
564 }
565
566 unsigned int current_reg = 2 * step + 1;
567 unsigned int i = 0;
568 if (current_reg == S1) {
569 gs.dr_write_load(i++, S1, SLOT_DATA_LAST);
570 }
571 gs.dr_write_store(i++, current_reg, SLOT_DATA0);
572 if (current_reg + 1 == S0) {
573 gs.dr_write32(i++, csrr(S0, CSR_DSCRATCH));
574 }
575 if (step < 15) {
576 gs.dr_write_store(i++, current_reg+1, SLOT_DATA1);
577 }
578 gs.dr_write_jump(i);
579 gs.set_interrupt(0);
580
581 return false;
582 }
583 };
584
585 class register_read_op_t : public operation_t
586 {
587 public:
588 register_read_op_t(gdbserver_t& gdbserver, unsigned int reg) :
589 operation_t(gdbserver), reg(reg) {};
590
591 bool perform_step(unsigned int step)
592 {
593 switch (step) {
594 case 0:
595 if (reg >= REG_XPR0 && reg <= REG_XPR31) {
596 if (gs.xlen == 32) {
597 gs.dr_write32(0, sw(reg - REG_XPR0, 0, (uint16_t) DEBUG_RAM_START + 16));
598 } else {
599 gs.dr_write32(0, sd(reg - REG_XPR0, 0, (uint16_t) DEBUG_RAM_START + 16));
600 }
601 gs.dr_write_jump(1);
602 } else if (reg == REG_PC) {
603 gs.start_packet();
604 if (gs.xlen == 32) {
605 gs.send((uint32_t) gs.dpc);
606 } else {
607 gs.send(gs.dpc);
608 }
609 gs.end_packet();
610 return true;
611 } else if (reg >= REG_FPR0 && reg <= REG_FPR31) {
612 // send(p->state.FPR[reg - REG_FPR0]);
613 if (gs.xlen == 32) {
614 gs.dr_write32(0, fsw(reg - REG_FPR0, 0, (uint16_t) DEBUG_RAM_START + 16));
615 } else {
616 gs.dr_write32(0, fsd(reg - REG_FPR0, 0, (uint16_t) DEBUG_RAM_START + 16));
617 }
618 gs.dr_write_jump(1);
619 } else if (reg >= REG_CSR0 && reg <= REG_CSR4095) {
620 gs.dr_write32(0, csrr(S0, reg - REG_CSR0));
621 gs.dr_write_store(1, S0, SLOT_DATA0);
622 gs.dr_write_jump(2);
623 // If we hit an exception reading the CSR, we'll end up returning ~0 as
624 // the register's value, which is what we want. (Right?)
625 gs.dr_write(SLOT_DATA0, ~(uint64_t) 0);
626 } else if (reg == REG_PRIV) {
627 gs.start_packet();
628 gs.send((uint8_t) get_field(gs.dcsr, DCSR_PRV));
629 gs.end_packet();
630 return true;
631 } else {
632 gs.send_packet("E02");
633 return true;
634 }
635 gs.set_interrupt(0);
636 return false;
637
638 case 1:
639 gs.start_packet();
640 if (gs.xlen == 32) {
641 gs.send(gs.dr_read32(4));
642 } else {
643 gs.send(gs.dr_read(SLOT_DATA0));
644 }
645 gs.end_packet();
646 return true;
647 }
648 return false;
649 }
650
651 private:
652 unsigned int reg;
653 };
654
655 class register_write_op_t : public operation_t
656 {
657 public:
658 register_write_op_t(gdbserver_t& gdbserver, unsigned int reg, reg_t value) :
659 operation_t(gdbserver), reg(reg), value(value) {};
660
661 bool perform_step(unsigned int step)
662 {
663 gs.dr_write_load(0, S0, SLOT_DATA0);
664 gs.dr_write(SLOT_DATA0, value);
665 if (reg == S0) {
666 gs.dr_write32(1, csrw(S0, CSR_DSCRATCH));
667 gs.dr_write_jump(2);
668 } else if (reg == S1) {
669 gs.dr_write_store(1, S0, SLOT_DATA_LAST);
670 gs.dr_write_jump(2);
671 } else if (reg >= REG_XPR0 && reg <= REG_XPR31) {
672 gs.dr_write32(1, addi(reg, S0, 0));
673 gs.dr_write_jump(2);
674 } else if (reg == REG_PC) {
675 gs.dpc = value;
676 return true;
677 } else if (reg >= REG_FPR0 && reg <= REG_FPR31) {
678 if (gs.xlen == 32) {
679 gs.dr_write32(0, flw(reg - REG_FPR0, 0, (uint16_t) DEBUG_RAM_START + 16));
680 } else {
681 gs.dr_write32(0, fld(reg - REG_FPR0, 0, (uint16_t) DEBUG_RAM_START + 16));
682 }
683 gs.dr_write_jump(1);
684 } else if (reg >= REG_CSR0 && reg <= REG_CSR4095) {
685 gs.dr_write32(1, csrw(S0, reg - REG_CSR0));
686 gs.dr_write_jump(2);
687 if (reg == REG_CSR0 + CSR_SPTBR) {
688 gs.sptbr = value;
689 gs.sptbr_valid = true;
690 }
691 } else if (reg == REG_PRIV) {
692 gs.dcsr = set_field(gs.dcsr, DCSR_PRV, value);
693 return true;
694 } else {
695 gs.send_packet("E02");
696 return true;
697 }
698 gs.set_interrupt(0);
699 gs.send_packet("OK");
700 return true;
701 }
702
703 private:
704 unsigned int reg;
705 reg_t value;
706 };
707
708 class memory_read_op_t : public operation_t
709 {
710 public:
711 // Read length bytes from vaddr, storing the result into data.
712 // If data is NULL, send the result straight to gdb.
713 memory_read_op_t(gdbserver_t& gdbserver, reg_t vaddr, unsigned int length,
714 unsigned char *data=NULL) :
715 operation_t(gdbserver), vaddr(vaddr), length(length), data(data), index(0)
716 {
717 buf = new uint8_t[length];
718 };
719
720 ~memory_read_op_t()
721 {
722 delete[] buf;
723 }
724
725 bool perform_step(unsigned int step)
726 {
727 if (step == 0) {
728 // address goes in S0
729 paddr = gs.translate(vaddr);
730 access_size = gs.find_access_size(paddr, length);
731
732 gs.dr_write_load(0, S0, SLOT_DATA0);
733 switch (access_size) {
734 case 1:
735 gs.dr_write32(1, lb(S1, S0, 0));
736 break;
737 case 2:
738 gs.dr_write32(1, lh(S1, S0, 0));
739 break;
740 case 4:
741 gs.dr_write32(1, lw(S1, S0, 0));
742 break;
743 case 8:
744 gs.dr_write32(1, ld(S1, S0, 0));
745 break;
746 }
747 gs.dr_write_store(2, S1, SLOT_DATA1);
748 gs.dr_write_jump(3);
749 gs.dr_write(SLOT_DATA0, paddr);
750 gs.set_interrupt(0);
751
752 return false;
753 }
754
755 if (gs.dr_read32(DEBUG_RAM_SIZE / 4 - 1)) {
756 // Note that OpenOCD doesn't report this error to gdb by default. They
757 // think it can mess up stack tracing. So far I haven't seen any
758 // problems.
