(no commit message)
[libreriscv.git] / simple_v_extension / vector_ops.mdwn
1 [[!tag standards]]
2
3 # Vector Operations Extension to SV
4
5 This extension defines vector operations that would otherwise take several cycles to complete in software. With 3D priorities being to compute as many pixels per clock as possible, the normal RISC rules (reduce opcode count and make heavy use of macro op fusion) do not necessarily apply.
6
7 This extension is usually dependent on SV SUBVL being implemented. When SUBVL is set to define the length of a subvector the operations in this extension interpret the elements as a single vector.
8
9 Normally in SV all operations are scalar and independent, and the operations on them may inherently be independently parallelised, with the result being a vector of length exactly equal to the input vectors.
10
11 In this extension, the subvector itself is typically the unit, although some operations will work on scalars or standard vectors as well, or the result is a scalar that is dependent on all elements within the vector arguments.
12
13 However given that some of the parameters are vectors (with and without SUBVL set), and some are scalars (where SUBVL will not apply), some clear rules need to be defined as to how the operations work.
14
15 Examples which can require SUBVL include cross product and may in future involve complex numbers.
16
17 ## CORDIC
18
19 6 opcode options (fmt3):
20
21 * CORDIC.lin.rot vd, vs, beta
22 * CORDIC.cir.rot vd, vs, beta
23 * CORDIC.hyp.rot vd, vs, beta
24 * CORDIC.lin.vec vd, vs, beta
25 * CORDIC.cir.vec vd, vs, beta
26 * CORDIC.hyp.vec vd, vs, beta
27
28
29 | Instr | result | src1 | src2 | SUBVL | VL | Notes |
30 | ------------------ | ------ | ---- | ---- | ----- | -- | ------ |
31 | CORDIC.x.t vd, vs1, rs2 | vec2 | vec2 | scal | 2 | any | src2 ignores SUBVL |
32
33 SUBVL must be set to 2 and applies to vd and vs. SUBVL is *ignored* on beta. vd and vs must be marked as vectors.
34
35 VL may be applied. beta as a scalar is ok (applies across all vectors vd and vs). Predication is also ok (single predication) sourced from vd. Use of swizzle is also ok.
36
37 Non vector args vd, vs are reserved encodings.
38
39 CORDIC is an extremely general-purpose algorithm useful for a huge number
40 of diverse purposes. In its full form it does however require quite a
41 few parameters, one of which is a vector, making it awkward to include in
42 a standard "scalar" ISA. Additionally the coordinates can be set to circular,
43 linear or hyperbolic, producing three different modes, and the algorithm
44 may also be run in either "vector" mode or "rotation" mode. See [[discussion]]
45
46 CORDIC can also be used for performing DCT. See
47 <https://arxiv.org/abs/1606.02424>
48
49 CORDIC has several RADIX-4 papers for efficient pipelining. Each stage requires its own ROM tables which can get costly. Two combinatorial blocks may be chained together to double the RADIX and halve the pipeline depth, at the cost of doubling the latency.
50
51 Also, to get good accuracy, particularly at the limits of CORDIC input range, requires double the bitwidth of the output in internal computations. This similar to how MUL requires double the bitwidth to compute.
52
53 Links:
54
55 * <http://www.myhdl.org/docs/examples/sinecomp/>
56 * <https://www.atlantis-press.com/proceedings/jcis2006/232>
57
58 ## Vector cross product
59
60 * VCROSS vd, vs1, vs1
61
62 Result is the cross product of x and y.
63
64 SUBVL must be set to 3, and all regs must be vectors. VL nonzero produces multiple results in vd.
65
66 | Instr | result | src1 | src2 | SUBVL | VL |
67 | ------------------ | ------ | ---- | ---- | ----- | -- |
68 | VCROSS vd, vs1, vs2 | vec3 | vec3 | vec3 | 3 | any |
69
70 The resulting components are, in order:
71
72 x[1] * y[2] - y[1] * x[2]
73 x[2] * y[0] - y[2] * x[0]
74 x[0] * y[1] - y[0] * x[1]
75
76 All the operands must be vectors of 3 components of a floating-point type.
77
78 Pseudocode:
79
80 vec3 a, b; // elements in order a.x, a.y, a.z
81 // compute a cross b:
82 vec3 t1 = a.yzx; // produce vector [a.y, a.z, a.x]
83 vec3 t2 = b.zxy;
84 vec3 t3 = a.zxy;
85 vec3 t4 = b.yzx;
86 vec3 p = t3 * t4;
87 vec3 cross = t1 * t2 - p;
88
89 Assembler:
90
91 fswizzlei,2130 F4, F1
92 fswizzlei,1320 F5, F1
93 fswizzlei,2130 F6, F2
94 fswizzlei,1320 F7, F2
95 fmul F8, F5, F6
96 fmulsub F3, F4, F7, F8
97
98 ## Vector dot product
99
100 * VDOT rd, vs1, vs2
101
102 Computes the dot product of two vectors. Internal accuracy must be
103 greater than the input vectors and the result.
