more variable renaming
[ieee754fpu.git] / src / ieee754 / part_mul_add / multiply.py
index 8e4ea8305ed43441254d33e1002c0c3d92c285a5..672bbfd33acdef4510167e6ec1d8c78e0bf3603f 100644 (file)
@@ -71,17 +71,20 @@ class PartitionPoints(dict):
         for point, enabled in self.items():
             yield enabled.eq(rhs[point])
 
-    def as_mask(self, width):
+    def as_mask(self, width, mul=1):
         """Create a bit-mask from `self`.
 
         Each bit in the returned mask is clear only if the partition point at
         the same bit-index is enabled.
 
         :param width: the bit width of the resulting mask
+        :param mul: a "multiplier" which in-place expands the partition points
+                    typically set to "2" when used for multipliers
         """
         bits = []
         for i in range(width):
-            if i in self:
+            i /= mul
+            if i.is_integer() and int(i) in self:
                 bits.append(~self[i])
             else:
                 bits.append(True)
@@ -227,13 +230,16 @@ class PartitionedAdder(Elaboratable):
         supported, except for by ``Signal.eq``.
     """
 
-    def __init__(self, width, partition_points):
+    def __init__(self, width, partition_points, partition_step=1):
         """Create a ``PartitionedAdder``.
 
         :param width: the bit width of the input and output
         :param partition_points: the input partition points
+        :param partition_step: a multiplier (typically double) step
+                               which in-place "expands" the partition points
         """
         self.width = width
+        self.pmul = partition_step
         self.a = Signal(width, reset_less=True)
         self.b = Signal(width, reset_less=True)
         self.output = Signal(width, reset_less=True)
@@ -267,11 +273,12 @@ class PartitionedAdder(Elaboratable):
         # carry has been carried *over* the break point.
 
         for i in range(self.width):
-            if i in self.partition_points:
+            pi = i/self.pmul # double the range of the partition point test
+            if pi.is_integer() and pi in self.partition_points:
                 # add extra bit set to 0 + 0 for enabled partition points
                 # and 1 + 0 for disabled partition points
                 ea.append(expanded_a[expanded_index])
-                al.append(~self.partition_points[i]) # add extra bit in a
+                al.append(~self.partition_points[pi]) # add extra bit in a
                 eb.append(expanded_b[expanded_index])
                 bl.append(C(0)) # yes, add a zero
                 expanded_index += 1 # skip the extra point.  NOT in the output
@@ -298,41 +305,41 @@ FULL_ADDER_INPUT_COUNT = 3
 
 class AddReduceData:
 
-    def __init__(self, ppoints, n_inputs, output_width, n_parts):
+    def __init__(self, part_pts, n_inputs, output_width, n_parts):
         self.part_ops = [Signal(2, name=f"part_ops_{i}", reset_less=True)
                           for i in range(n_parts)]
-        self.inputs = [Signal(output_width, name=f"inputs_{i}",
+        self.terms = [Signal(output_width, name=f"inputs_{i}",
                               reset_less=True)
                         for i in range(n_inputs)]
-        self.reg_partition_points = ppoints.like()
+        self.part_pts = part_pts.like()
 
-    def eq_from(self, reg_partition_points, inputs, part_ops):
-        return [self.reg_partition_points.eq(reg_partition_points)] + \
-               [self.inputs[i].eq(inputs[i])
-                                     for i in range(len(self.inputs))] + \
+    def eq_from(self, part_pts, inputs, part_ops):
+        return [self.part_pts.eq(part_pts)] + \
+               [self.terms[i].eq(inputs[i])
+                                     for i in range(len(self.terms))] + \
                [self.part_ops[i].eq(part_ops[i])
                                      for i in range(len(self.part_ops))]
 
     def eq(self, rhs):
-        return self.eq_from(rhs.reg_partition_points, rhs.inputs, rhs.part_ops)
+        return self.eq_from(rhs.part_pts, rhs.terms, rhs.part_ops)
 
 
 class FinalReduceData:
 
-    def __init__(self, ppoints, output_width, n_parts):
+    def __init__(self, part_pts, output_width, n_parts):
         self.part_ops = [Signal(2, name=f"part_ops_{i}", reset_less=True)
                           for i in range(n_parts)]
         self.output = Signal(output_width, reset_less=True)
-        self.reg_partition_points = ppoints.like()
+        self.part_pts = part_pts.like()
 
