move GoldschmidtDivParams.get to bottom of class
[soc.git] / src / soc / fu / div / experiment / goldschmidt_div_sqrt.py
index 12b9f81f0abe6799be5a5ecdef963c52277ff02b..03378048810b08eb2e87e10d77d4576625338279 100644 (file)
@@ -4,9 +4,50 @@
 # Funded by NLnet Assure Programme 2021-02-052, https://nlnet.nl/assure part
 # of Horizon 2020 EU Programme 957073.
 
-from dataclasses import dataclass
+from dataclasses import dataclass, field
 import math
 import enum
+from fractions import Fraction
+from types import FunctionType
+
+try:
+    from functools import cached_property
+except ImportError:
+    from cached_property import cached_property
+
+# fix broken IDE type detection for cached_property
+from typing import TYPE_CHECKING
+if TYPE_CHECKING:
+    from functools import cached_property
+
+
+_NOT_FOUND = object()
+
+
+def cache_on_self(func):
+    """like `functools.cached_property`, except for methods. unlike
+    `lru_cache` the cache is per-class instance rather than a global cache
+    per-method."""
+
+    assert isinstance(func, FunctionType), \
+        "non-plain methods are not supported"
+
+    cache_name = func.__name__ + "__cache"
+
+    def wrapper(self, *args, **kwargs):
+        # specifically access through `__dict__` to bypass frozen=True
+        cache = self.__dict__.get(cache_name, _NOT_FOUND)
+        if cache is _NOT_FOUND:
+            self.__dict__[cache_name] = cache = {}
+        key = (args, *kwargs.items())
+        retval = cache.get(key, _NOT_FOUND)
+        if retval is _NOT_FOUND:
+            retval = func(self, *args, **kwargs)
+            cache[key] = retval
+        return retval
+
+    wrapper.__doc__ = func.__doc__
+    return wrapper
 
 
 @enum.unique
@@ -77,27 +118,29 @@ class FixedPoint:
     def with_frac_wid(value, frac_wid, round_dir=RoundDir.ERROR_IF_INEXACT):
         """convert `value` to the nearest fixed-point number with `frac_wid`
         fractional bits, rounding according to `round_dir`."""
-        value = FixedPoint.cast(value)
         assert isinstance(frac_wid, int) and frac_wid >= 0
         assert isinstance(round_dir, RoundDir)
-        # compute number of bits that should be removed from value
-        del_bits = value.frac_wid - frac_wid
-        if del_bits == 0:
-            return value
-        if del_bits < 0:  # add bits
-            return FixedPoint(value.bits << -del_bits,
-                              frac_wid)
+        if isinstance(value, Fraction):
+            numerator = value.numerator
+            denominator = value.denominator
+        else:
+            value = FixedPoint.cast(value)
+            numerator = value.bits
+            denominator = 1 << value.frac_wid
+        if denominator < 0:
+            numerator = -numerator
+            denominator = -denominator
+        bits, remainder = divmod(numerator << frac_wid, denominator)
         if round_dir == RoundDir.DOWN:
-            bits = value.bits >> del_bits
+            pass
         elif round_dir == RoundDir.UP:
-            bits = -((-value.bits) >> del_bits)
+            if remainder != 0:
+                bits += 1
         elif round_dir == RoundDir.NEAREST_TIES_UP:
-            bits = value.bits >> (del_bits - 1)
-            bits += 1
-            bits >>= 1
+            if remainder * 2 >= denominator:
+                bits += 1
         elif round_dir == RoundDir.ERROR_IF_INEXACT:
-            bits = value.bits >> del_bits
-            if bits << del_bits != value.bits:
+            if remainder != 0:
                 raise ValueError("inexact conversion")
         else:
             assert False, "unimplemented round_dir"
@@ -109,7 +152,12 @@ class FixedPoint:
         return FixedPoint.with_frac_wid(self, frac_wid, round_dir)
 
     def __float__(self):
-        return self.bits * 2.0 ** -self.frac_wid
+        # use truediv to get correct result even when bits
+        # and frac_wid are huge
+        return float(self.bits / (1 << self.frac_wid))
+
+    def as_fraction(self):
+        return Fraction(self.bits, 1 << self.frac_wid)
 
     def cmp(self, rhs):
         """compare self with rhs, returning a positive integer if self is
@@ -165,6 +213,10 @@ class FixedPoint:
         rhs = rhs.to_frac_wid(common_frac_wid)
         return FixedPoint(lhs.bits + rhs.bits, common_frac_wid)
 