759 gs.send_packet("E99");
760 return true;
761 }
762
763 reg_t value = gs.dr_read(SLOT_DATA1);
764 for (unsigned int i = 0; i < access_size; i++) {
765 if (data) {
766 *(data++) = value & 0xff;
767 D(fprintf(stderr, "%02x", (unsigned int) (value & 0xff)));
768 } else {
769 buf[index++] = value & 0xff;
770 }
771 value >>= 8;
772 }
773 if (data) {
774 D(fprintf(stderr, "\n"));
775 }
776 length -= access_size;
777 paddr += access_size;
778
779 if (length == 0) {
780 if (!data) {
781 gs.start_packet();
782 char buffer[3];
783 for (unsigned int i = 0; i < index; i++) {
784 sprintf(buffer, "%02x", (unsigned int) buf[i]);
785 gs.send(buffer);
786 }
787 gs.end_packet();
788 }
789 return true;
790 } else {
791 gs.dr_write(SLOT_DATA0, paddr);
792 gs.set_interrupt(0);
793 return false;
794 }
795 }
796
797 private:
798 reg_t vaddr;
799 unsigned int length;
800 unsigned char* data;
801 reg_t paddr;
802 unsigned int access_size;
803 unsigned int index;
804 uint8_t *buf;
805 };
806
807 class memory_write_op_t : public operation_t
808 {
809 public:
810 memory_write_op_t(gdbserver_t& gdbserver, reg_t vaddr, unsigned int length,
811 const unsigned char *data) :
812 operation_t(gdbserver), vaddr(vaddr), offset(0), length(length), data(data) {};
813
814 ~memory_write_op_t() {
815 delete[] data;
816 }
817
818 bool perform_step(unsigned int step)
819 {
820 reg_t paddr = gs.translate(vaddr);
821
822 unsigned int data_offset;
823 switch (gs.xlen) {
824 case 32:
825 data_offset = slot_offset32[SLOT_DATA1];
826 break;
827 case 64:
828 data_offset = slot_offset64[SLOT_DATA1];
829 break;
830 case 128:
831 data_offset = slot_offset128[SLOT_DATA1];
832 break;
833 default:
834 abort();
835 }
836
837 if (step == 0) {
838 access_size = gs.find_access_size(paddr, length);
839
840 D(fprintf(stderr, "write to 0x%lx -> 0x%lx (access=%d): ", vaddr, paddr,
841 access_size));
842 for (unsigned int i = 0; i < length; i++) {
843 D(fprintf(stderr, "%02x", data[i]));
844 }
845 D(fprintf(stderr, "\n"));
846
847 // address goes in S0
848 gs.dr_write_load(0, S0, SLOT_DATA0);
849 switch (access_size) {
850 case 1:
851 gs.dr_write32(1, lb(S1, 0, (uint16_t) DEBUG_RAM_START + 4*data_offset));
852 gs.dr_write32(2, sb(S1, S0, 0));
853 gs.dr_write32(data_offset, data[0]);
854 break;
855 case 2:
856 gs.dr_write32(1, lh(S1, 0, (uint16_t) DEBUG_RAM_START + 4*data_offset));
857 gs.dr_write32(2, sh(S1, S0, 0));
858 gs.dr_write32(data_offset, data[0] | (data[1] << 8));
859 break;
860 case 4:
861 gs.dr_write32(1, lw(S1, 0, (uint16_t) DEBUG_RAM_START + 4*data_offset));
862 gs.dr_write32(2, sw(S1, S0, 0));
863 gs.dr_write32(data_offset, data[0] | (data[1] << 8) |
864 (data[2] << 16) | (data[3] << 24));
865 break;
866 case 8:
867 gs.dr_write32(1, ld(S1, 0, (uint16_t) DEBUG_RAM_START + 4*data_offset));
868 gs.dr_write32(2, sd(S1, S0, 0));
869 gs.dr_write32(data_offset, data[0] | (data[1] << 8) |
870 (data[2] << 16) | (data[3] << 24));
871 gs.dr_write32(data_offset+1, data[4] | (data[5] << 8) |
872 (data[6] << 16) | (data[7] << 24));
873 break;
874 default:
875 fprintf(stderr, "gdbserver error: write %d bytes to 0x%016" PRIx64
876 " -> 0x%016" PRIx64 "; access_size=%d\n",
877 length, vaddr, paddr, access_size);
878 gs.send_packet("E12");
879 return true;
880 }
881 gs.dr_write_jump(3);
882 gs.dr_write(SLOT_DATA0, paddr);
883 gs.set_interrupt(0);
884
885 return false;
886 }
887
888 if (gs.dr_read32(DEBUG_RAM_SIZE / 4 - 1)) {
889 gs.send_packet("E98");
890 return true;
891 }
892
893 offset += access_size;
894 if (offset >= length) {
895 gs.send_packet("OK");
896 return true;
897 } else {
898 const unsigned char *d = data + offset;
899 switch (access_size) {
900 case 1:
901 gs.dr_write32(data_offset, d[0]);
902 break;
903 case 2:
904 gs.dr_write32(data_offset, d[0] | (d[1] << 8));
905 break;
906 case 4:
907 gs.dr_write32(data_offset, d[0] | (d[1] << 8) |
908 (d[2] << 16) | (d[3] << 24));
909 break;
910 case 8:
911 gs.dr_write32(data_offset, d[0] | (d[1] << 8) |
912 (d[2] << 16) | (d[3] << 24));
913 gs.dr_write32(data_offset+1, d[4] | (d[5] << 8) |
914 (d[6] << 16) | (d[7] << 24));
915 break;
916 default:
917 gs.send_packet("E13");
918 return true;
919 }
920 gs.dr_write(SLOT_DATA0, paddr + offset);
921 gs.set_interrupt(0);
922 return false;
923 }
924 }
925
926 private:
927 reg_t vaddr;
928 unsigned int offset;
929 unsigned int length;
930 unsigned int access_size;
931 const unsigned char *data;
932 };
933
934 class collect_translation_info_op_t : public operation_t
935 {
936 public:
937 // Read sufficient information from the target into gdbserver structures so
938 // that it's possible to translate vaddr, vaddr+length, and all addresses
939 // in between to physical addresses.
940 collect_translation_info_op_t(gdbserver_t& gdbserver, reg_t vaddr, size_t length) :
941 operation_t(gdbserver), state(STATE_START), vaddr(vaddr), length(length) {};
942
943 bool perform_step(unsigned int step)
944 {
945 unsigned int vm = gs.virtual_memory();
946
947 if (step == 0) {
948 switch (vm) {
949 case VM_MBARE:
950 // Nothing to be done.
951 return true;
952
953 case VM_SV32:
954 levels = 2;
955 ptidxbits = 10;
956 ptesize = 4;
957 break;
958 case VM_SV39:
959 levels = 3;
960 ptidxbits = 9;
961 ptesize = 8;
962 break;
963 case VM_SV48:
964 levels = 4;
965 ptidxbits = 9;
966 ptesize = 8;
967 break;
968
969 default:
970 {
971 char buf[100];
972 sprintf(buf, "VM mode %d is not supported by gdbserver.cc.", vm);
973 die(buf);
974 return true; // die doesn't return, but gcc doesn't know that.
