move part_mask
[ieee754fpu.git] / src / ieee754 / part_mul_add / multiply.py
index e8aedb2d731015564b51a24c283a4c3d0ed521c6..a67f4b4ccf7b8aed40f204a5d64159d17888e7e9 100644 (file)
@@ -50,15 +50,17 @@ class PartitionPoints(dict):
                     raise ValueError("point must be a non-negative integer")
                 self[point] = Value.wrap(enabled)
 
-    def like(self, name=None, src_loc_at=0):
+    def like(self, name=None, src_loc_at=0, mul=1):
         """Create a new ``PartitionPoints`` with ``Signal``s for all values.
 
         :param name: the base name for the new ``Signal``s.
+        :param mul: a multiplication factor on the indices
         """
         if name is None:
             name = Signal(src_loc_at=1+src_loc_at).name  # get variable name
         retval = PartitionPoints()
         for point, enabled in self.items():
+            point *= mul
             retval[point] = Signal(enabled.shape(), name=f"{name}_{point}")
         return retval
 
@@ -103,6 +105,12 @@ class PartitionPoints(dict):
                 return False
         return True
 
+    def part_byte(self, index, mfactor=1): # mfactor used for "expanding"
+        if index == -1 or index == 7:
+            return C(True, 1)
+        assert index >= 0 and index < 8
+        return self[(index * 8 + 8)*mfactor]
+
 
 class FullAdder(Elaboratable):
     """Full Adder.
@@ -292,6 +300,88 @@ class PartitionedAdder(Elaboratable):
 
 FULL_ADDER_INPUT_COUNT = 3
 
+class AddReduceData:
+
+    def __init__(self, ppoints, n_inputs, output_width, n_parts):
+        self.part_ops = [Signal(2, name=f"part_ops_{i}")
+                          for i in range(n_parts)]
+        self.inputs = [Signal(output_width, name=f"inputs[{i}]")
+            for i in range(n_inputs)]
+        self.reg_partition_points = ppoints.like()
+
+    def eq_from(self, reg_partition_points, inputs, part_ops):
+        return [self.reg_partition_points.eq(reg_partition_points)] + \
+               [self.inputs[i].eq(inputs[i])
+                                     for i in range(len(self.inputs))] + \
+               [self.part_ops[i].eq(part_ops[i])
+                                     for i in range(len(self.part_ops))]
+
+    def eq(self, rhs):
+        return self.eq_from(rhs.reg_partition_points, rhs.inputs, rhs.part_ops)
+
+
+class FinalReduceData:
+
+    def __init__(self, ppoints, output_width, n_parts):
+        self.part_ops = [Signal(2, name=f"part_ops_{i}")
+                          for i in range(n_parts)]
+        self.output = Signal(output_width)
+        self.reg_partition_points = ppoints.like()
+
+    def eq_from(self, reg_partition_points, output, part_ops):
+        return [self.reg_partition_points.eq(reg_partition_points)] + \
+               [self.output.eq(output)] + \
+               [self.part_ops[i].eq(part_ops[i])
+                                     for i in range(len(self.part_ops))]
+
+    def eq(self, rhs):
+        return self.eq_from(rhs.reg_partition_points, rhs.output, rhs.part_ops)
+
+
+class FinalAdd(Elaboratable):
+    """ Final stage of add reduce
+    """
+
+    def __init__(self, n_inputs, output_width, n_parts, register_levels,
+                       partition_points):
+        self.i = AddReduceData(partition_points, n_inputs,
+                               output_width, n_parts)
+        self.o = FinalReduceData(partition_points, output_width, n_parts)
+        self.output_width = output_width
+        self.n_inputs = n_inputs
+        self.n_parts = n_parts
+        self.register_levels = list(register_levels)
+        self.partition_points = PartitionPoints(partition_points)
+        if not self.partition_points.fits_in_width(output_width):
+            raise ValueError("partition_points doesn't fit in output_width")
+
+    def elaborate(self, platform):
+        """Elaborate this module."""
+        m = Module()
+
+        output_width = self.output_width
+        output = Signal(output_width)
+        if self.n_inputs == 0:
+            # use 0 as the default output value
+            m.d.comb += output.eq(0)
+        elif self.n_inputs == 1:
+            # handle single input
+            m.d.comb += output.eq(self.i.inputs[0])
+        else:
+            # base case for adding 2 inputs
+            assert self.n_inputs == 2
+            adder = PartitionedAdder(output_width, self.i.reg_partition_points)
+            m.submodules.final_adder = adder
+            m.d.comb += adder.a.eq(self.i.inputs[0])
+            m.d.comb += adder.b.eq(self.i.inputs[1])
+            m.d.comb += output.eq(adder.output)
+
+        # create output
+        m.d.comb += self.o.eq_from(self.i.reg_partition_points, output,
+                                   self.i.part_ops)
+
+        return m
+
 
 class AddReduceSingle(Elaboratable):
     """Add list of numbers together.
@@ -305,8 +395,8 @@ class AddReduceSingle(Elaboratable):
         supported, except for by ``Signal.eq``.
     """
 