+    def __radd__(self, lhs):
+        # symmetric
+        return self.__add__(lhs)
+
     def __neg__(self):
         return FixedPoint(-self.bits, self.frac_wid)
 
@@ -175,15 +227,567 @@ class FixedPoint:
         rhs = rhs.to_frac_wid(common_frac_wid)
         return FixedPoint(lhs.bits - rhs.bits, common_frac_wid)
 
+    def __rsub__(self, lhs):
+        # a - b == -(b - a)
+        return -self.__sub__(lhs)
+
     def __mul__(self, rhs):
         rhs = FixedPoint.cast(rhs)
         return FixedPoint(self.bits * rhs.bits, self.frac_wid + rhs.frac_wid)
 
+    def __rmul__(self, lhs):
+        # symmetric
+        return self.__mul__(lhs)
+
     def __floor__(self):
         return self.bits >> self.frac_wid
 
 
-def goldschmidt_div(n, d, width):
+@dataclass
+class GoldschmidtDivState:
+    orig_n: int
+    """original numerator"""
+
+    orig_d: int
+    """original denominator"""
+
+    n: FixedPoint
+    """numerator -- N_prime[i] in the paper's algorithm 2"""
+
+    d: FixedPoint
+    """denominator -- D_prime[i] in the paper's algorithm 2"""
+
+    f: "FixedPoint | None" = None
+    """current factor -- F_prime[i] in the paper's algorithm 2"""
+
+    quotient: "int | None" = None
+    """final quotient"""
+
+    remainder: "int | None" = None
+    """final remainder"""
+
+    n_shift: "int | None" = None
+    """amount the numerator needs to be left-shifted at the end of the
+    algorithm.
+    """
+
+
+class ParamsNotAccurateEnough(Exception):
+    """raised when the parameters aren't accurate enough to have goldschmidt
+    division work."""
+
+
+def _assert_accuracy(condition, msg="not accurate enough"):
+    if condition:
+        return
+    raise ParamsNotAccurateEnough(msg)
+
+
+@dataclass(frozen=True, unsafe_hash=True)
+class GoldschmidtDivParams:
+    """parameters for a Goldschmidt division algorithm.
+    Use `GoldschmidtDivParams.get` to find a efficient set of parameters.
+    """
+
+    io_width: int
+    """bit-width of the input divisor and the result.
+    the input numerator is `2 * io_width`-bits wide.
+    """
+
+    extra_precision: int
+    """number of bits of additional precision used inside the algorithm."""
+
+    table_addr_bits: int
+    """the number of address bits used in the lookup-table."""
+
+    table_data_bits: int
+    """the number of data bits used in the lookup-table."""
+
+    iter_count: int
+    """the total number of iterations of the division algorithm's loop"""
+
+    # tuple to be immutable, default so repr() works for debugging even when
+    # __post_init__ hasn't finished running yet
+    table: "tuple[FixedPoint, ...]" = field(init=False, default=NotImplemented)
+    """the lookup-table"""
+
+    ops: "tuple[GoldschmidtDivOp, ...]" = field(init=False,
+                                                default=NotImplemented)
+    """the operations needed to perform the goldschmidt division algorithm."""
+
+    def _shrink_bound(self, bound, round_dir):
+        """prevent fractions from having huge numerators/denominators by
+        rounding to a `FixedPoint` and converting back to a `Fraction`.
+
+        This is intended only for values used to compute bounds, and not for
+        values that end up in the hardware.
+        """
+        assert isinstance(bound, (Fraction, int))
+        assert round_dir is RoundDir.DOWN or round_dir is RoundDir.UP, \
+            "you shouldn't use that round_dir on bounds"
+        frac_wid = self.io_width * 4 + 100  # should be enough precision
+        fixed = FixedPoint.with_frac_wid(bound, frac_wid, round_dir)
+        return fixed.as_fraction()
+
+    def _shrink_min(self, min_bound):
+        """prevent fractions used as minimum bounds from having huge
+        numerators/denominators by rounding down to a `FixedPoint` and
+        converting back to a `Fraction`.
+
+        This is intended only for values used to compute bounds, and not for
+        values that end up in the hardware.
+        """
+        return self._shrink_bound(min_bound, RoundDir.DOWN)
+
+    def _shrink_max(self, max_bound):
+        """prevent fractions used as maximum bounds from having huge
+        numerators/denominators by rounding up to a `FixedPoint` and
+        converting back to a `Fraction`.
+
+        This is intended only for values used to compute bounds, and not for
+        values that end up in the hardware.
+        """
+        return self._shrink_bound(max_bound, RoundDir.UP)
+
+    @property
+    def table_addr_count(self):
+        """number of distinct addresses in the lookup-table."""