104
105 There are two possible argument options:
106
107 * SUBVL=2,3,4 vs1 and vs2 set as vectors, multiple results are generated. When VL is set, only the first (unpredicated) SUBVector is used to create a result, if rd is scalar (standard behaviour for single predication). Otherwise, if rd is a vector, multiple scalar results are calculated (i.e. SUBVL is always ignored for rd). Swizzling may be applied.
108 * When rd=scalar, SUBVL=1 and vs1=vec, vs2=vec, one scalar result is generated from the entire src vectors. Predication is allowed on the src vectors.
109
110
111 | Instr | result | src1 | src2 | SUBVL | VL |
112 | ------------------ | ------ | ---- | ---- | ----- | -- |
113 | VDOT rd, vs1, vs2 | scal | vec | vec | 2-4 | any |
114 | VDOT rd, vs1, vs2 | scal | vec | vec | 1 | any |
115
116 Pseudocode in python:
117
118 from operator import mul
119 sum(map(mul, A, B))
120
121 Pseudocode in c:
122
123 double dot_product(float v[], float u[], int n)
124 {
125 double result = 0.0;
126 for (int i = 0; i < n; i++)
127 result += v[i] * u[i];
128 return result;
129 }
130
131 ## Vector Normalisation (not included)
132
133 Vector normalisation may be performed through dot product, recip square root and multiplication:
134
135 fdot F3, F1, F1 # vector dot with self
136 rcpsqrta F3, F3
137 fscale,0 F2, F3, F1
138
139 Or it may be performed through VLEN (Vector length) and division.
140
141 ## Vector length
142
143 * rd=scalar, vs1=vec (SUBVL=1)
144 * rd=scalar, vs1=vec (SUBVL=2,3,4) only 1 (predication rules apply)
145 * rd=vec, SUBVL ignored; vs1=vec, SUBVL=2,3,4
146 * rd=vec, SUBVL ignored; vs1=vec, SUBVL=1: reserved encoding.
147
148 * VLEN rd, vs1
149
150 The scalar length of a vector:
151
152 sqrt(x[0]^2 + x[1]^2 + ...).
153
154 One option is for this to be a macro op fusion sequence, with inverse-sqrt also being a second macro op sequence suitable for normalisation.
155
156 ## Vector distance
157
158 * VDIST rd, vs1, vs2
159
160 The scalar distance between two vectors. Subtracts one vector from the
161 other and returns length:
162
163 length(v0 - v1)
164
165 ## Vector LERP
166
167 * VLERP vd, vs1, rs2 # SUBVL=2: vs1.v0 vs1.v1
168
169 | Instr | result | src1 | src2 | SUBVL | VL |
170 | ------------------ | ------ | ---- | ---- | ----- | -- |
171 | VLERP vd, vs1, rs2 | vec2 | vec2 | scal | 2 | any |
172
173 Known as **fmix** in GLSL.
174
175 <https://en.m.wikipedia.org/wiki/Linear_interpolation>
176
177 Pseudocode:
178
179 // Imprecise method, which does not guarantee v = v1 when t = 1,
180 // due to floating-point arithmetic error.
181 // This form may be used when the hardware has a native fused
182 // multiply-add instruction.
183 float lerp(float v0, float v1, float t) {
184 return v0 + t * (v1 - v0);
185 }
186
187 // Precise method, which guarantees v = v1 when t = 1.
188 float lerp(float v0, float v1, float t) {
189 return (1 - t) * v0 + t * v1;
190 }
191
192 ## Vector SLERP
193
194 * VSLERP vd, vs1, vs2, rs3
195
196 Not recommended as it is not commonly used and has several trigonometric
197 functions, although CORDIC in vector rotate circular mode is designed for this purpose. Also a costly 4 arg operation.
198
199 <https://en.m.wikipedia.org/wiki/Slerp>
200
201 Pseudocode:
202
203 Quaternion slerp(Quaternion v0, Quaternion v1, double t) {
204 // Only unit quaternions are valid rotations.
205 // Normalize to avoid undefined behavior.
206 v0.normalize();
207 v1.normalize();
208
209 // Compute the cosine of the angle between the two vectors.
210 double dot = dot_product(v0, v1);
211
212 // If the dot product is negative, slerp won't take
213 // the shorter path. Note that v1 and -v1 are equivalent when
214 // the negation is applied to all four components. Fix by
215 // reversing one quaternion.
216 if (dot < 0.0f) {
217 v1 = -v1;
218 dot = -dot;
219 }
220
221 const double DOT_THRESHOLD = 0.9995;
222 if (dot > DOT_THRESHOLD) {
223 // If the inputs are too close for comfort, linearly interpolate
224 // and normalize the result.