-    def eq_from(self, reg_partition_points, output, part_ops):
-        return [self.reg_partition_points.eq(reg_partition_points)] + \
+    def eq_from(self, part_pts, output, part_ops):
+        return [self.part_pts.eq(part_pts)] + \
                [self.output.eq(output)] + \
                [self.part_ops[i].eq(part_ops[i])
                                      for i in range(len(self.part_ops))]
 
     def eq(self, rhs):
-        return self.eq_from(rhs.reg_partition_points, rhs.output, rhs.part_ops)
+        return self.eq_from(rhs.part_pts, rhs.output, rhs.part_ops)
 
 
 class FinalAdd(Elaboratable):
@@ -363,18 +370,19 @@ class FinalAdd(Elaboratable):
             m.d.comb += output.eq(0)
         elif self.n_inputs == 1:
             # handle single input
-            m.d.comb += output.eq(self.i.inputs[0])
+            m.d.comb += output.eq(self.i.terms[0])
         else:
             # base case for adding 2 inputs
             assert self.n_inputs == 2
-            adder = PartitionedAdder(output_width, self.i.reg_partition_points)
+            adder = PartitionedAdder(output_width,
+                                     self.i.part_pts, 2)
             m.submodules.final_adder = adder
-            m.d.comb += adder.a.eq(self.i.inputs[0])
-            m.d.comb += adder.b.eq(self.i.inputs[1])
+            m.d.comb += adder.a.eq(self.i.terms[0])
+            m.d.comb += adder.b.eq(self.i.terms[1])
             m.d.comb += output.eq(adder.output)
 
         # create output
-        m.d.comb += self.o.eq_from(self.i.reg_partition_points, output,
+        m.d.comb += self.o.eq_from(self.i.part_pts, output,
                                    self.i.part_ops)
 
         return m
@@ -473,13 +481,13 @@ class AddReduceSingle(Elaboratable):
             terms.append(adder_i.mcarry)
         # handle the remaining inputs.
         if self.n_inputs % FULL_ADDER_INPUT_COUNT == 1:
-            terms.append(self.i.inputs[-1])
+            terms.append(self.i.terms[-1])
         elif self.n_inputs % FULL_ADDER_INPUT_COUNT == 2:
             # Just pass the terms to the next layer, since we wouldn't gain
             # anything by using a half adder since there would still be 2 terms
             # and just passing the terms to the next layer saves gates.
-            terms.append(self.i.inputs[-2])
-            terms.append(self.i.inputs[-1])
+            terms.append(self.i.terms[-2])
+            terms.append(self.i.terms[-1])
         else:
             assert self.n_inputs % FULL_ADDER_INPUT_COUNT == 0
 
@@ -493,26 +501,27 @@ class AddReduceSingle(Elaboratable):
 
         # copy the intermediate terms to the output
         for i, value in enumerate(terms):
-            m.d.comb += self.o.inputs[i].eq(value)
+            m.d.comb += self.o.terms[i].eq(value)
 
         # copy reg part points and part ops to output
-        m.d.comb += self.o.reg_partition_points.eq(self.i.reg_partition_points)
+        m.d.comb += self.o.part_pts.eq(self.i.part_pts)
         m.d.comb += [self.o.part_ops[i].eq(self.i.part_ops[i])
                                      for i in range(len(self.i.part_ops))]
 
         # set up the partition mask (for the adders)
         part_mask = Signal(self.output_width, reset_less=True)
 
-        mask = self.i.reg_partition_points.as_mask(self.output_width)
+        # get partition points as a mask
+        mask = self.i.part_pts.as_mask(self.output_width, mul=2)
         m.d.comb += part_mask.eq(mask)
 
         # add and link the intermediate term modules
         for i, (iidx, adder_i) in enumerate(adders):
             setattr(m.submodules, f"adder_{i}", adder_i)
 