+        # used while computing self.table, so can't just do len(self.table)
+        return 1 << self.table_addr_bits
+
+    def table_input_exact_range(self, addr):
+        """return the range of inputs as `Fraction`s used for the table entry
+        with address `addr`."""
+        assert isinstance(addr, int)
+        assert 0 <= addr < self.table_addr_count
+        _assert_accuracy(self.io_width >= self.table_addr_bits)
+        addr_shift = self.io_width - self.table_addr_bits
+        min_numerator = (1 << self.io_width) + (addr << addr_shift)
+        denominator = 1 << self.io_width
+        values_per_table_entry = 1 << addr_shift
+        max_numerator = min_numerator + values_per_table_entry - 1
+        min_input = Fraction(min_numerator, denominator)
+        max_input = Fraction(max_numerator, denominator)
+        min_input = self._shrink_min(min_input)
+        max_input = self._shrink_max(max_input)
+        assert 1 <= min_input <= max_input < 2
+        return min_input, max_input
+
+    def table_value_exact_range(self, addr):
+        """return the range of values as `Fraction`s used for the table entry
+        with address `addr`."""
+        min_input, max_input = self.table_input_exact_range(addr)
+        # division swaps min/max
+        min_value = 1 / max_input
+        max_value = 1 / min_input
+        min_value = self._shrink_min(min_value)
+        max_value = self._shrink_max(max_value)
+        assert 0.5 < min_value <= max_value <= 1
+        return min_value, max_value
+
+    def table_exact_value(self, index):
+        min_value, max_value = self.table_value_exact_range(index)
+        # we round down
+        return min_value
+
+    def __post_init__(self):
+        # called by the autogenerated __init__
+        assert self.io_width >= 1
+        assert self.extra_precision >= 0
+        assert self.table_addr_bits >= 1
+        assert self.table_data_bits >= 1
+        assert self.iter_count >= 1
+        table = []
+        for addr in range(1 << self.table_addr_bits):
+            table.append(FixedPoint.with_frac_wid(self.table_exact_value(addr),
+                                                  self.table_data_bits,
+                                                  RoundDir.DOWN))
+        # we have to use object.__setattr__ since frozen=True
+        object.__setattr__(self, "table", tuple(table))
+        object.__setattr__(self, "ops", tuple(self.__make_ops()))
+
+    @property
+    def expanded_width(self):
+        """the total number of bits of precision used inside the algorithm."""
+        return self.io_width + self.extra_precision
+
+    @cache_on_self
+    def max_neps(self, i):
+        """maximum value of `neps[i]`.
+        `neps[i]` is defined to be `n[i] * N_prime[i - 1] * F_prime[i - 1]`.
+        """
+        assert isinstance(i, int) and 0 <= i < self.iter_count
+        return Fraction(1, 1 << self.expanded_width)
+
+    @cache_on_self
+    def max_deps(self, i):
+        """maximum value of `deps[i]`.
+        `deps[i]` is defined to be `d[i] * D_prime[i - 1] * F_prime[i - 1]`.
+        """
+        assert isinstance(i, int) and 0 <= i < self.iter_count
+        return Fraction(1, 1 << self.expanded_width)
+
+    @cache_on_self
+    def max_feps(self, i):
+        """maximum value of `feps[i]`.
+        `feps[i]` is defined to be `f[i] * (2 - D_prime[i - 1])`.
+        """
+        assert isinstance(i, int) and 0 <= i < self.iter_count
+        # zero, because the computation of `F_prime[i]` in
+        # `GoldschmidtDivOp.MulDByF.run(...)` is exact.
+        return Fraction(0)
+
+    @cached_property
+    def e0_range(self):
+        """minimum and maximum values of `e[0]`
+        (the relative error in `F_prime[-1]`)
+        """
+        min_e0 = Fraction(0)
+        max_e0 = Fraction(0)
+        for addr in range(self.table_addr_count):
+            # `F_prime[-1] = (1 - e[0]) / B`
+            # => `e[0] = 1 - B * F_prime[-1]`
+            min_b, max_b = self.table_input_exact_range(addr)
+            f_prime_m1 = self.table[addr].as_fraction()
+            assert min_b >= 0 and f_prime_m1 >= 0, \
+                "only positive quadrant of interval multiplication implemented"
+            min_product = min_b * f_prime_m1
+            max_product = max_b * f_prime_m1
+            # negation swaps min/max
+            cur_min_e0 = 1 - max_product
+            cur_max_e0 = 1 - min_product
+            min_e0 = min(min_e0, cur_min_e0)
+            max_e0 = max(max_e0, cur_max_e0)
+        min_e0 = self._shrink_min(min_e0)