975 }
976 }
977 }
978
979 // Perform any reads from the just-completed action.
980 switch (state) {
981 case STATE_START:
982 break;
983 case STATE_READ_SPTBR:
984 gs.sptbr = gs.dr_read(SLOT_DATA0);
985 gs.sptbr_valid = true;
986 break;
987 case STATE_READ_PTE:
988 if (ptesize == 4) {
989 gs.pte_cache[pte_addr] = gs.dr_read32(4);
990 } else {
991 gs.pte_cache[pte_addr] = ((uint64_t) gs.dr_read32(5) << 32) |
992 gs.dr_read32(4);
993 }
994 D(fprintf(stderr, "pte_cache[0x%lx] = 0x%lx\n", pte_addr, gs.pte_cache[pte_addr]));
995 break;
996 }
997
998 // Set up the next action.
999 // We only get here for VM_SV32/39/38.
1000
1001 if (!gs.sptbr_valid) {
1002 state = STATE_READ_SPTBR;
1003 gs.dr_write32(0, csrr(S0, CSR_SPTBR));
1004 gs.dr_write_store(1, S0, SLOT_DATA0);
1005 gs.dr_write_jump(2);
1006 gs.set_interrupt(0);
1007 return false;
1008 }
1009
1010 reg_t base = gs.sptbr << PGSHIFT;
1011 int ptshift = (levels - 1) * ptidxbits;
1012 for (unsigned int i = 0; i < levels; i++, ptshift -= ptidxbits) {
1013 reg_t idx = (vaddr >> (PGSHIFT + ptshift)) & ((1 << ptidxbits) - 1);
1014
1015 pte_addr = base + idx * ptesize;
1016 auto it = gs.pte_cache.find(pte_addr);
1017 if (it == gs.pte_cache.end()) {
1018 state = STATE_READ_PTE;
1019 if (ptesize == 4) {
1020 gs.dr_write32(0, lw(S0, 0, (uint16_t) DEBUG_RAM_START + 16));
1021 gs.dr_write32(1, lw(S1, S0, 0));
1022 gs.dr_write32(2, sw(S1, 0, (uint16_t) DEBUG_RAM_START + 16));
1023 } else {
1024 assert(gs.xlen >= 64);
1025 gs.dr_write32(0, ld(S0, 0, (uint16_t) DEBUG_RAM_START + 16));
1026 gs.dr_write32(1, ld(S1, S0, 0));
1027 gs.dr_write32(2, sd(S1, 0, (uint16_t) DEBUG_RAM_START + 16));
1028 }
1029 gs.dr_write32(3, jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*3))));
1030 gs.dr_write32(4, pte_addr);
1031 gs.dr_write32(5, pte_addr >> 32);
1032 gs.set_interrupt(0);
1033 return false;
1034 }
1035
1036 reg_t pte = gs.pte_cache[pte_addr];
1037 reg_t ppn = pte >> PTE_PPN_SHIFT;
1038
1039 if (PTE_TABLE(pte)) { // next level of page table
1040 base = ppn << PGSHIFT;
1041 } else {
1042 // We've collected all the data required for the translation.
1043 return true;
1044 }
1045 }
1046 fprintf(stderr,
1047 "ERROR: gdbserver couldn't find appropriate PTEs to translate 0x%016" PRIx64 "\n",
1048 vaddr);
1049 return true;
1050 }
1051
1052 private:
1053 enum {
1054 STATE_START,
1055 STATE_READ_SPTBR,
1056 STATE_READ_PTE
1057 } state;
1058 reg_t vaddr;
1059 size_t length;
1060 unsigned int levels;
1061 unsigned int ptidxbits;
1062 unsigned int ptesize;
1063 reg_t pte_addr;
1064 };
1065
1066 class hardware_breakpoint_insert_op_t : public operation_t
1067 {
1068 public:
1069 hardware_breakpoint_insert_op_t(gdbserver_t& gdbserver,
1070 hardware_breakpoint_t bp) :
1071 operation_t(gdbserver), state(STATE_START), bp(bp) {};
1072
1073 void write_new_index_program()
1074 {
1075 gs.dr_write_load(0, S0, SLOT_DATA1);
1076 gs.dr_write32(1, csrw(S0, CSR_TSELECT));
1077 gs.dr_write32(2, csrr(S0, CSR_TSELECT));
1078 gs.dr_write_store(3, S0, SLOT_DATA1);
1079 gs.dr_write_jump(4);
1080 gs.dr_write(SLOT_DATA1, bp.index);
1081 }
1082
1083 bool perform_step(unsigned int step)
1084 {
1085 switch (state) {
1086 case STATE_START:
1087 bp.index = 0;
1088 write_new_index_program();
1089 state = STATE_CHECK_INDEX;
1090 break;
1091
1092 case STATE_CHECK_INDEX:
1093 if (gs.dr_read(SLOT_DATA1) != bp.index) {
1094 // We've exhausted breakpoints without finding an appropriate one.
1095 gs.send_packet("E58");
1096 return true;
1097 }
1098
1099 gs.dr_write32(0, csrr(S0, CSR_TDATA1));
1100 gs.dr_write_store(1, S0, SLOT_DATA0);
1101 gs.dr_write_jump(2);
1102 state = STATE_CHECK_MCONTROL;
1103 break;
1104
1105 case STATE_CHECK_MCONTROL:
1106 {
1107 reg_t mcontrol = gs.dr_read(SLOT_DATA0);
1108 unsigned int type = mcontrol >> (gs.xlen - 4);
1109 if (type == 0) {
1110 // We've exhausted breakpoints without finding an appropriate one.
1111 gs.send_packet("E58");
1112 return true;
1113 }
1114
1115 if (type == 2 &&
1116 !get_field(mcontrol, MCONTROL_EXECUTE) &&
1117 !get_field(mcontrol, MCONTROL_LOAD) &&
1118 !get_field(mcontrol, MCONTROL_STORE)) {
1119 // Found an unused trigger.
1120 gs.dr_write_load(0, S0, SLOT_DATA1);
1121 gs.dr_write32(1, csrw(S0, CSR_TDATA1));
1122 gs.dr_write_jump(2);
1123 mcontrol = set_field(0, MCONTROL_ACTION, MCONTROL_ACTION_DEBUG_MODE);
1124 mcontrol = set_field(mcontrol, MCONTROL_DMODE(gs.xlen), 1);
1125 mcontrol = set_field(mcontrol, MCONTROL_MATCH, MCONTROL_MATCH_EQUAL);
1126 mcontrol = set_field(mcontrol, MCONTROL_M, 1);
1127 mcontrol = set_field(mcontrol, MCONTROL_H, 1);
1128 mcontrol = set_field(mcontrol, MCONTROL_S, 1);
1129 mcontrol = set_field(mcontrol, MCONTROL_U, 1);
1130 mcontrol = set_field(mcontrol, MCONTROL_EXECUTE, bp.execute);
1131 mcontrol = set_field(mcontrol, MCONTROL_LOAD, bp.load);
1132 mcontrol = set_field(mcontrol, MCONTROL_STORE, bp.store);
1133 // For store triggers it's nicer to fire just before the
1134 // instruction than just after. However, gdb doesn't clear the
1135 // breakpoints and step before resuming from a store trigger.