-    def __init__(self, inputs, output_width, register_levels, partition_points,
-                       part_ops):
+    def __init__(self, n_inputs, output_width, n_parts, register_levels,
+                       partition_points):
         """Create an ``AddReduce``.
 
         :param inputs: input ``Signal``s to be summed.
@@ -315,21 +405,17 @@ class AddReduceSingle(Elaboratable):
             pipeline registers.
         :param partition_points: the input partition points.
         """
-        self.part_ops = part_ops
-        self.out_part_ops = [Signal(2, name=f"out_part_ops_{i}")
-                          for i in range(len(part_ops))]
-        self.inputs = list(inputs)
-        self._resized_inputs = [
-            Signal(output_width, name=f"resized_inputs[{i}]")
-            for i in range(len(self.inputs))]
+        self.n_inputs = n_inputs
+        self.n_parts = n_parts
+        self.output_width = output_width
+        self.i = AddReduceData(partition_points, n_inputs,
+                               output_width, n_parts)
         self.register_levels = list(register_levels)
-        self.output = Signal(output_width)
         self.partition_points = PartitionPoints(partition_points)
         if not self.partition_points.fits_in_width(output_width):
             raise ValueError("partition_points doesn't fit in output_width")
-        self._reg_partition_points = self.partition_points.like()
 
-        max_level = AddReduceSingle.get_max_level(len(self.inputs))
+        max_level = AddReduceSingle.get_max_level(n_inputs)
         for level in self.register_levels:
             if level > max_level:
                 raise ValueError(
@@ -339,11 +425,15 @@ class AddReduceSingle(Elaboratable):
         # because we need to know what they are (in order to set up the
         # interconnects back in AddReduce), but cannot do the m.d.comb +=
         # etc because this is not in elaboratable.
-        self.groups = AddReduceSingle.full_adder_groups(len(self.inputs))
+        self.groups = AddReduceSingle.full_adder_groups(n_inputs)
         self._intermediate_terms = []
+        self.adders = []
         if len(self.groups) != 0:
             self.create_next_terms()
 
+        self.o = AddReduceData(partition_points, len(self._intermediate_terms),
+                               output_width, n_parts)
+
     @staticmethod
     def get_max_level(input_count):
         """Get the maximum level.
@@ -371,97 +461,60 @@ class AddReduceSingle(Elaboratable):
         """Elaborate this module."""
         m = Module()
 
-        # resize inputs to correct bit-width and optionally add in
-        # pipeline registers
-        resized_input_assignments = [self._resized_inputs[i].eq(self.inputs[i])
-                                     for i in range(len(self.inputs))]
-        copy_part_ops = [self.out_part_ops[i].eq(self.part_ops[i])
-                                     for i in range(len(self.part_ops))]
-        if 0 in self.register_levels:
-            m.d.sync += copy_part_ops
-            m.d.sync += resized_input_assignments
-            m.d.sync += self._reg_partition_points.eq(self.partition_points)
-        else:
-            m.d.comb += copy_part_ops
-            m.d.comb += resized_input_assignments
-            m.d.comb += self._reg_partition_points.eq(self.partition_points)
-
-        for (value, term) in self._intermediate_terms:
-            m.d.comb += term.eq(value)
-
-        # if there are no full adders to create, then we handle the base cases
-        # and return, otherwise we go on to the recursive case
-        if len(self.groups) == 0:
-            if len(self.inputs) == 0:
-                # use 0 as the default output value
-                m.d.comb += self.output.eq(0)
-            elif len(self.inputs) == 1:
-                # handle single input
-                m.d.comb += self.output.eq(self._resized_inputs[0])
-            else:
-                # base case for adding 2 inputs
-                assert len(self.inputs) == 2
-                adder = PartitionedAdder(len(self.output),
-                                         self._reg_partition_points)
-                m.submodules.final_adder = adder
-                m.d.comb += adder.a.eq(self._resized_inputs[0])
-                m.d.comb += adder.b.eq(self._resized_inputs[1])
-                m.d.comb += self.output.eq(adder.output)
-            return m
-
-        mask = self._reg_partition_points.as_mask(len(self.output))
-        m.d.comb += self.part_mask.eq(mask)
+        # copy the intermediate terms to the output
+        for i, value in enumerate(self._intermediate_terms):
+            m.d.comb += self.o.inputs[i].eq(value)
+
+        # copy reg part points and part ops to output
+        m.d.comb += self.o.reg_partition_points.eq(self.i.reg_partition_points)
+        m.d.comb += [self.o.part_ops[i].eq(self.i.part_ops[i])
+                                     for i in range(len(self.i.part_ops))]
+
+        # set up the partition mask (for the adders)
+        part_mask = Signal(self.output_width, reset_less=True)
+
+        mask = self.i.reg_partition_points.as_mask(self.output_width)
+        m.d.comb += part_mask.eq(mask)
 
