5e2910f642f21a2a59aaf67c8c4013455f4104c3
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "disasm.h"
9 #include <cinttypes>
10 #include <cmath>
11 #include <cstdlib>
12 #include <iostream>
13 #include <assert.h>
14 #include <limits.h>
15 #include <stdexcept>
16
17 processor_t::processor_t(sim_t* _sim, mmu_t* _mmu, uint32_t _id)
18 : sim(_sim), mmu(_mmu), ext(NULL), id(_id), run(false), debug(false),
19 opcode_bits(0)
20 {
21 reset(true);
22 mmu->set_processor(this);
23
24 #define DECLARE_INSN(name, match, mask) REGISTER_INSN(this, name, match, mask)
25 #include "encoding.h"
26 #undef DECLARE_INSN
27 }
28
29 processor_t::~processor_t()
30 {
31 }
32
33 void state_t::reset()
34 {
35 // the ISA guarantees on boot that the PC is 0x2000 and the the processor
36 // is in supervisor mode, and in 64-bit mode, if supported, with traps
37 // and virtual memory disabled.
38 sr = SR_S;
39 #ifdef RISCV_ENABLE_64BIT
40 sr |= SR_S64;
41 #endif
42 pc = 0x2000;
43
44 // the following state is undefined upon boot-up,
45 // but we zero it for determinism
46 XPR.reset();
47 FPR.reset();
48
49 evec = 0;
50 epc = 0;
51 badvaddr = 0;
52 cause = 0;
53 pcr_k0 = 0;
54 pcr_k1 = 0;
55 count = 0;
56 compare = 0;
57 fflags = 0;
58 frm = 0;
59
60 load_reservation = -1;
61 }
62
63 void processor_t::set_debug(bool value)
64 {
65 debug = value;
66 if (ext)
67 ext->set_debug(value);
68 }
69
70 void processor_t::reset(bool value)
71 {
72 if (run == !value)
73 return;
74 run = !value;
75
76 state.reset(); // reset the core
77 if (ext)
78 ext->reset(); // reset the extension
79 }
80
81 void processor_t::take_interrupt()
82 {
83 uint32_t interrupts = (state.sr & SR_IP) >> SR_IP_SHIFT;
84 interrupts &= (state.sr & SR_IM) >> SR_IM_SHIFT;
85
86 if (interrupts && (state.sr & SR_EI))
87 for (int i = 0; ; i++, interrupts >>= 1)
88 if (interrupts & 1)
89 throw trap_t((1ULL << ((state.sr & SR_S64) ? 63 : 31)) + i);
90 }
91
92 void processor_t::step(size_t n)
93 {
94 if(!run)
95 return;
96
97 size_t i = 0;
98 reg_t npc = state.pc;
99 mmu_t* _mmu = mmu;
100
101 try
102 {
103 take_interrupt();
104
105 // execute_insn fetches and executes one instruction
106 #define execute_insn(noisy) \
107 do { \
108 mmu_t::insn_fetch_t fetch = _mmu->load_insn(npc); \
109 if(noisy) disasm(fetch.insn.insn); \
110 npc = fetch.func(this, fetch.insn.insn, npc); \
111 } while(0)
112
113
114 // special execute_insn for commit log dumping
115 #ifdef RISCV_ENABLE_COMMITLOG
116 //static disassembler disasmblr;
117 #undef execute_insn
118 #define execute_insn(noisy) \
119 do { \
120 mmu_t::insn_fetch_t fetch = _mmu->load_insn(npc); \
121 if(noisy) disasm(fetch.insn.insn); \
122 bool in_spvr = state.sr & SR_S; \
123 if (!in_spvr) fprintf(stderr, "\n0x%016" PRIx64 " (0x%08" PRIx32 ") ", npc, fetch.insn.insn.bits()); \
124 /*if (!in_spvr) fprintf(stderr, "\n0x%016" PRIx64 " (0x%08" PRIx32 ") %s ", npc, fetch.insn.insn.bits(), disasmblr.disassemble(fetch.insn.insn).c_str());*/ \
125 npc = fetch.func(this, fetch.insn.insn, npc); \