1136 // That means that without extra code, you'll keep hitting the
1137 // same watchpoint over and over again. That's not useful at all.
1138 // Instead of fixing this the right way, just set timing=1 for
1139 // those triggers.
1140 if (bp.load || bp.store)
1141 mcontrol = set_field(mcontrol, MCONTROL_TIMING, 1);
1142
1143 gs.dr_write(SLOT_DATA1, mcontrol);
1144 state = STATE_WRITE_ADDRESS;
1145 } else {
1146 bp.index++;
1147 write_new_index_program();
1148 state = STATE_CHECK_INDEX;
1149 }
1150 }
1151 break;
1152
1153 case STATE_WRITE_ADDRESS:
1154 {
1155 gs.dr_write_load(0, S0, SLOT_DATA1);
1156 gs.dr_write32(1, csrw(S0, CSR_TDATA2));
1157 gs.dr_write_jump(2);
1158 gs.dr_write(SLOT_DATA1, bp.vaddr);
1159 gs.set_interrupt(0);
1160 gs.send_packet("OK");
1161
1162 gs.hardware_breakpoints.insert(bp);
1163
1164 return true;
1165 }
1166 }
1167
1168 gs.set_interrupt(0);
1169 return false;
1170 }
1171
1172 private:
1173 enum {
1174 STATE_START,
1175 STATE_CHECK_INDEX,
1176 STATE_CHECK_MCONTROL,
1177 STATE_WRITE_ADDRESS
1178 } state;
1179 hardware_breakpoint_t bp;
1180 };
1181
1182 class maybe_save_tselect_op_t : public operation_t
1183 {
1184 public:
1185 maybe_save_tselect_op_t(gdbserver_t& gdbserver) : operation_t(gdbserver) {};
1186 bool perform_step(unsigned int step) {
1187 if (gs.tselect_valid)
1188 return true;
1189
1190 switch (step) {
1191 case 0:
1192 gs.dr_write32(0, csrr(S0, CSR_TDATA1));
1193 gs.dr_write_store(1, S0, SLOT_DATA0);
1194 gs.dr_write_jump(2);
1195 gs.set_interrupt(0);
1196 return false;
1197 case 1:
1198 gs.tselect = gs.dr_read(SLOT_DATA0);
1199 gs.tselect_valid = true;
1200 break;
1201 }
1202 return true;
1203 }
1204 };
1205
1206 class maybe_restore_tselect_op_t : public operation_t
1207 {
1208 public:
1209 maybe_restore_tselect_op_t(gdbserver_t& gdbserver) : operation_t(gdbserver) {};
1210 bool perform_step(unsigned int step) {
1211 if (gs.tselect_valid) {
1212 gs.dr_write_load(0, S0, SLOT_DATA1);
1213 gs.dr_write32(1, csrw(S0, CSR_TSELECT));
1214 gs.dr_write_jump(2);
1215 gs.dr_write(SLOT_DATA1, gs.tselect);
1216 }
1217 return true;
1218 }
1219 };
1220
1221 class hardware_breakpoint_remove_op_t : public operation_t
1222 {
1223 public:
1224 hardware_breakpoint_remove_op_t(gdbserver_t& gdbserver,
1225 hardware_breakpoint_t bp) :
1226 operation_t(gdbserver), bp(bp) {};
1227
1228 bool perform_step(unsigned int step) {
1229 gs.dr_write32(0, addi(S0, ZERO, bp.index));
1230 gs.dr_write32(1, csrw(S0, CSR_TSELECT));
1231 gs.dr_write32(2, csrw(ZERO, CSR_TDATA1));
1232 gs.dr_write_jump(3);
1233 gs.set_interrupt(0);
1234 return true;
1235 }
1236
1237 private:
1238 hardware_breakpoint_t bp;
1239 };
1240
1241 ////////////////////////////// gdbserver itself
1242
1243 gdbserver_t::gdbserver_t(uint16_t port, sim_t *sim) :
1244 xlen(0),
1245 sim(sim),
1246 client_fd(0),
1247 recv_buf(64 * 1024), send_buf(64 * 1024)
1248 {
1249 socket_fd = socket(AF_INET, SOCK_STREAM, 0);
1250 if (socket_fd == -1) {
1251 fprintf(stderr, "failed to make socket: %s (%d)\n", strerror(errno), errno);
1252 abort();
1253 }
1254
1255 fcntl(socket_fd, F_SETFL, O_NONBLOCK);
1256 int reuseaddr = 1;
1257 if (setsockopt(socket_fd, SOL_SOCKET, SO_REUSEADDR, &reuseaddr,
1258 sizeof(int)) == -1) {
1259 fprintf(stderr, "failed setsockopt: %s (%d)\n", strerror(errno), errno);
1260 abort();
1261 }
1262
1263 struct sockaddr_in addr;
1264 memset(&addr, 0, sizeof(addr));
1265 addr.sin_family = AF_INET;
1266 addr.sin_addr.s_addr = INADDR_ANY;
1267 addr.sin_port = htons(port);
1268
1269 if (bind(socket_fd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
1270 fprintf(stderr, "failed to bind socket: %s (%d)\n", strerror(errno), errno);
1271 abort();
1272 }
1273
1274 if (listen(socket_fd, 1) == -1) {
1275 fprintf(stderr, "failed to listen on socket: %s (%d)\n", strerror(errno), errno);
1276 abort();
1277 }
1278 }
1279
1280 unsigned int gdbserver_t::find_access_size(reg_t address, int length)
1281 {
1282 reg_t composite = address | length;
1283 if ((composite & 0x7) == 0 && xlen >= 64)
1284 return 8;
1285 if ((composite & 0x3) == 0)
1286 return 4;
1287 return 1;
1288 }
1289
1290 reg_t gdbserver_t::translate(reg_t vaddr)
1291 {
1292 unsigned int vm = virtual_memory();
1293 unsigned int levels, ptidxbits, ptesize;
1294
1295 switch (vm) {
1296 case VM_MBARE:
1297 return vaddr;
1298
1299 case VM_SV32:
1300 levels = 2;
1301 ptidxbits = 10;
1302 ptesize = 4;
1303 break;
1304 case VM_SV39:
1305 levels = 3;
1306 ptidxbits = 9;
1307 ptesize = 8;
1308 break;
1309 case VM_SV48:
1310 levels = 4;
1311 ptidxbits = 9;
1312 ptesize = 8;
1313 break;
1314
1315 default:
1316 {
1317 char buf[100];
1318 sprintf(buf, "VM mode %d is not supported by gdbserver.cc.", vm);
1319 die(buf);
1320 return true; // die doesn't return, but gcc doesn't know that.