         # add and link the intermediate term modules
         for i, (iidx, adder_i) in enumerate(self.adders):
             setattr(m.submodules, f"adder_{i}", adder_i)
 
-            m.d.comb += adder_i.in0.eq(self._resized_inputs[iidx])
-            m.d.comb += adder_i.in1.eq(self._resized_inputs[iidx + 1])
-            m.d.comb += adder_i.in2.eq(self._resized_inputs[iidx + 2])
-            m.d.comb += adder_i.mask.eq(self.part_mask)
+            m.d.comb += adder_i.in0.eq(self.i.inputs[iidx])
+            m.d.comb += adder_i.in1.eq(self.i.inputs[iidx + 1])
+            m.d.comb += adder_i.in2.eq(self.i.inputs[iidx + 2])
+            m.d.comb += adder_i.mask.eq(part_mask)
 
         return m
 
     def create_next_terms(self):
 
-        # go on to prepare recursive case
-        intermediate_terms = []
         _intermediate_terms = []
 
         def add_intermediate_term(value):
-            intermediate_term = Signal(
-                len(self.output),
-                name=f"intermediate_terms[{len(intermediate_terms)}]")
-            _intermediate_terms.append((value, intermediate_term))
-            intermediate_terms.append(intermediate_term)
-
-        # store mask in intermediary (simplifies graph)
-        self.part_mask = Signal(len(self.output), reset_less=True)
+            _intermediate_terms.append(value)
 
         # create full adders for this recursive level.
         # this shrinks N terms to 2 * (N // 3) plus the remainder
-        self.adders = []
         for i in self.groups:
-            adder_i = MaskedFullAdder(len(self.output))
+            adder_i = MaskedFullAdder(self.output_width)
             self.adders.append((i, adder_i))
             # add both the sum and the masked-carry to the next level.
             # 3 inputs have now been reduced to 2...
             add_intermediate_term(adder_i.sum)
             add_intermediate_term(adder_i.mcarry)
         # handle the remaining inputs.
-        if len(self.inputs) % FULL_ADDER_INPUT_COUNT == 1:
-            add_intermediate_term(self._resized_inputs[-1])
-        elif len(self.inputs) % FULL_ADDER_INPUT_COUNT == 2:
+        if self.n_inputs % FULL_ADDER_INPUT_COUNT == 1:
+            add_intermediate_term(self.i.inputs[-1])
+        elif self.n_inputs % FULL_ADDER_INPUT_COUNT == 2:
             # Just pass the terms to the next layer, since we wouldn't gain
             # anything by using a half adder since there would still be 2 terms
             # and just passing the terms to the next layer saves gates.
-            add_intermediate_term(self._resized_inputs[-2])
-            add_intermediate_term(self._resized_inputs[-1])
+            add_intermediate_term(self.i.inputs[-2])
+            add_intermediate_term(self.i.inputs[-1])
         else:
-            assert len(self.inputs) % FULL_ADDER_INPUT_COUNT == 0
+            assert self.n_inputs % FULL_ADDER_INPUT_COUNT == 0
 
-        self.intermediate_terms = intermediate_terms
         self._intermediate_terms = _intermediate_terms
 
