83bfbec5451acce3083f3bfbaac699679747121a
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "htif.h"
9 #include "disasm.h"
10 #include "icache.h"
11 #include <cinttypes>
12 #include <cmath>
13 #include <cstdlib>
14 #include <iostream>
15 #include <assert.h>
16 #include <limits.h>
17 #include <stdexcept>
18 #include <algorithm>
19
20 processor_t::processor_t(sim_t* _sim, mmu_t* _mmu, uint32_t _id)
21 : sim(_sim), mmu(_mmu), ext(NULL), disassembler(new disassembler_t),
22 id(_id), run(false), debug(false)
23 {
24 reset(true);
25 mmu->set_processor(this);
26
27 #define DECLARE_INSN(name, match, mask) REGISTER_INSN(this, name, match, mask)
28 #include "encoding.h"
29 #undef DECLARE_INSN
30 build_opcode_map();
31 }
32
33 processor_t::~processor_t()
34 {
35 }
36
37 void state_t::reset()
38 {
39 // the ISA guarantees on boot that the PC is 0x2000 and the the processor
40 // is in supervisor mode, and in 64-bit mode, if supported, with traps
41 // and virtual memory disabled.
42 sr = SR_S | SR_S64;
43 pc = 0x2000;
44
45 // the following state is undefined upon boot-up,
46 // but we zero it for determinism
47 XPR.reset();
48 FPR.reset();
49
50 epc = 0;
51 badvaddr = 0;
52 evec = 0;
53 ptbr = 0;
54 pcr_k0 = 0;
55 pcr_k1 = 0;
56 cause = 0;
57 tohost = 0;
58 fromhost = 0;
59 count = 0;
60 compare = 0;
61 fflags = 0;
62 frm = 0;
63
64 load_reservation = -1;
65 }
66
67 void processor_t::set_debug(bool value)
68 {
69 debug = value;
70 if (ext)
71 ext->set_debug(value);
72 }
73
74 void processor_t::reset(bool value)
75 {
76 if (run == !value)
77 return;
78 run = !value;
79
80 state.reset(); // reset the core
81 set_pcr(CSR_STATUS, state.sr);
82
83 if (ext)
84 ext->reset(); // reset the extension
85 }
86
87 void processor_t::take_interrupt()
88 {
89 uint32_t interrupts = (state.sr & SR_IP) >> SR_IP_SHIFT;
90 interrupts &= (state.sr & SR_IM) >> SR_IM_SHIFT;
91
92 if (interrupts && (state.sr & SR_EI))
93 for (int i = 0; ; i++, interrupts >>= 1)
94 if (interrupts & 1)
95 throw trap_t((1ULL << ((state.sr & SR_S64) ? 63 : 31)) + i);
96 }
97
98 static void commit_log(state_t* state, insn_t insn)
99 {
100 #ifdef RISCV_ENABLE_COMMITLOG
101 if (!(state->sr & SR_S))
102 fprintf(stderr, "\n0x%016" PRIx64 " (0x%08" PRIx32 ") ", state->pc, insn.bits());
103 #endif
104 }
105
106 void processor_t::step(size_t n)
107 {
108 if(!run)
109 return;
110
111 mmu_t* _mmu = mmu;
112 auto count32 = decltype(state.compare)(state.count);
113 bool count_le_compare = count32 <= state.compare;
114 n = std::min(n, size_t(state.compare - count32) | 1);
115
116 try
117 {
118 take_interrupt();
119
120 if (debug) // print out instructions as we go
121 {
122 for (size_t i = 0; i < n; state.count++, i++)
123 {
124 insn_fetch_t fetch = mmu->load_insn(state.pc);
125 disasm(fetch.insn.insn);
126 commit_log(&state, fetch.insn.insn);
127 state.pc = fetch.func(this, fetch.insn.insn, state.pc);
128 }
129 }
130 else while (n > 0)
131 {
132 size_t idx = (state.pc / sizeof(insn_t)) % ICACHE_SIZE;
133 auto ic_entry_init = &_mmu->icache[idx], ic_entry = ic_entry_init;
134
135 #define update_count() { \
136 size_t i = ic_entry - ic_entry_init; \
137 state.count += i; \
138 if (i >= n) break; \
139 n -= i; }
140
141 #define ICACHE_ACCESS(idx) { \
142 insn_t insn = ic_entry->data.insn.insn; \
143 insn_func_t func = ic_entry->data.func; \