-            m.d.comb += adder_i.in0.eq(self.i.inputs[iidx])
-            m.d.comb += adder_i.in1.eq(self.i.inputs[iidx + 1])
-            m.d.comb += adder_i.in2.eq(self.i.inputs[iidx + 2])
+            m.d.comb += adder_i.in0.eq(self.i.terms[iidx])
+            m.d.comb += adder_i.in1.eq(self.i.terms[iidx + 1])
+            m.d.comb += adder_i.in2.eq(self.i.terms[iidx + 2])
             m.d.comb += adder_i.mask.eq(part_mask)
 
         return m
@@ -579,8 +588,8 @@ class AddReduce(Elaboratable):
                                          next_levels, partition_points)
             mods.append(next_level)
             next_levels = list(AddReduce.next_register_levels(next_levels))
-            partition_points = next_level.i.reg_partition_points
-            inputs = next_level.o.inputs
+            partition_points = next_level.i.part_pts
+            inputs = next_level.o.terms
             ilen = len(inputs)
             part_ops = next_level.i.part_ops
 
@@ -777,10 +786,10 @@ class LSBNegTerm(Elaboratable):
 
 class Parts(Elaboratable):
 
-    def __init__(self, pbwid, epps, n_parts):
+    def __init__(self, pbwid, part_pts, n_parts):
         self.pbwid = pbwid
         # inputs
-        self.epps = PartitionPoints.like(epps, name="epps") # expanded points
+        self.part_pts = PartitionPoints.like(part_pts)
         # outputs
         self.parts = [Signal(name=f"part_{i}", reset_less=True)
                       for i in range(n_parts)]
@@ -788,13 +797,13 @@ class Parts(Elaboratable):
     def elaborate(self, platform):
         m = Module()
 
-        epps, parts = self.epps, self.parts
+        part_pts, parts = self.part_pts, self.parts
         # collect part-bytes (double factor because the input is extended)
         pbs = Signal(self.pbwid, reset_less=True)
         tl = []
         for i in range(self.pbwid):
             pb = Signal(name="pb%d" % i, reset_less=True)
-            m.d.comb += pb.eq(epps.part_byte(i, mfactor=2)) # double
+            m.d.comb += pb.eq(part_pts.part_byte(i))
             tl.append(pb)
         m.d.comb += pbs.eq(Cat(*tl))
 
@@ -830,10 +839,10 @@ class Part(Elaboratable):
         the extra terms - as separate terms - are then thrown at the
         AddReduce alongside the multiplication part-results.
     """
-    def __init__(self, epps, width, n_parts, n_levels, pbwid):
+    def __init__(self, part_pts, width, n_parts, n_levels, pbwid):
 
         self.pbwid = pbwid
-        self.epps = epps
+        self.part_pts = part_pts
 
         # inputs
         self.a = Signal(64, reset_less=True)
@@ -857,9 +866,9 @@ class Part(Elaboratable):
         m = Module()
 
         pbs, parts = self.pbs, self.parts
-        epps = self.epps
-        m.submodules.p = p = Parts(self.pbwid, epps, len(parts))
-        m.d.comb += p.epps.eq(epps)
+        part_pts = self.part_pts
+        m.submodules.p = p = Parts(self.pbwid, part_pts, len(parts))
+        m.d.comb += p.part_pts.eq(part_pts)
         parts = p.parts
 
         byte_count = 8 // len(parts)
@@ -939,9 +948,9 @@ class FinalOut(Elaboratable):
         that some partitions requested 8-bit computation whilst others
         requested 16 or 32 bit.
     """
-    def __init__(self, output_width, n_parts, partition_points):
-        self.expanded_part_points = partition_points
-        self.i = IntermediateData(partition_points, output_width, n_parts)
+    def __init__(self, output_width, n_parts, part_pts):
+        self.part_pts = part_pts
+        self.i = IntermediateData(part_pts, output_width, n_parts)
         self.out_wid = output_width//2
         # output
         self.out = Signal(self.out_wid, reset_less=True)
@@ -950,13 +959,13 @@ class FinalOut(Elaboratable):
     def elaborate(self, platform):
         m = Module()
 
-        eps = self.expanded_part_points
-        m.submodules.p_8 = p_8 = Parts(8, eps, 8)
-        m.submodules.p_16 = p_16 = Parts(8, eps, 4)
-        m.submodules.p_32 = p_32 = Parts(8, eps, 2)
-        m.submodules.p_64 = p_64 = Parts(8, eps, 1)
+        part_pts = self.part_pts
+        m.submodules.p_8 = p_8 = Parts(8, part_pts, 8)
+        m.submodules.p_16 = p_16 = Parts(8, part_pts, 4)
+        m.submodules.p_32 = p_32 = Parts(8, part_pts, 2)
+        m.submodules.p_64 = p_64 = Parts(8, part_pts, 1)
 