1321 }
1322 }
1323
1324 // Handle page tables here. There's a bunch of duplicated code with
1325 // collect_translation_info_op_t. :-(
1326 reg_t base = sptbr << PGSHIFT;
1327 int ptshift = (levels - 1) * ptidxbits;
1328 for (unsigned int i = 0; i < levels; i++, ptshift -= ptidxbits) {
1329 reg_t idx = (vaddr >> (PGSHIFT + ptshift)) & ((1 << ptidxbits) - 1);
1330
1331 reg_t pte_addr = base + idx * ptesize;
1332 auto it = pte_cache.find(pte_addr);
1333 if (it == pte_cache.end()) {
1334 fprintf(stderr, "ERROR: gdbserver tried to translate 0x%016" PRIx64
1335 " without first collecting the relevant PTEs.\n", vaddr);
1336 die("gdbserver_t::translate()");
1337 }
1338
1339 reg_t pte = pte_cache[pte_addr];
1340 reg_t ppn = pte >> PTE_PPN_SHIFT;
1341
1342 if (PTE_TABLE(pte)) { // next level of page table
1343 base = ppn << PGSHIFT;
1344 } else {
1345 // We've collected all the data required for the translation.
1346 reg_t vpn = vaddr >> PGSHIFT;
1347 reg_t paddr = (ppn | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT;
1348 paddr += vaddr & (PGSIZE-1);
1349 D(fprintf(stderr, "gdbserver translate 0x%lx -> 0x%lx\n", vaddr, paddr));
1350 return paddr;
1351 }
1352 }
1353
1354 fprintf(stderr, "ERROR: gdbserver tried to translate 0x%016" PRIx64
1355 " but the relevant PTEs are invalid.\n", vaddr);
1356 // TODO: Is it better to throw an exception here?
1357 return -1;
1358 }
1359
1360 unsigned int gdbserver_t::privilege_mode()
1361 {
1362 unsigned int mode = get_field(dcsr, DCSR_PRV);
1363 if (get_field(mstatus, MSTATUS_MPRV))
1364 mode = get_field(mstatus, MSTATUS_MPP);
1365 return mode;
1366 }
1367
1368 unsigned int gdbserver_t::virtual_memory()
1369 {
1370 unsigned int mode = privilege_mode();
1371 if (mode == PRV_M)
1372 return VM_MBARE;
1373 return get_field(mstatus, MSTATUS_VM);
1374 }
1375
1376 void gdbserver_t::dr_write32(unsigned int index, uint32_t value)
1377 {
1378 sim->debug_module.ram_write32(index, value);
1379 }
1380
1381 void gdbserver_t::dr_write64(unsigned int index, uint64_t value)
1382 {
1383 dr_write32(index, value);
1384 dr_write32(index+1, value >> 32);
1385 }
1386
1387 void gdbserver_t::dr_write(enum slot slot, uint64_t value)
1388 {
1389 switch (xlen) {
1390 case 32:
1391 dr_write32(slot_offset32[slot], value);
1392 break;
1393 case 64:
1394 dr_write64(slot_offset64[slot], value);
1395 break;
1396 case 128:
1397 default:
1398 abort();
1399 }
1400 }
1401
1402 void gdbserver_t::dr_write_jump(unsigned int index)
1403 {
1404 dr_write32(index, jal(0,
1405 (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*index))));
1406 }
1407
1408 void gdbserver_t::dr_write_store(unsigned int index, unsigned int reg, enum slot slot)
1409 {
1410 assert(slot != SLOT_INST0 || index > 2);
1411 assert(slot != SLOT_DATA0 || index < 4 || index > 6);
1412 assert(slot != SLOT_DATA1 || index < 5 || index > 10);
1413 assert(slot != SLOT_DATA_LAST || index < 6 || index > 14);
1414 switch (xlen) {
1415 case 32:
1416 return dr_write32(index,
1417 sw(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset32[slot]));
1418 case 64:
1419 return dr_write32(index,
1420 sd(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset64[slot]));
1421 case 128:
1422 return dr_write32(index,
1423 sq(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset128[slot]));
1424 default:
1425 fprintf(stderr, "xlen is %d!\n", xlen);
1426 abort();
1427 }
1428 }
1429
1430 void gdbserver_t::dr_write_load(unsigned int index, unsigned int reg, enum slot slot)
1431 {
1432 switch (xlen) {
1433 case 32:
1434 return dr_write32(index,
1435 lw(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset32[slot]));
1436 case 64:
1437 return dr_write32(index,
1438 ld(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset64[slot]));
1439 case 128:
1440 return dr_write32(index,
1441 lq(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset128[slot]));
1442 default:
1443 fprintf(stderr, "xlen is %d!\n", xlen);
1444 abort();
1445 }
1446 }
1447
1448 uint32_t gdbserver_t::dr_read32(unsigned int index)
1449 {
1450 uint32_t value = sim->debug_module.ram_read32(index);
1451 D(fprintf(stderr, "read32(%d) -> 0x%x\n", index, value));
1452 return value;
1453 }
1454
1455 uint64_t gdbserver_t::dr_read64(unsigned int index)
1456 {
1457 return ((uint64_t) dr_read32(index+1) << 32) | dr_read32(index);
1458 }
1459
1460 uint64_t gdbserver_t::dr_read(enum slot slot)
1461 {
1462 switch (xlen) {
1463 case 32:
1464 return dr_read32(slot_offset32[slot]);
1465 case 64:
1466 return dr_read64(slot_offset64[slot]);
1467 case 128:
1468 abort();
1469 default:
1470 abort();
1471 }
1472 }
1473
1474 void gdbserver_t::add_operation(operation_t* operation)
1475 {
1476 operation_queue.push(operation);
1477 }
1478
1479 void gdbserver_t::accept()
1480 {
1481 client_fd = ::accept(socket_fd, NULL, NULL);
1482 if (client_fd == -1) {
1483 if (errno == EAGAIN) {
1484 // No client waiting to connect right now.
1485 } else {
1486 fprintf(stderr, "failed to accept on socket: %s (%d)\n", strerror(errno),
1487 errno);
1488 abort();
1489 }
1490 } else {
1491 fcntl(client_fd, F_SETFL, O_NONBLOCK);
1492
1493 expect_ack = false;
1494 extended_mode = false;
1495
1496 // gdb wants the core to be halted when it attaches.
1497 add_operation(new halt_op_t(*this));
1498 }
1499 }
1500
1501 void gdbserver_t::read()
1502 {
1503 // Reading from a non-blocking socket still blocks if there is no data
1504 // available.
1505
1506 size_t count = recv_buf.contiguous_empty_size();
1507 assert(count > 0);
1508 ssize_t bytes = ::read(client_fd, recv_buf.contiguous_empty(), count);
1509 if (bytes == -1) {
1510 if (errno == EAGAIN) {
1511 // We'll try again the next call.
1512 } else {
1513 fprintf(stderr, "failed to read on socket: %s (%d)\n", strerror(errno), errno);
1514 abort();
1515 }
1516 } else if (bytes == 0) {
1517 // The remote disconnected.