+        max_e0 = self._shrink_max(max_e0)
+        return min_e0, max_e0
+
+    @cached_property
+    def min_e0(self):
+        """minimum value of `e[0]` (the relative error in `F_prime[-1]`)
+        """
+        min_e0, max_e0 = self.e0_range
+        return min_e0
+
+    @cached_property
+    def max_e0(self):
+        """maximum value of `e[0]` (the relative error in `F_prime[-1]`)
+        """
+        min_e0, max_e0 = self.e0_range
+        return max_e0
+
+    @cached_property
+    def max_abs_e0(self):
+        """maximum value of `abs(e[0])`."""
+        return max(abs(self.min_e0), abs(self.max_e0))
+
+    @cached_property
+    def min_abs_e0(self):
+        """minimum value of `abs(e[0])`."""
+        return Fraction(0)
+
+    @cache_on_self
+    def max_n(self, i):
+        """maximum value of `n[i]` (the relative error in `N_prime[i]`
+        relative to the previous iteration)
+        """
+        assert isinstance(i, int) and 0 <= i < self.iter_count
+        if i == 0:
+            # from Claim 10
+            # `n[0] = neps[0] / ((1 - e[0]) * (A / B))`
+            # `n[0] <= 2 * neps[0] / (1 - e[0])`
+
+            assert self.max_e0 < 1 and self.max_neps(0) >= 0, \
+                "only one quadrant of interval division implemented"
+            retval = 2 * self.max_neps(0) / (1 - self.max_e0)
+        elif i == 1:
+            # from Claim 10
+            # `n[1] <= neps[1] / ((1 - f[0]) * (1 - pi[0] - delta[0]))`
+            min_mpd = 1 - self.max_pi(0) - self.max_delta(0)
+            assert self.max_f(0) <= 1 and min_mpd >= 0, \
+                "only one quadrant of interval multiplication implemented"
+            prod = (1 - self.max_f(0)) * min_mpd
+            assert self.max_neps(1) >= 0 and prod > 0, \
+                "only one quadrant of interval division implemented"
+            retval = self.max_neps(1) / prod
+        else:
+            # from Claim 6
+            # `0 <= n[i] <= 2 * max_neps[i] / (1 - pi[i - 1] - delta[i - 1])`
+            min_mpd = 1 - self.max_pi(i - 1) - self.max_delta(i - 1)
+            assert self.max_neps(i) >= 0 and min_mpd > 0, \
+                "only one quadrant of interval division implemented"
+            retval = self.max_neps(i) / min_mpd
+
+        return self._shrink_max(retval)
+
+    @cache_on_self
+    def max_d(self, i):
+        """maximum value of `d[i]` (the relative error in `D_prime[i]`
+        relative to the previous iteration)
+        """
+        assert isinstance(i, int) and 0 <= i < self.iter_count
+        if i == 0:
+            # from Claim 10
+            # `d[0] = deps[0] / (1 - e[0])`
+
+            assert self.max_e0 < 1 and self.max_deps(0) >= 0, \
+                "only one quadrant of interval division implemented"
+            retval = self.max_deps(0) / (1 - self.max_e0)
+        elif i == 1:
+            # from Claim 10
+            # `d[1] <= deps[1] / ((1 - f[0]) * (1 - delta[0] ** 2))`
+            assert self.max_f(0) <= 1 and self.max_delta(0) <= 1, \
+                "only one quadrant of interval multiplication implemented"
+            divisor = (1 - self.max_f(0)) * (1 - self.max_delta(0) ** 2)
+            assert self.max_deps(1) >= 0 and divisor > 0, \
+                "only one quadrant of interval division implemented"
+            retval = self.max_deps(1) / divisor
+        else:
+            # from Claim 6
+            # `0 <= d[i] <= max_deps[i] / (1 - delta[i - 1])`
+            assert self.max_deps(i) >= 0 and self.max_delta(i - 1) < 1, \
+                "only one quadrant of interval division implemented"
+            retval = self.max_deps(i) / (1 - self.max_delta(i - 1))
+
+        return self._shrink_max(retval)
+
+    @cache_on_self
+    def max_f(self, i):
+        """maximum value of `f[i]` (the relative error in `F_prime[i]`
+        relative to the previous iteration)
+        """
+        assert isinstance(i, int) and 0 <= i < self.iter_count
+        if i == 0:
+            # from Claim 10
+            # `f[0] = feps[0] / (1 - delta[0])`
+
+            assert self.max_delta(0) < 1 and self.max_feps(0) >= 0, \
+                "only one quadrant of interval division implemented"
+            retval = self.max_feps(0) / (1 - self.max_delta(0))
+        elif i == 1:
+            # from Claim 10
+            # `f[1] = feps[1]`
+            retval = self.max_feps(1)
+        else:
+            # from Claim 6
+            # `f[i] <= max_feps[i]`
+            retval = self.max_feps(i)
+
+        return self._shrink_max(retval)
+
+    @cache_on_self