-        out_part_pts = self.i.reg_partition_points
+        out_part_pts = self.i.part_pts
 
         # temporaries
         d8 = [Signal(name=f"d8_{i}", reset_less=True) for i in range(8)]
@@ -968,10 +977,10 @@ class FinalOut(Elaboratable):
         i32 = Signal(self.out_wid, reset_less=True)
         i64 = Signal(self.out_wid, reset_less=True)
 
-        m.d.comb += p_8.epps.eq(out_part_pts)
-        m.d.comb += p_16.epps.eq(out_part_pts)
-        m.d.comb += p_32.epps.eq(out_part_pts)
-        m.d.comb += p_64.epps.eq(out_part_pts)
+        m.d.comb += p_8.part_pts.eq(out_part_pts)
+        m.d.comb += p_16.part_pts.eq(out_part_pts)
+        m.d.comb += p_32.part_pts.eq(out_part_pts)
+        m.d.comb += p_64.part_pts.eq(out_part_pts)
 
         for i in range(len(p_8.parts)):
             m.d.comb += d8[i].eq(p_8.parts[i])
@@ -1047,18 +1056,18 @@ class Signs(Elaboratable):
 
 class IntermediateData:
 
-    def __init__(self, ppoints, output_width, n_parts):
+    def __init__(self, part_pts, output_width, n_parts):
         self.part_ops = [Signal(2, name=f"part_ops_{i}", reset_less=True)
                           for i in range(n_parts)]
-        self.reg_partition_points = ppoints.like()
+        self.part_pts = part_pts.like()
         self.outputs = [Signal(output_width, name="io%d" % i, reset_less=True)
                           for i in range(4)]
         # intermediates (needed for unit tests)
         self.intermediate_output = Signal(output_width)
 
-    def eq_from(self, reg_partition_points, outputs, intermediate_output,
+    def eq_from(self, part_pts, outputs, intermediate_output,
                       part_ops):
-        return [self.reg_partition_points.eq(reg_partition_points)] + \
+        return [self.part_pts.eq(part_pts)] + \
                [self.intermediate_output.eq(intermediate_output)] + \
                [self.outputs[i].eq(outputs[i])
                                      for i in range(4)] + \
@@ -1066,7 +1075,7 @@ class IntermediateData:
                                      for i in range(len(self.part_ops))]
 
     def eq(self, rhs):
-        return self.eq_from(rhs.reg_partition_points, rhs.outputs,
+        return self.eq_from(rhs.part_pts, rhs.outputs,
                             rhs.intermediate_output, rhs.part_ops)
 
 
@@ -1075,17 +1084,17 @@ class AllTermsData:
     def __init__(self, partition_points):
         self.a = Signal(64)
         self.b = Signal(64)
-        self.epps = partition_points.like()
+        self.part_pts = partition_points.like()
         self.part_ops = [Signal(2, name=f"part_ops_{i}") for i in range(8)]
 
-    def eq_from(self, epps, inputs, part_ops):
-        return [self.epps.eq(epps)] + \
+    def eq_from(self, part_pts, inputs, part_ops):
+        return [self.part_pts.eq(part_pts)] + \
                [self.a.eq(a), self.b.eq(b)] + \
                [self.part_ops[i].eq(part_ops[i])
                                      for i in range(len(self.part_ops))]
 
     def eq(self, rhs):
-        return self.eq_from(rhs.epps, rhs.a, rhs.b, rhs.part_ops)
+        return self.eq_from(rhs.part_pts, rhs.a, rhs.b, rhs.part_ops)
 
 
 class AllTerms(Elaboratable):
@@ -1107,20 +1116,20 @@ class AllTerms(Elaboratable):
         self.n_inputs = n_inputs
         self.n_parts = n_parts
         self.output_width = output_width
-        self.o = AddReduceData(self.i.epps, n_inputs,
+        self.o = AddReduceData(self.i.part_pts, n_inputs,
                                output_width, n_parts)
 
     def elaborate(self, platform):
         m = Module()
 