1518 client_fd = 0;
1519 processor_t *p = sim->get_core(0);
1520 // TODO p->set_halted(false, HR_NONE);
1521 recv_buf.reset();
1522 send_buf.reset();
1523 } else {
1524 recv_buf.data_added(bytes);
1525 }
1526 }
1527
1528 void gdbserver_t::write()
1529 {
1530 if (send_buf.empty())
1531 return;
1532
1533 while (!send_buf.empty()) {
1534 unsigned int count = send_buf.contiguous_data_size();
1535 assert(count > 0);
1536 ssize_t bytes = ::write(client_fd, send_buf.contiguous_data(), count);
1537 if (bytes == -1) {
1538 fprintf(stderr, "failed to write to socket: %s (%d)\n", strerror(errno), errno);
1539 abort();
1540 } else if (bytes == 0) {
1541 // Client can't take any more data right now.
1542 break;
1543 } else {
1544 D(fprintf(stderr, "wrote %ld bytes: ", bytes));
1545 for (unsigned int i = 0; i < bytes; i++) {
1546 D(fprintf(stderr, "%c", send_buf[i]));
1547 }
1548 D(fprintf(stderr, "\n"));
1549 send_buf.consume(bytes);
1550 }
1551 }
1552 }
1553
1554 void print_packet(const std::vector<uint8_t> &packet)
1555 {
1556 for (uint8_t c : packet) {
1557 if (c >= ' ' and c <= '~')
1558 fprintf(stderr, "%c", c);
1559 else
1560 fprintf(stderr, "\\x%02x", c);
1561 }
1562 fprintf(stderr, "\n");
1563 }
1564
1565 uint8_t compute_checksum(const std::vector<uint8_t> &packet)
1566 {
1567 uint8_t checksum = 0;
1568 for (auto i = packet.begin() + 1; i != packet.end() - 3; i++ ) {
1569 checksum += *i;
1570 }
1571 return checksum;
1572 }
1573
1574 uint8_t character_hex_value(uint8_t character)
1575 {
1576 if (character >= '0' && character <= '9')
1577 return character - '0';
1578 if (character >= 'a' && character <= 'f')
1579 return 10 + character - 'a';
1580 if (character >= 'A' && character <= 'F')
1581 return 10 + character - 'A';
1582 return 0xff;
1583 }
1584
1585 uint8_t extract_checksum(const std::vector<uint8_t> &packet)
1586 {
1587 return character_hex_value(*(packet.end() - 1)) +
1588 16 * character_hex_value(*(packet.end() - 2));
1589 }
1590
1591 void gdbserver_t::process_requests()
1592 {
1593 // See https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
1594
1595 while (!recv_buf.empty()) {
1596 std::vector<uint8_t> packet;
1597 for (unsigned int i = 0; i < recv_buf.size(); i++) {
1598 uint8_t b = recv_buf[i];
1599
1600 if (packet.empty() && expect_ack && b == '+') {
1601 recv_buf.consume(1);
1602 break;
1603 }
1604
1605 if (packet.empty() && b == 3) {
1606 D(fprintf(stderr, "Received interrupt\n"));
1607 recv_buf.consume(1);
1608 handle_interrupt();
1609 break;
1610 }
1611
1612 if (b == '$') {
1613 // Start of new packet.
1614 if (!packet.empty()) {
1615 fprintf(stderr, "Received malformed %ld-byte packet from debug client: ",
1616 packet.size());
1617 print_packet(packet);
1618 recv_buf.consume(i);
1619 break;
1620 }
1621 }
1622
1623 packet.push_back(b);
1624
1625 // Packets consist of $<packet-data>#<checksum>
1626 // where <checksum> is
1627 if (packet.size() >= 4 &&
1628 packet[packet.size()-3] == '#') {
1629 handle_packet(packet);
1630 recv_buf.consume(i+1);
1631 break;
1632 }
1633 }
1634 // There's a partial packet in the buffer. Wait until we get more data to
1635 // process it.
1636 if (packet.size()) {
1637 break;
1638 }
1639 }
1640 }
1641
1642 void gdbserver_t::handle_halt_reason(const std::vector<uint8_t> &packet)
1643 {
1644 send_packet("S00");
1645 }
1646
1647 void gdbserver_t::handle_general_registers_read(const std::vector<uint8_t> &packet)
1648 {
1649 add_operation(new general_registers_read_op_t(*this));
1650 }
1651
1652 void gdbserver_t::set_interrupt(uint32_t hartid) {
1653 sim->debug_module.set_interrupt(hartid);
1654 }
1655
1656 // First byte is the most-significant one.
1657 // Eg. "08675309" becomes 0x08675309.
1658 uint64_t consume_hex_number(std::vector<uint8_t>::const_iterator &iter,
1659 std::vector<uint8_t>::const_iterator end)
1660 {
1661 uint64_t value = 0;
1662
1663 while (iter != end) {
1664 uint8_t c = *iter;
1665 uint64_t c_value = character_hex_value(c);
1666 if (c_value > 15)
1667 break;
1668 iter++;
1669 value <<= 4;
1670 value += c_value;
1671 }
1672 return value;
1673 }
1674
1675 // First byte is the least-significant one.
1676 // Eg. "08675309" becomes 0x09536708
1677 uint64_t gdbserver_t::consume_hex_number_le(
1678 std::vector<uint8_t>::const_iterator &iter,
1679 std::vector<uint8_t>::const_iterator end)
1680 {
1681 uint64_t value = 0;
1682 unsigned int shift = 4;
1683
1684 while (iter != end) {
1685 uint8_t c = *iter;
1686 uint64_t c_value = character_hex_value(c);
1687 if (c_value > 15)
1688 break;
1689 iter++;
1690 value |= c_value << shift;
1691 if ((shift % 8) == 0)
1692 shift += 12;
1693 else
1694 shift -= 4;
1695 }
1696 if (shift >= xlen) {
1697 fprintf(stderr,
1698 "gdb sent too many data bytes. That means it thinks XLEN is greater than %d.\n"
1699 "To fix that, tell gdb: set arch riscv:rv%d\n",
1700 xlen, xlen);
1701 }
1702 return value;
1703 }
1704
1705 void consume_string(std::string &str, std::vector<uint8_t>::const_iterator &iter,
1706 std::vector<uint8_t>::const_iterator end, uint8_t separator)
1707 {
1708 while (iter != end && *iter != separator) {
1709 str.append(1, (char) *iter);
1710 iter++;
1711 }
1712 }
1713
1714 void gdbserver_t::handle_register_read(const std::vector<uint8_t> &packet)
1715 {
1716 // p n
1717
1718 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1719 unsigned int n = consume_hex_number(iter, packet.end());
1720 if (*iter != '#')
1721 return send_packet("E01");
1722
1723 add_operation(new register_read_op_t(*this, n));
1724 }
1725
1726 void gdbserver_t::handle_register_write(const std::vector<uint8_t> &packet)
1727 {
1728 // P n...=r...