+    def max_delta(self, i):
+        """ maximum value of `delta[i]`.
+        `delta[i]` is defined in Definition 4 of paper.
+        """
+        assert isinstance(i, int) and 0 <= i < self.iter_count
+        if i == 0:
+            # `delta[0] = abs(e[0]) + 3 * d[0] / 2`
+            retval = self.max_abs_e0 + Fraction(3, 2) * self.max_d(0)
+        else:
+            # `delta[i] = delta[i - 1] ** 2 + f[i - 1]`
+            prev_max_delta = self.max_delta(i - 1)
+            assert prev_max_delta >= 0
+            retval = prev_max_delta ** 2 + self.max_f(i - 1)
+
+        # `delta[i]` has to be smaller than one otherwise errors would go off
+        # to infinity
+        _assert_accuracy(retval < 1)
+
+        return self._shrink_max(retval)
+
+    @cache_on_self
+    def max_pi(self, i):
+        """ maximum value of `pi[i]`.
+        `pi[i]` is defined right below Theorem 5 of paper.
+        """
+        assert isinstance(i, int) and 0 <= i < self.iter_count
+        # `pi[i] = 1 - (1 - n[i]) * prod`
+        # where `prod` is the product of,
+        # for `j` in `0 <= j < i`, `(1 - n[j]) / (1 + d[j])`
+        min_prod = Fraction(1)
+        for j in range(i):
+            max_n_j = self.max_n(j)
+            max_d_j = self.max_d(j)
+            assert max_n_j <= 1 and max_d_j > -1, \
+                "only one quadrant of interval division implemented"
+            min_prod *= (1 - max_n_j) / (1 + max_d_j)
+        max_n_i = self.max_n(i)
+        assert max_n_i <= 1 and min_prod >= 0, \
+            "only one quadrant of interval multiplication implemented"
+        retval = 1 - (1 - max_n_i) * min_prod
+        return self._shrink_max(retval)
+
+    @cached_property
+    def max_n_shift(self):
+        """ maximum value of `state.n_shift`.
+        """
+        # input numerator is `2*io_width`-bits
+        max_n = (1 << (self.io_width * 2)) - 1
+        max_n_shift = 0
+        # normalize so 1 <= n < 2
+        while max_n >= 2:
+            max_n >>= 1
+            max_n_shift += 1
+        return max_n_shift
+
+    def __make_ops(self):
+        """ Goldschmidt division algorithm.
+
+            based on:
+            Even, G., Seidel, P. M., & Ferguson, W. E. (2003).
+            A Parametric Error Analysis of Goldschmidt's Division Algorithm.
+            https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.1238&rep=rep1&type=pdf
+
+            yields: GoldschmidtDivOp
+                the operations needed to perform the division.
+        """
+        # establish assumptions of the paper's error analysis (section 3.1):
+
+        # 1. normalize so A (numerator) and B (denominator) are in [1, 2)
+        yield GoldschmidtDivOp.Normalize
+
+        # 2. ensure all relative errors from directed rounding are <= 1 / 4.
+        # the assumption is met by multipliers with > 4-bits precision
+        _assert_accuracy(self.expanded_width > 4)
+
+        # 3. require `abs(e[0]) + 3 * d[0] / 2 + f[0] < 1 / 2`.
+        _assert_accuracy(self.max_abs_e0 + 3 * self.max_d(0) / 2
+                         + self.max_f(0) < Fraction(1, 2))
+
+        # 4. the initial approximation F'[-1] of 1/B is in [1/2, 1].
+        # (B is the denominator)
+
+        for addr in range(self.table_addr_count):
+            f_prime_m1 = self.table[addr]
+            _assert_accuracy(0.5 <= f_prime_m1 <= 1)
+
+        yield GoldschmidtDivOp.FEqTableLookup
+
+        # we use Setting I (section 4.1 of the paper):
+        # Require `n[i] <= n_hat` and `d[i] <= n_hat` and `f[i] = 0`
+        n_hat = Fraction(0)
+        for i in range(self.iter_count):
+            _assert_accuracy(self.max_f(i) == 0)
+            n_hat = max(n_hat, self.max_n(i), self.max_d(i))
+            yield GoldschmidtDivOp.MulNByF
+            if i != self.iter_count - 1:
+                yield GoldschmidtDivOp.MulDByF
+                yield GoldschmidtDivOp.FEq2MinusD
+
+        # relative approximation error `p(N_prime[i])`:
+        # `p(N_prime[i]) = (A / B - N_prime[i]) / (A / B)`
+        # `0 <= p(N_prime[i])`
+        # `p(N_prime[i]) <= (2 * i) * n_hat \`
+        # ` + (abs(e[0]) + 3 * n_hat / 2) ** (2 ** i)`
+        i = self.iter_count - 1  # last used `i`
+        # compute power manually to prevent huge intermediate values
+        power = self._shrink_max(self.max_abs_e0 + 3 * n_hat / 2)
+        for _ in range(i):
+            power = self._shrink_max(power * power)
+
+        max_rel_error = (2 * i) * n_hat + power
+
+        min_a_over_b = Fraction(1, 2)
+        max_a_over_b = Fraction(2)