-        eps = self.i.epps
+        eps = self.i.part_pts
 
         # collect part-bytes
         pbs = Signal(8, reset_less=True)
         tl = []
         for i in range(8):
             pb = Signal(name="pb%d" % i, reset_less=True)
-            m.d.comb += pb.eq(eps.part_byte(i, mfactor=2))
+            m.d.comb += pb.eq(eps.part_byte(i))
             tl.append(pb)
         m.d.comb += pbs.eq(Cat(*tl))
 
@@ -1179,10 +1188,10 @@ class AllTerms(Elaboratable):
 
         # copy the intermediate terms to the output
         for i, value in enumerate(terms):
-            m.d.comb += self.o.inputs[i].eq(value)
+            m.d.comb += self.o.terms[i].eq(value)
 
         # copy reg part points and part ops to output
-        m.d.comb += self.o.reg_partition_points.eq(eps)
+        m.d.comb += self.o.part_pts.eq(eps)
         m.d.comb += [self.o.part_ops[i].eq(self.i.part_ops[i])
                                      for i in range(len(self.i.part_ops))]
 
@@ -1201,7 +1210,7 @@ class Intermediates(Elaboratable):
         m = Module()
 
         out_part_ops = self.i.part_ops
-        out_part_pts = self.i.reg_partition_points
+        out_part_pts = self.i.part_pts
 
         # create _output_64
         m.submodules.io64 = io64 = IntermediateOut(64, 128, 1)
@@ -1233,7 +1242,7 @@ class Intermediates(Elaboratable):
 
         for i in range(8):
             m.d.comb += self.o.part_ops[i].eq(out_part_ops[i])
-        m.d.comb += self.o.reg_partition_points.eq(out_part_pts)
+        m.d.comb += self.o.part_pts.eq(out_part_pts)
         m.d.comb += self.o.intermediate_output.eq(self.i.output)
 
         return m
@@ -1292,43 +1301,37 @@ class Mul8_16_32_64(Elaboratable):
     def elaborate(self, platform):
         m = Module()
 
-        # create (doubled) PartitionPoints (output is double input width)
-        expanded_part_pts = eps = PartitionPoints()
-        for i, v in self.part_pts.items():
-            ep = Signal(name=f"expanded_part_pts_{i*2}", reset_less=True)
-            expanded_part_pts[i * 2] = ep
-            m.d.comb += ep.eq(v)
+        part_pts = self.part_pts
 
         n_inputs = 64 + 4
         n_parts = 8 #len(self.part_pts)
-        t = AllTerms(n_inputs, 128, n_parts, self.register_levels,
-                       eps)
+        t = AllTerms(n_inputs, 128, n_parts, self.register_levels, part_pts)
         m.submodules.allterms = t
         m.d.comb += t.i.a.eq(self.a)
         m.d.comb += t.i.b.eq(self.b)
-        m.d.comb += t.i.epps.eq(eps)
+        m.d.comb += t.i.part_pts.eq(part_pts)
         for i in range(8):
             m.d.comb += t.i.part_ops[i].eq(self.part_ops[i])
 
-        terms = t.o.inputs
+        terms = t.o.terms
 
         add_reduce = AddReduce(terms,
                                128,
                                self.register_levels,
-                               t.o.reg_partition_points,
+                               t.o.part_pts,
                                t.o.part_ops)
 
         out_part_ops = add_reduce.o.part_ops
-        out_part_pts = add_reduce.o.reg_partition_points
+        out_part_pts = add_reduce.o.part_pts
 
         m.submodules.add_reduce = add_reduce
 
-        interm = Intermediates(128, 8, expanded_part_pts)
+        interm = Intermediates(128, 8, part_pts)
         m.submodules.intermediates = interm
         m.d.comb += interm.i.eq(add_reduce.o)
 
         # final output
-        m.submodules.finalout = finalout = FinalOut(128, 8, expanded_part_pts)
+        m.submodules.finalout = finalout = FinalOut(128, 8, part_pts)
         m.d.comb += finalout.i.eq(interm.o)
         m.d.comb += self.output.eq(finalout.out)
         m.d.comb += self.intermediate_output.eq(finalout.intermediate_output)