1729
1730 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1731 unsigned int n = consume_hex_number(iter, packet.end());
1732 if (*iter != '=')
1733 return send_packet("E05");
1734 iter++;
1735
1736 reg_t value = consume_hex_number_le(iter, packet.end());
1737 if (*iter != '#')
1738 return send_packet("E06");
1739
1740 processor_t *p = sim->get_core(0);
1741
1742 add_operation(new register_write_op_t(*this, n, value));
1743
1744 return send_packet("OK");
1745 }
1746
1747 void gdbserver_t::handle_memory_read(const std::vector<uint8_t> &packet)
1748 {
1749 // m addr,length
1750 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1751 reg_t address = consume_hex_number(iter, packet.end());
1752 if (*iter != ',')
1753 return send_packet("E10");
1754 iter++;
1755 reg_t length = consume_hex_number(iter, packet.end());
1756 if (*iter != '#')
1757 return send_packet("E11");
1758
1759 add_operation(new collect_translation_info_op_t(*this, address, length));
1760 add_operation(new memory_read_op_t(*this, address, length));
1761 }
1762
1763 void gdbserver_t::handle_memory_binary_write(const std::vector<uint8_t> &packet)
1764 {
1765 // X addr,length:XX...
1766 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1767 reg_t address = consume_hex_number(iter, packet.end());
1768 if (*iter != ',')
1769 return send_packet("E20");
1770 iter++;
1771 reg_t length = consume_hex_number(iter, packet.end());
1772 if (*iter != ':')
1773 return send_packet("E21");
1774 iter++;
1775
1776 if (length == 0) {
1777 return send_packet("OK");
1778 }
1779
1780 unsigned char *data = new unsigned char[length];
1781 for (unsigned int i = 0; i < length; i++) {
1782 if (iter == packet.end()) {
1783 return send_packet("E22");
1784 }
1785 uint8_t c = *iter;
1786 iter++;
1787 if (c == '}') {
1788 // The binary data representation uses 7d (ascii ‘}’) as an escape
1789 // character. Any escaped byte is transmitted as the escape character
1790 // followed by the original character XORed with 0x20. For example, the
1791 // byte 0x7d would be transmitted as the two bytes 0x7d 0x5d. The bytes
1792 // 0x23 (ascii ‘#’), 0x24 (ascii ‘$’), and 0x7d (ascii ‘}’) must always
1793 // be escaped.
1794 if (iter == packet.end()) {
1795 return send_packet("E23");
1796 }
1797 c = (*iter) ^ 0x20;
1798 iter++;
1799 }
1800 data[i] = c;
1801 }
1802 if (*iter != '#')
1803 return send_packet("E4b"); // EOVERFLOW
1804
1805 add_operation(new collect_translation_info_op_t(*this, address, length));
1806 add_operation(new memory_write_op_t(*this, address, length, data));
1807 }
1808
1809 void gdbserver_t::handle_continue(const std::vector<uint8_t> &packet)
1810 {
1811 // c [addr]
1812 processor_t *p = sim->get_core(0);
1813 if (packet[2] != '#') {
1814 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1815 dpc = consume_hex_number(iter, packet.end());
1816 if (*iter != '#')
1817 return send_packet("E30");
1818 }
1819
1820 add_operation(new maybe_restore_tselect_op_t(*this));
1821 add_operation(new continue_op_t(*this, false));
1822 }
1823
1824 void gdbserver_t::handle_step(const std::vector<uint8_t> &packet)
1825 {
1826 // s [addr]
1827 if (packet[2] != '#') {
1828 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1829 die("handle_step");
1830 //p->state.pc = consume_hex_number(iter, packet.end());
1831 if (*iter != '#')
1832 return send_packet("E40");
1833 }
1834
1835 add_operation(new maybe_restore_tselect_op_t(*this));
1836 add_operation(new continue_op_t(*this, true));
1837 }
1838
1839 void gdbserver_t::handle_kill(const std::vector<uint8_t> &packet)
1840 {
1841 // k
1842 // The exact effect of this packet is not specified.
1843 // Looks like OpenOCD disconnects?
1844 // TODO
1845 }
1846
1847 void gdbserver_t::handle_extended(const std::vector<uint8_t> &packet)
1848 {
1849 // Enable extended mode. In extended mode, the remote server is made
1850 // persistent. The ‘R’ packet is used to restart the program being debugged.
1851 send_packet("OK");
1852 extended_mode = true;
1853 }
1854
1855 void gdbserver_t::software_breakpoint_insert(reg_t vaddr, unsigned int size)
1856 {
1857 fence_i_required = true;
1858 add_operation(new collect_translation_info_op_t(*this, vaddr, size));
1859 unsigned char* inst = new unsigned char[4];
1860 if (size == 2) {
1861 inst[0] = C_EBREAK & 0xff;
1862 inst[1] = (C_EBREAK >> 8) & 0xff;
1863 } else {
1864 inst[0] = EBREAK & 0xff;
1865 inst[1] = (EBREAK >> 8) & 0xff;
1866 inst[2] = (EBREAK >> 16) & 0xff;
1867 inst[3] = (EBREAK >> 24) & 0xff;
1868 }
1869
1870 software_breakpoint_t bp = {
1871 .vaddr = vaddr,
1872 .size = size
1873 };
1874 software_breakpoints[vaddr] = bp;
1875 add_operation(new memory_read_op_t(*this, bp.vaddr, bp.size,
1876 software_breakpoints[bp.vaddr].instruction));
1877 add_operation(new memory_write_op_t(*this, bp.vaddr, bp.size, inst));
1878 }
1879
1880 void gdbserver_t::software_breakpoint_remove(reg_t vaddr, unsigned int size)
1881 {
1882 fence_i_required = true;
1883 add_operation(new collect_translation_info_op_t(*this, vaddr, size));
1884
1885 software_breakpoint_t found_bp = software_breakpoints[vaddr];
1886 unsigned char* instruction = new unsigned char[4];
1887 memcpy(instruction, found_bp.instruction, 4);
1888 add_operation(new memory_write_op_t(*this, found_bp.vaddr,
1889 found_bp.size, instruction));
1890 software_breakpoints.erase(vaddr);
1891 }
1892
1893 void gdbserver_t::hardware_breakpoint_insert(const hardware_breakpoint_t &bp)
1894 {
1895 add_operation(new maybe_save_tselect_op_t(*this));
1896 add_operation(new hardware_breakpoint_insert_op_t(*this, bp));
1897 }
1898
1899 void gdbserver_t::hardware_breakpoint_remove(const hardware_breakpoint_t &bp)
1900 {
1901 add_operation(new maybe_save_tselect_op_t(*this));
1902 hardware_breakpoint_t found = *hardware_breakpoints.find(bp);
1903 add_operation(new hardware_breakpoint_remove_op_t(*this, found));
1904 }
1905
1906 void gdbserver_t::handle_breakpoint(const std::vector<uint8_t> &packet)
1907 {
1908 // insert: Z type,addr,length
1909 // remove: z type,addr,length
1910
1911 // type: 0 - software breakpoint, 1 - hardware breakpoint, 2 - write
1912 // watchpoint, 3 - read watchpoint, 4 - access watchpoint; addr is address;
1913 // length is in bytes. For a software breakpoint, length specifies the size
1914 // of the instruction to be patched. For hardware breakpoints and watchpoints
1915 // length specifies the memory region to be monitored. To avoid potential
1916 // problems with duplicate packets, the operations should be implemented in
1917 // an idempotent way.