+        max_allowed_abs_error = max_a_over_b / (1 << self.max_n_shift)
+        max_allowed_rel_error = max_allowed_abs_error / min_a_over_b
+
+        _assert_accuracy(max_rel_error < max_allowed_rel_error,
+                         f"not accurate enough: max_rel_error={max_rel_error}"
+                         f" max_allowed_rel_error={max_allowed_rel_error}")
+
+        yield GoldschmidtDivOp.CalcResult
+
+    @staticmethod
+    def get(io_width):
+        """ find efficient parameters for a goldschmidt division algorithm
+        with `params.io_width == io_width`.
+        """
+        assert isinstance(io_width, int) and io_width >= 1
+        last_params = None
+        last_error = None
+        for extra_precision in range(io_width * 2 + 4):
+            for table_addr_bits in range(1, 7 + 1):
+                table_data_bits = io_width + extra_precision
+                for iter_count in range(1, 2 * io_width.bit_length()):
+                    try:
+                        return GoldschmidtDivParams(
+                            io_width=io_width,
+                            extra_precision=extra_precision,
+                            table_addr_bits=table_addr_bits,
+                            table_data_bits=table_data_bits,
+                            iter_count=iter_count)
+                    except ParamsNotAccurateEnough as e:
+                        last_params = (f"GoldschmidtDivParams("
+                                       f"io_width={io_width!r}, "
+                                       f"extra_precision={extra_precision!r}, "
+                                       f"table_addr_bits={table_addr_bits!r}, "
+                                       f"table_data_bits={table_data_bits!r}, "
+                                       f"iter_count={iter_count!r})")
+                        last_error = e
+        raise ValueError(f"can't find working parameters for a goldschmidt "
+                         f"division algorithm: last params: {last_params}"
+                         ) from last_error
+
+
+@enum.unique
+class GoldschmidtDivOp(enum.Enum):
+    Normalize = "n, d, n_shift = normalize(n, d)"
+    FEqTableLookup = "f = table_lookup(d)"
+    MulNByF = "n *= f"
+    MulDByF = "d *= f"
+    FEq2MinusD = "f = 2 - d"
+    CalcResult = "result = unnormalize_and_round(n)"
+
+    def run(self, params, state):
+        assert isinstance(params, GoldschmidtDivParams)
+        assert isinstance(state, GoldschmidtDivState)
+        expanded_width = params.expanded_width
+        table_addr_bits = params.table_addr_bits
+        if self == GoldschmidtDivOp.Normalize:
+            # normalize so 1 <= d < 2
+            # can easily be done with count-leading-zeros and left shift
+            while state.d < 1:
+                state.n = (state.n * 2).to_frac_wid(expanded_width)
+                state.d = (state.d * 2).to_frac_wid(expanded_width)
+
+            state.n_shift = 0
+            # normalize so 1 <= n < 2
+            while state.n >= 2:
+                state.n = (state.n * 0.5).to_frac_wid(expanded_width)
+                state.n_shift += 1
+        elif self == GoldschmidtDivOp.FEqTableLookup:
+            # compute initial f by table lookup
+            d_m_1 = state.d - 1
+            d_m_1 = d_m_1.to_frac_wid(table_addr_bits, RoundDir.DOWN)
+            assert 0 <= d_m_1.bits < (1 << params.table_addr_bits)
+            state.f = params.table[d_m_1.bits]
+        elif self == GoldschmidtDivOp.MulNByF:
+            assert state.f is not None
+            n = state.n * state.f
+            state.n = n.to_frac_wid(expanded_width, round_dir=RoundDir.DOWN)
+        elif self == GoldschmidtDivOp.MulDByF:
+            assert state.f is not None
+            d = state.d * state.f
+            state.d = d.to_frac_wid(expanded_width, round_dir=RoundDir.UP)
+        elif self == GoldschmidtDivOp.FEq2MinusD:
+            state.f = (2 - state.d).to_frac_wid(expanded_width)
+        elif self == GoldschmidtDivOp.CalcResult:
+            assert state.n_shift is not None
+            # scale to correct value
+            n = state.n * (1 << state.n_shift)
+
+            state.quotient = math.floor(n)
+            state.remainder = state.orig_n - state.quotient * state.orig_d
+            if state.remainder >= state.orig_d:
+                state.quotient += 1
+                state.remainder -= state.orig_d
+        else:
+            assert False, f"unimplemented GoldschmidtDivOp: {self}"
+
+
+def goldschmidt_div(n, d, params):
     """ Goldschmidt division algorithm.
 