 
@@ -489,9 +542,8 @@ class AddReduce(Elaboratable):
         """
         self.inputs = inputs
         self.part_ops = part_ops
-        self.out_part_ops = [Signal(2, name=f"out_part_ops_{i}")
-                          for i in range(len(part_ops))]
-        self.output = Signal(output_width)
+        n_parts = len(part_ops)
+        self.o = FinalReduceData(partition_points, output_width, n_parts)
         self.output_width = output_width
         self.register_levels = register_levels
         self.partition_points = partition_points
@@ -515,18 +567,26 @@ class AddReduce(Elaboratable):
         mods = []
         next_levels = self.register_levels
         partition_points = self.partition_points
-        inputs = self.inputs
         part_ops = self.part_ops
+        n_parts = len(part_ops)
+        inputs = self.inputs
+        ilen = len(inputs)
         while True:
-            next_level = AddReduceSingle(inputs, self.output_width, next_levels,
-                                         partition_points, part_ops)
+            next_level = AddReduceSingle(ilen, self.output_width, n_parts,
+                                         next_levels, partition_points)
             mods.append(next_level)
-            if len(next_level.groups) == 0:
-                break
             next_levels = list(AddReduce.next_register_levels(next_levels))
-            partition_points = next_level._reg_partition_points
-            inputs = next_level.intermediate_terms
-            part_ops = next_level.out_part_ops
+            partition_points = next_level.i.reg_partition_points
+            inputs = next_level.o.inputs
+            ilen = len(inputs)
+            part_ops = next_level.i.part_ops
+            groups = AddReduceSingle.full_adder_groups(len(inputs))
+            if len(groups) == 0:
+                break
+
+        next_level = FinalAdd(ilen, self.output_width, n_parts,
+                              next_levels, partition_points)
+        mods.append(next_level)
 
         self.levels = mods
 
@@ -537,11 +597,24 @@ class AddReduce(Elaboratable):
         for i, next_level in enumerate(self.levels):
             setattr(m.submodules, "next_level%d" % i, next_level)
 
+        partition_points = self.partition_points
+        inputs = self.inputs
+        part_ops = self.part_ops
+        n_parts = len(part_ops)
+        n_inputs = len(inputs)
+        output_width = self.output_width
+        i = AddReduceData(partition_points, n_inputs, output_width, n_parts)
+        m.d.comb += i.eq_from(partition_points, inputs, part_ops)
+        for idx in range(len(self.levels)):
+            mcur = self.levels[idx]
+            if 0 in mcur.register_levels:
+                m.d.sync += mcur.i.eq(i)
+            else:
+                m.d.comb += mcur.i.eq(i)
+            i = mcur.o # for next loop
+
         # output comes from last module
-        m.d.comb += self.output.eq(next_level.output)
-        copy_part_ops = [self.out_part_ops[i].eq(next_level.out_part_ops[i])
-                                     for i in range(len(self.part_ops))]
-        m.d.comb += copy_part_ops
+        m.d.comb += self.o.eq(i)
 
         return m
 
@@ -702,6 +775,45 @@ class LSBNegTerm(Elaboratable):
         return m
 
 
+class Parts(Elaboratable):
+
+    def __init__(self, pbwid, epps, n_parts):
+        self.pbwid = pbwid
+        # inputs
+        self.epps = PartitionPoints.like(epps, name="epps") # expanded points
+        # outputs
+        self.parts = [Signal(name=f"part_{i}") for i in range(n_parts)]
+
+    def elaborate(self, platform):
+        m = Module()
+
+        epps, parts = self.epps, self.parts
+        # collect part-bytes (double factor because the input is extended)
+        pbs = Signal(self.pbwid, reset_less=True)
+        tl = []
+        for i in range(self.pbwid):
+            pb = Signal(name="pb%d" % i, reset_less=True)
+            m.d.comb += pb.eq(epps.part_byte(i, mfactor=2)) # double
+            tl.append(pb)
+        m.d.comb += pbs.eq(Cat(*tl))
+
+        # negated-temporary copy of partition bits
+        npbs = Signal.like(pbs, reset_less=True)
+        m.d.comb += npbs.eq(~pbs)
+        byte_count = 8 // len(parts)
+        for i in range(len(parts)):
+            pbl = []
+            pbl.append(npbs[i * byte_count - 1])
+            for j in range(i * byte_count, (i + 1) * byte_count - 1):
+                pbl.append(pbs[j])
+            pbl.append(npbs[(i + 1) * byte_count - 1])
+            value = Signal(len(pbl), name="value_%d" % i, reset_less=True)
+            m.d.comb += value.eq(Cat(*pbl))
+            m.d.comb += parts[i].eq(~(value).bool())
+
+        return m
+
+
 class Part(Elaboratable):
     """ a key class which, depending on the partitioning, will determine
         what action to take when parts of the output are signed or unsigned.
@@ -717,7 +829,10 @@ class Part(Elaboratable):
         the extra terms - as separate terms - are then thrown at the
         AddReduce alongside the multiplication part-results.
     """
-    def __init__(self, width, n_parts, n_levels, pbwid):
+    def __init__(self, epps, width, n_parts, n_levels, pbwid):
+
+        self.pbwid = pbwid
+        self.epps = epps
 