1918
1919 bool insert = (packet[1] == 'Z');
1920 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1921 gdb_breakpoint_type_t type = static_cast<gdb_breakpoint_type_t>(
1922 consume_hex_number(iter, packet.end()));
1923 if (*iter != ',')
1924 return send_packet("E50");
1925 iter++;
1926 reg_t address = consume_hex_number(iter, packet.end());
1927 if (*iter != ',')
1928 return send_packet("E51");
1929 iter++;
1930 unsigned int size = consume_hex_number(iter, packet.end());
1931 // There may be more options after a ; here, but we don't support that.
1932 if (*iter != '#')
1933 return send_packet("E52");
1934
1935 switch (type) {
1936 case GB_SOFTWARE:
1937 if (size != 2 && size != 4) {
1938 return send_packet("E53");
1939 }
1940 if (insert) {
1941 software_breakpoint_insert(address, size);
1942 } else {
1943 software_breakpoint_remove(address, size);
1944 }
1945 break;
1946
1947 case GB_HARDWARE:
1948 case GB_WRITE:
1949 case GB_READ:
1950 case GB_ACCESS:
1951 {
1952 hardware_breakpoint_t bp = {
1953 .vaddr = address,
1954 .size = size
1955 };
1956 bp.load = (type == GB_READ || type == GB_ACCESS);
1957 bp.store = (type == GB_WRITE || type == GB_ACCESS);
1958 bp.execute = (type == GB_HARDWARE || type == GB_ACCESS);
1959 if (insert) {
1960 hardware_breakpoint_insert(bp);
1961 // Insert might fail if there's no space, so the insert operation will
1962 // send its own OK (or not).
1963 return;
1964 } else {
1965 hardware_breakpoint_remove(bp);
1966 }
1967 }
1968 break;
1969
1970 default:
1971 return send_packet("E56");
1972 }
1973
1974 return send_packet("OK");
1975 }
1976
1977 void gdbserver_t::handle_query(const std::vector<uint8_t> &packet)
1978 {
1979 std::string name;
1980 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1981
1982 consume_string(name, iter, packet.end(), ':');
1983 if (iter != packet.end())
1984 iter++;
1985 if (name == "Supported") {
1986 start_packet();
1987 while (iter != packet.end()) {
1988 std::string feature;
1989 consume_string(feature, iter, packet.end(), ';');
1990 if (iter != packet.end())
1991 iter++;
1992 if (feature == "swbreak+") {
1993 send("swbreak+;");
1994 }
1995 }
1996 send("PacketSize=131072;");
1997 return end_packet();
1998 }
1999
2000 D(fprintf(stderr, "Unsupported query %s\n", name.c_str()));
2001 return send_packet("");
2002 }
2003
2004 void gdbserver_t::handle_packet(const std::vector<uint8_t> &packet)
2005 {
2006 if (compute_checksum(packet) != extract_checksum(packet)) {
2007 fprintf(stderr, "Received %ld-byte packet with invalid checksum\n", packet.size());
2008 fprintf(stderr, "Computed checksum: %x\n", compute_checksum(packet));
2009 print_packet(packet);
2010 send("-");
2011 return;
2012 }
2013
2014 D(fprintf(stderr, "Received %ld-byte packet from debug client: ", packet.size()));
2015 D(print_packet(packet));
2016 send("+");
2017
2018 switch (packet[1]) {
2019 case '!':
2020 return handle_extended(packet);
2021 case '?':
2022 return handle_halt_reason(packet);
2023 case 'g':
2024 return handle_general_registers_read(packet);
2025 // case 'k':
2026 // return handle_kill(packet);
2027 case 'm':
2028 return handle_memory_read(packet);
2029 // case 'M':
2030 // return handle_memory_write(packet);
2031 case 'X':
2032 return handle_memory_binary_write(packet);
2033 case 'p':
2034 return handle_register_read(packet);
2035 case 'P':
2036 return handle_register_write(packet);
2037 case 'c':
2038 return handle_continue(packet);
2039 case 's':
2040 return handle_step(packet);
2041 case 'z':
2042 case 'Z':
2043 return handle_breakpoint(packet);
2044 case 'q':
2045 case 'Q':
2046 return handle_query(packet);
2047 }
2048
2049 // Not supported.
2050 D(fprintf(stderr, "** Unsupported packet: "));
2051 D(print_packet(packet));
2052 send_packet("");
2053 }
2054
2055 void gdbserver_t::handle_interrupt()
2056 {
2057 processor_t *p = sim->get_core(0);
2058 add_operation(new halt_op_t(*this, true));
2059 }
2060
2061 void gdbserver_t::handle()
2062 {
2063 if (client_fd > 0) {
2064 processor_t *p = sim->get_core(0);
2065
2066 bool interrupt = sim->debug_module.get_interrupt(0);
2067
2068 if (!interrupt && !operation_queue.empty()) {
2069 operation_t *operation = operation_queue.front();
2070 if (operation->step()) {
2071 operation_queue.pop();
2072 delete operation;
2073 }
2074 }
2075
2076 bool halt_notification = sim->debug_module.get_halt_notification(0);
2077 if (halt_notification) {
2078 sim->debug_module.clear_halt_notification(0);
2079 add_operation(new halt_op_t(*this, true));
2080 }
2081
2082 this->read();
2083 this->write();
2084
2085 } else {
2086 this->accept();
2087 }
2088
2089 if (operation_queue.empty()) {
2090 this->process_requests();
2091 }
2092 }
2093
2094 void gdbserver_t::send(const char* msg)
2095 {
2096 unsigned int length = strlen(msg);
2097 for (const char *c = msg; *c; c++)
2098 running_checksum += *c;
2099 send_buf.append((const uint8_t *) msg, length);
2100 }
2101
2102 void gdbserver_t::send(uint64_t value)
2103 {
2104 char buffer[3];
2105 for (unsigned int i = 0; i < 8; i++) {
2106 sprintf(buffer, "%02x", (int) (value & 0xff));
2107 send(buffer);
2108 value >>= 8;
2109 }
2110 }
2111
2112 void gdbserver_t::send(uint32_t value)
2113 {
2114 char buffer[3];
2115 for (unsigned int i = 0; i < 4; i++) {
2116 sprintf(buffer, "%02x", (int) (value & 0xff));
2117 send(buffer);
2118 value >>= 8;
2119 }
2120 }
2121
2122 void gdbserver_t::send(uint8_t value)
2123 {
2124 char buffer[3];
2125 sprintf(buffer, "%02x", (int) value);
2126 send(buffer);
2127 }
2128
2129 void gdbserver_t::send_packet(const char* data)
2130 {
2131 start_packet();
2132 send(data);
2133 end_packet();
2134 expect_ack = true;
2135 }
2136
2137 void gdbserver_t::start_packet()
2138 {
2139 send("$");
2140 running_checksum = 0;
2141 }
2142
2143 void gdbserver_t::end_packet(const char* data)
2144 {
2145 if (data) {
2146 send(data);
2147 }
2148
2149 char checksum_string[4];
2150 sprintf(checksum_string, "#%02x", running_checksum);
2151 send(checksum_string);
2152 expect_ack = true;
2153 }