         based on:
@@ -201,66 +805,28 @@ def goldschmidt_div(n, d, width):
         width: int
             the bit-width of the inputs/outputs. must be a positive integer.
 
-        returns: int
-            the quotient. a `width`-bit unsigned integer.
+        returns: tuple[int, int]
+            the quotient and remainder. a tuple of two `width`-bit unsigned
+            integers.
     """
-    assert isinstance(width, int) and width >= 1
-    assert isinstance(d, int) and 0 < d < (1 << width)
-    assert isinstance(n, int) and 0 <= n < (d << width)
+    assert isinstance(params, GoldschmidtDivParams)
+    assert isinstance(d, int) and 0 < d < (1 << params.io_width)
+    assert isinstance(n, int) and 0 <= n < (d << params.io_width)
 
-    # FIXME: calculate best values for extra_precision, table_addr_bits, and
-    # table_data_bits -- these are wrong
-    extra_precision = width + 3
-    table_addr_bits = 4
-    table_data_bits = 8
+    # this whole algorithm is done with fixed-point arithmetic where values
+    # have `width` fractional bits
 
-    width += extra_precision
+    state = GoldschmidtDivState(
+        orig_n=n,
+        orig_d=d,
+        n=FixedPoint(n, params.io_width),
+        d=FixedPoint(d, params.io_width),
+    )
 