126 } while(0)
127 #endif
128
129 if(debug) for( ; i < n; i++) // print out instructions as we go
130 execute_insn(true);
131 else
132 {
133 // unrolled for speed
134 for( ; n > 3 && i < n-3; i+=4)
135 {
136 execute_insn(false);
137 execute_insn(false);
138 execute_insn(false);
139 execute_insn(false);
140 }
141 for( ; i < n; i++)
142 execute_insn(false);
143 }
144
145 state.pc = npc;
146 }
147 catch(trap_t& t)
148 {
149 take_trap(npc, t);
150 }
151
152 // update timer and possibly register a timer interrupt
153 uint32_t old_count = state.count;
154 state.count += i;
155 if(old_count < state.compare && uint64_t(old_count) + i >= state.compare)
156 set_interrupt(IRQ_TIMER, true);
157 }
158
159 void processor_t::take_trap(reg_t pc, trap_t& t)
160 {
161 if (debug)
162 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
163 id, t.name(), pc);
164
165 // switch to supervisor, set previous supervisor bit, disable interrupts
166 set_pcr(CSR_STATUS, (((state.sr & ~SR_EI) | SR_S) & ~SR_PS & ~SR_PEI) |
167 ((state.sr & SR_S) ? SR_PS : 0) |
168 ((state.sr & SR_EI) ? SR_PEI : 0));
169
170 yield_load_reservation();
171 state.cause = t.cause();
172 state.epc = pc;
173 state.pc = state.evec;
174
175 t.side_effects(&state); // might set badvaddr etc.
176 }
177
178 void processor_t::deliver_ipi()
179 {
180 if (run)
181 set_pcr(CSR_CLEAR_IPI, 1);
182 }
183
184 void processor_t::disasm(insn_t insn)
185 {
186 // the disassembler is stateless, so we share it
187 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx32 ") %s\n",
188 id, state.pc, insn.bits(), disassembler.disassemble(insn).c_str());
189 }
190
191 reg_t processor_t::set_pcr(int which, reg_t val)
192 {
193 reg_t old_pcr = get_pcr(which);
194
195 switch (which)
196 {
197 case CSR_FFLAGS:
198 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
199 break;
200 case CSR_FRM:
201 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
202 break;
203 case CSR_FCSR:
204 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
205 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
206 break;
207 case CSR_STATUS:
208 state.sr = (val & ~SR_IP) | (state.sr & SR_IP);
209 #ifndef RISCV_ENABLE_64BIT
210 state.sr &= ~(SR_S64 | SR_U64);
211 #endif
212 #ifndef RISCV_ENABLE_FPU
213 state.sr &= ~SR_EF;
214 #endif
215 if (!ext)
216 state.sr &= ~SR_EA;
217 state.sr &= ~SR_ZERO;
218 mmu->flush_tlb();
219 break;
220 case CSR_EPC:
221 state.epc = val;
222 break;
223 case CSR_EVEC:
224 state.evec = val;
225 break;
226 case CSR_CYCLE:
227 case CSR_TIME:
228 case CSR_INSTRET:
229 case CSR_COUNT:
230 state.count = val;
231 break;
232 case CSR_COMPARE:
233 set_interrupt(IRQ_TIMER, false);
234 state.compare = val;
235 break;
236 case CSR_PTBR:
237 state.ptbr = val & ~(PGSIZE-1);
238 break;
239 case CSR_SEND_IPI:
240 sim->send_ipi(val);
241 break;
242 case CSR_CLEAR_IPI:
243 set_interrupt(IRQ_IPI, val & 1);
244 break;
245 case CSR_SUP0:
246 state.pcr_k0 = val;
247 break;
248 case CSR_SUP1:
249 state.pcr_k1 = val;
250 break;
251 case CSR_TOHOST:
252 if (state.tohost == 0)
253 state.tohost = val;
254 break;
255 case CSR_FROMHOST:
256 set_interrupt(IRQ_HOST, val != 0);
257 state.fromhost = val;
258 break;
259 }
260
261 return old_pcr;
262 }
263
264 reg_t processor_t::get_pcr(int which)
265 {
266 switch (which)
267 {
268 case CSR_FFLAGS:
269 return state.fflags;
270 case CSR_FRM:
271 return state.frm;
272 case CSR_FCSR:
273 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
274 case CSR_STATUS:
275 return state.sr;
276 case CSR_EPC:
277 return state.epc;
278 case CSR_BADVADDR:
279 return state.badvaddr;
280 case CSR_EVEC:
281 return state.evec;
282 case CSR_CYCLE:
283 case CSR_TIME:
284 case CSR_INSTRET:
285 case CSR_COUNT:
286 return state.count;
287 case CSR_COMPARE:
288 return state.compare;
289 case CSR_CAUSE:
290 return state.cause;
291 case CSR_PTBR:
292 return state.ptbr;
293 case CSR_ASID:
294 return 0;
295 case CSR_FATC:
296 mmu->flush_tlb();
297 return 0;
298 case CSR_HARTID:
299 return id;
300 case CSR_IMPL:
301 return 1;
302 case CSR_SUP0:
303 return state.pcr_k0;
304 case CSR_SUP1:
305 return state.pcr_k1;
306 case CSR_TOHOST:
307 return state.tohost;
308 case CSR_FROMHOST:
309 return state.fromhost;
310 default:
311 return -1;
312 }
313 }
314
315 void processor_t::set_interrupt(int which, bool on)
316 {
317 uint32_t mask = (1 << (which + SR_IP_SHIFT)) & SR_IP;
318 if (on)
319 state.sr |= mask;
320 else
321 state.sr &= ~mask;
322 }
323
324 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
325 {
326 throw trap_illegal_instruction();
327 }
328
329 insn_func_t processor_t::decode_insn(insn_t insn)
330 {
331 bool rv64 = (state.sr & SR_S) ? (state.sr & SR_S64) : (state.sr & SR_U64);
332
333 auto key = insn.bits() & ((1L << opcode_bits)-1);
334 for (auto it = opcode_map.find(key); it != opcode_map.end() && it->first == key; ++it)
335 if ((insn.bits() & it->second.mask) == it->second.match)
336 return rv64 ? it->second.rv64 : it->second.rv32;
337
338 return &illegal_instruction;
339 }
340
341 void processor_t::register_insn(insn_desc_t desc)
342 {
343 assert(desc.mask & 1);
344 if (opcode_bits == 0 || (desc.mask & ((1L << opcode_bits)-1)) != ((1L << opcode_bits)-1))
345 {
346 unsigned x = 0;
347 while ((desc.mask & ((1L << (x+1))-1)) == ((1L << (x+1))-1) &&
348 (opcode_bits == 0 || x <= opcode_bits))
349 x++;
350 opcode_bits = x;
351
352 decltype(opcode_map) new_map;
353 for (auto it = opcode_map.begin(); it != opcode_map.end(); ++it)
354 new_map.insert(std::make_pair(it->second.match & ((1L<<x)-1), it->second));
355 opcode_map = new_map;
356 }
357
358 opcode_map.insert(std::make_pair(desc.match & ((1L<<opcode_bits)-1), desc));
359 }
360
361 void processor_t::register_extension(extension_t* x)
362 {
363 for (auto insn : x->get_instructions())
364 register_insn(insn);
365 for (auto disasm_insn : x->get_disasms())
366 disassembler.add_insn(disasm_insn);
367 if (ext != NULL)
368 throw std::logic_error("only one extension may be registered");
369 ext = x;
370 x->set_processor(this);
371 }