144 if (unlikely(ic_entry->tag != state.pc)) break; \
145 ic_entry++; \
146 commit_log(&state, insn); \
147 state.pc = func(this, insn, state.pc); }
148
149 switch (idx) while (true)
150 {
151 ICACHE_SWITCH;
152 update_count();
153 ic_entry_init = ic_entry = &_mmu->icache[0];
154 }
155
156 _mmu->access_icache(state.pc);
157 update_count();
158 }
159 }
160 catch(trap_t& t)
161 {
162 take_trap(t);
163 }
164
165 bool count_ge_compare =
166 uint64_t(n) + decltype(state.compare)(state.count) >= state.compare;
167 if (count_le_compare && count_ge_compare)
168 set_interrupt(IRQ_TIMER, true);
169 }
170
171 void processor_t::take_trap(trap_t& t)
172 {
173 if (debug)
174 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
175 id, t.name(), state.pc);
176
177 // switch to supervisor, set previous supervisor bit, disable interrupts
178 set_pcr(CSR_STATUS, (((state.sr & ~SR_EI) | SR_S) & ~SR_PS & ~SR_PEI) |
179 ((state.sr & SR_S) ? SR_PS : 0) |
180 ((state.sr & SR_EI) ? SR_PEI : 0));
181
182 yield_load_reservation();
183 state.cause = t.cause();
184 state.epc = state.pc;
185 state.pc = state.evec;
186
187 t.side_effects(&state); // might set badvaddr etc.
188 }
189
190 void processor_t::deliver_ipi()
191 {
192 if (run)
193 set_pcr(CSR_CLEAR_IPI, 1);
194 }
195
196 void processor_t::disasm(insn_t insn)
197 {
198 // the disassembler is stateless, so we share it
199 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx32 ") %s\n",
200 id, state.pc, insn.bits(), disassembler->disassemble(insn).c_str());
201 }
202
203 reg_t processor_t::set_pcr(int which, reg_t val)
204 {
205 reg_t old_pcr = get_pcr(which);
206
207 switch (which)
208 {
209 case CSR_FFLAGS:
210 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
211 break;
212 case CSR_FRM:
213 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
214 break;
215 case CSR_FCSR:
216 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
217 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
218 break;
219 case CSR_STATUS:
220 state.sr = (val & ~SR_IP) | (state.sr & SR_IP);
221 #ifndef RISCV_ENABLE_64BIT
222 state.sr &= ~(SR_S64 | SR_U64);
223 #endif
224 #ifndef RISCV_ENABLE_FPU
225 state.sr &= ~SR_EF;
226 #endif
227 if (!ext)
228 state.sr &= ~SR_EA;
229 state.sr &= ~SR_ZERO;
230 rv64 = (state.sr & SR_S) ? (state.sr & SR_S64) : (state.sr & SR_U64);
231 mmu->flush_tlb();
232 break;
233 case CSR_EPC:
234 state.epc = val;
235 break;
236 case CSR_EVEC:
237 state.evec = val & ~3;
238 break;
239 case CSR_CYCLE:
240 case CSR_TIME:
241 case CSR_INSTRET:
242 case CSR_COUNT:
243 state.count = val;
244 break;
245 case CSR_COMPARE:
246 set_interrupt(IRQ_TIMER, false);
247 state.compare = val;
248 break;
249 case CSR_PTBR:
250 state.ptbr = val & ~(PGSIZE-1);
251 break;
252 case CSR_SEND_IPI:
253 sim->send_ipi(val);
254 break;
255 case CSR_CLEAR_IPI:
256 set_interrupt(IRQ_IPI, val & 1);
257 break;
258 case CSR_SUP0:
259 state.pcr_k0 = val;
260 break;
261 case CSR_SUP1:
262 state.pcr_k1 = val;
263 break;
264 case CSR_TOHOST:
265 if (state.tohost == 0)
266 state.tohost = val;
267 break;
268 case CSR_FROMHOST:
269 set_fromhost(val);
270 break;
271 }
272
273 return old_pcr;
274 }
275
276 void processor_t::set_fromhost(reg_t val)
277 {
278 set_interrupt(IRQ_HOST, val != 0);
279 state.fromhost = val;
280 }
281
282 reg_t processor_t::get_pcr(int which)
283 {
284 switch (which)
285 {
286 case CSR_FFLAGS:
287 return state.fflags;
288 case CSR_FRM:
289 return state.frm;
290 case CSR_FCSR:
291 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
292 case CSR_STATUS:
293 return state.sr;
294 case CSR_EPC:
295 return state.epc;
296 case CSR_BADVADDR:
297 return state.badvaddr;
298 case CSR_EVEC:
299 return state.evec;
300 case CSR_CYCLE:
301 case CSR_TIME:
302 case CSR_INSTRET:
303 case CSR_COUNT:
304 return state.count;
305 case CSR_COMPARE:
306 return state.compare;
307 case CSR_CAUSE:
308 return state.cause;
309 case CSR_PTBR:
310 return state.ptbr;
311 case CSR_SEND_IPI:
312 case CSR_CLEAR_IPI:
313 return 0;
314 case CSR_ASID:
315 return 0;
316 case CSR_FATC:
317 mmu->flush_tlb();
318 return 0;
319 case CSR_HARTID:
320 return id;
321 case CSR_IMPL:
322 return 1;
323 case CSR_SUP0:
324 return state.pcr_k0;
325 case CSR_SUP1:
326 return state.pcr_k1;
327 case CSR_TOHOST:
328 sim->get_htif()->tick(); // not necessary, but faster
329 return state.tohost;
330 case CSR_FROMHOST:
331 sim->get_htif()->tick(); // not necessary, but faster
332 return state.fromhost;
333 default:
334 throw trap_illegal_instruction();
335 }
336 }
337
338 void processor_t::set_interrupt(int which, bool on)
339 {
340 uint32_t mask = (1 << (which + SR_IP_SHIFT)) & SR_IP;
341 if (on)
342 state.sr |= mask;
343 else
344 state.sr &= ~mask;
345 }
346
347 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
348 {
349 throw trap_illegal_instruction();
350 }
351
352 insn_func_t processor_t::decode_insn(insn_t insn)
353 {
354 size_t mask = opcode_map.size()-1;
355 insn_desc_t* desc = opcode_map[insn.bits() & mask];
356
357 while ((insn.bits() & desc->mask) != desc->match)
358 desc++;
359
360 return rv64 ? desc->rv64 : desc->rv32;
361 }
362
363 void processor_t::register_insn(insn_desc_t desc)
364 {
365 assert(desc.mask & 1);
366 instructions.push_back(desc);
367 }
368
369 void processor_t::build_opcode_map()
370 {
371 size_t buckets = -1;
372 for (auto& inst : instructions)
373 while ((inst.mask & buckets) != buckets)
374 buckets /= 2;
375 buckets++;
376
377 struct cmp {
378 decltype(insn_desc_t::match) mask;
379 cmp(decltype(mask) mask) : mask(mask) {}
380 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
381 if ((lhs.match & mask) != (rhs.match & mask))
382 return (lhs.match & mask) < (rhs.match & mask);
383 return lhs.match < rhs.match;
384 }
385 };
386 std::sort(instructions.begin(), instructions.end(), cmp(buckets-1));
387
388 opcode_map.resize(buckets);
389 opcode_store.resize(instructions.size() + 1);
390
391 size_t j = 0;
392 for (size_t b = 0, i = 0; b < buckets; b++)
393 {
394 opcode_map[b] = &opcode_store[j];
395 while (i < instructions.size() && b == (instructions[i].match & (buckets-1)))
396 opcode_store[j++] = instructions[i++];
397 }
398
399 assert(j == opcode_store.size()-1);
400 opcode_store[j].match = opcode_store[j].mask = 0;
401 opcode_store[j].rv32 = &illegal_instruction;
402 opcode_store[j].rv64 = &illegal_instruction;
403 }
404
405 void processor_t::register_extension(extension_t* x)
406 {
407 for (auto insn : x->get_instructions())
408 register_insn(insn);
409 build_opcode_map();
410 for (auto disasm_insn : x->get_disasms())
411 disassembler->add_insn(disasm_insn);
412 if (ext != NULL)
413 throw std::logic_error("only one extension may be registered");
414 ext = x;
415 x->set_processor(this);
416 }