-    table = []
-    for i in range(1 << table_addr_bits):
-        value = 1 / (1 + i * 2 ** -table_addr_bits)
-        table.append(FixedPoint.with_frac_wid(value, table_data_bits,
-                                              RoundDir.DOWN))
+    for op in params.ops:
+        op.run(params, state)
 
-    # this whole algorithm is done with fixed-point arithmetic where values
-    # have `width` fractional bits
+    assert state.quotient is not None
+    assert state.remainder is not None
 
-    n = FixedPoint(n, width)
-    d = FixedPoint(d, width)
-
-    # normalize so 1 <= d < 2
-    # can easily be done with count-leading-zeros and left shift
-    while d < 1:
-        n = (n * 2).to_frac_wid(width)
-        d = (d * 2).to_frac_wid(width)
-
-    n_shift = 0
-    # normalize so 1 <= n < 2
-    while n >= 2:
-        n = (n * 0.5).to_frac_wid(width)
-        n_shift += 1
-
-    # compute initial f by table lookup
-    f = table[(d - 1).to_frac_wid(table_addr_bits, RoundDir.DOWN).bits]
-
-    min_bits_of_precision = 1
-    while min_bits_of_precision < width * 2:
-        # multiply both n and d by f
-        n *= f
-        d *= f
-        n = n.to_frac_wid(width, round_dir=RoundDir.DOWN)
-        d = d.to_frac_wid(width, round_dir=RoundDir.UP)
-
-        # slightly less than 2 to make the computation just a bitwise not
-        nearly_two = FixedPoint.with_frac_wid(2, width)
-        nearly_two = FixedPoint(nearly_two.bits - 1, width)
-        f = (nearly_two - d).to_frac_wid(width)
-
-        min_bits_of_precision *= 2
-
-    # scale to correct value
-    n *= 1 << n_shift
-
-    # avoid incorrectly rounding down
-    n = n.to_frac_wid(width - extra_precision, round_dir=RoundDir.UP)
-    return math.floor(n)
+    return state.quotient, state.remainder