225
226 Quaternion result = v0 + t*(v1 - v0);
227 result.normalize();
228 return result;
229 }
230
231 // Since dot is in range [0, DOT_THRESHOLD], acos is safe
232 double theta_0 = acos(dot); // theta_0 = angle between input vectors
233 double theta = theta_0*t; // theta = angle between v0 and result
234 double sin_theta = sin(theta); // compute this value only once
235 double sin_theta_0 = sin(theta_0); // compute this value only once
236
237 double s0 = cos(theta) - dot * sin_theta / sin_theta_0; // == sin(theta_0 - theta) / sin(theta_0)
238 double s1 = sin_theta / sin_theta_0;
239
240 return (s0 * v0) + (s1 * v1);
241 }
242
243 However this algorithm does not involve transcendentals except in
244 the computation of the tables: <https://en.wikipedia.org/wiki/CORDIC#Rotation_mode>
245
246 function v = cordic(beta,n)
247 % This function computes v = [cos(beta), sin(beta)] (beta in radians)
248 % using n iterations. Increasing n will increase the precision.
249
250 if beta < -pi/2 || beta > pi/2
251 if beta < 0
252 v = cordic(beta + pi, n);
253 else
254 v = cordic(beta - pi, n);
255 end
256 v = -v; % flip the sign for second or third quadrant
257 return
258 end
259
260 % Initialization of tables of constants used by CORDIC
261 % need a table of arctangents of negative powers of two, in radians:
262 % angles = atan(2.^-(0:27));
263 angles = [ ...
264 0.78539816339745 0.46364760900081
265 0.24497866312686 0.12435499454676 ...
266 0.06241880999596 0.03123983343027
267 0.01562372862048 0.00781234106010 ...
268 0.00390623013197 0.00195312251648
269 0.00097656218956 0.00048828121119 ...
270 0.00024414062015 0.00012207031189
271 0.00006103515617 0.00003051757812 ...
272 0.00001525878906 0.00000762939453
273 0.00000381469727 0.00000190734863 ...
274 0.00000095367432 0.00000047683716
275 0.00000023841858 0.00000011920929 ...
276 0.00000005960464 0.00000002980232
277 0.00000001490116 0.00000000745058 ];
278 % and a table of products of reciprocal lengths of vectors [1, 2^-2j]:
279 % Kvalues = cumprod(1./abs(1 + 1j*2.^(-(0:23))))
280 Kvalues = [ ...
281 0.70710678118655 0.63245553203368
282 0.61357199107790 0.60883391251775 ...
283 0.60764825625617 0.60735177014130
284 0.60727764409353 0.60725911229889 ...
285 0.60725447933256 0.60725332108988
286 0.60725303152913 0.60725295913894 ...
287 0.60725294104140 0.60725293651701
288 0.60725293538591 0.60725293510314 ...
289 0.60725293503245 0.60725293501477
290 0.60725293501035 0.60725293500925 ...
291 0.60725293500897 0.60725293500890
292 0.60725293500889 0.60725293500888 ];
293 Kn = Kvalues(min(n, length(Kvalues)));
294
295 % Initialize loop variables:
296 v = [1;0]; % start with 2-vector cosine and sine of zero
297 poweroftwo = 1;
298 angle = angles(1);
299
300 % Iterations
301 for j = 0:n-1;
302 if beta < 0
303 sigma = -1;
304 else
305 sigma = 1;
306 end
307 factor = sigma * poweroftwo;
308 % Note the matrix multiplication can be done using scaling by
309 % powers of two and addition subtraction
310 R = [1, -factor; factor, 1];
311 v = R * v; % 2-by-2 matrix multiply
312 beta = beta - sigma * angle; % update the remaining angle
313 poweroftwo = poweroftwo / 2;
314 % update the angle from table, or eventually by just dividing by two
315 if j+2 > length(angles)
316 angle = angle / 2;
317 else
318 angle = angles(j+2);
319 end
320 end
321
322 % Adjust length of output vector to be [cos(beta), sin(beta)]:
323 v = v * Kn;
324 return
325
326 endfunction
327
328 2x2 matrix multiply can be done with shifts and adds:
329
330 x = v[0] - sigma * (v[1] * 2^(-j));
331 y = sigma * (v[0] * 2^(-j)) + v[1];
332 v = [x; y];
333
334 The technique is outlined in a paper as being applicable to 3D:
335 <https://www.atlantis-press.com/proceedings/jcis2006/232>
336
337 # Expensive 3-operand OP32 operations
338
339 3-operand operations are extremely expensive in terms of OP32 encoding space. A potential idea is to embed 3 RVC register formats across two out of three 5-bit fields rs1/rs2/rd
340
341 Another is to overwrite one of the src registers.
342
343 # Opcode Table
344
345 TODO
346
347 # Links
348
349 * <http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-September/002736.html>
350 * <http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-September/002733.html>
351 * <http://bugs.libre-riscv.org/show_bug.cgi?id=142>
352
353 Research Papers
354
355 * <https://www.researchgate.net/publication/2938554_PLX_FP_An_Efficient_Floating-Point_Instruction_Set_for_3D_Graphics>