         # inputs
         self.a = Signal(64)
@@ -728,13 +843,6 @@ class Part(Elaboratable):
 
         # outputs
         self.parts = [Signal(name=f"part_{i}") for i in range(n_parts)]
-        self.delayed_parts = [
-            [Signal(name=f"delayed_part_{delay}_{i}")
-             for i in range(n_parts)]
-                for delay in range(n_levels)]
-        # XXX REALLY WEIRD BUG - have to take a copy of the last delayed_parts
-        self.dplast = [Signal(name=f"dplast_{i}")
-                         for i in range(n_parts)]
 
         self.not_a_term = Signal(width)
         self.neg_lsb_a_term = Signal(width)
@@ -744,28 +852,17 @@ class Part(Elaboratable):
     def elaborate(self, platform):
         m = Module()
 
-        pbs, parts, delayed_parts = self.pbs, self.parts, self.delayed_parts
-        # negated-temporary copy of partition bits
-        npbs = Signal.like(pbs, reset_less=True)
-        m.d.comb += npbs.eq(~pbs)
+        pbs, parts = self.pbs, self.parts
+        epps = self.epps
+        m.submodules.p = p = Parts(self.pbwid, epps, len(parts))
+        m.d.comb += p.epps.eq(epps)
+        parts = p.parts
+
         byte_count = 8 // len(parts)
-        for i in range(len(parts)):
-            pbl = []
-            pbl.append(npbs[i * byte_count - 1])
-            for j in range(i * byte_count, (i + 1) * byte_count - 1):
-                pbl.append(pbs[j])
-            pbl.append(npbs[(i + 1) * byte_count - 1])
-            value = Signal(len(pbl), name="value_%di" % i, reset_less=True)
-            m.d.comb += value.eq(Cat(*pbl))
-            m.d.comb += parts[i].eq(~(value).bool())
-            m.d.comb += delayed_parts[0][i].eq(parts[i])
-            m.d.sync += [delayed_parts[j + 1][i].eq(delayed_parts[j][i])
-                         for j in range(len(delayed_parts)-1)]
-            m.d.comb += self.dplast[i].eq(delayed_parts[-1][i])
 
-        not_a_term, neg_lsb_a_term, not_b_term, neg_lsb_b_term = \
-                self.not_a_term, self.neg_lsb_a_term, \
-                self.not_b_term, self.neg_lsb_b_term
+        not_a_term, neg_lsb_a_term, not_b_term, neg_lsb_b_term = (
+                self.not_a_term, self.neg_lsb_a_term,
+                self.not_b_term, self.neg_lsb_b_term)
 
         byte_width = 8 // len(parts) # byte width
         bit_wid = 8 * byte_width     # bit width
@@ -966,12 +1063,6 @@ class Mul8_16_32_64(Elaboratable):
         # output
         self.output = Signal(64)
 
-    def _part_byte(self, index):
-        if index == -1 or index == 7:
-            return C(True, 1)
-        assert index >= 0 and index < 8
-        return self.part_pts[index * 8 + 8]
-
     def elaborate(self, platform):
         m = Module()
 
@@ -980,10 +1071,17 @@ class Mul8_16_32_64(Elaboratable):
         tl = []
         for i in range(8):
             pb = Signal(name="pb%d" % i, reset_less=True)
-            m.d.comb += pb.eq(self._part_byte(i))
+            m.d.comb += pb.eq(self.part_pts.part_byte(i))
             tl.append(pb)
         m.d.comb += pbs.eq(Cat(*tl))
 
+        # create (doubled) PartitionPoints (output is double input width)
+        expanded_part_pts = eps = PartitionPoints()
+        for i, v in self.part_pts.items():
+            ep = Signal(name=f"expanded_part_pts_{i*2}", reset_less=True)
+            expanded_part_pts[i * 2] = ep
+            m.d.comb += ep.eq(v)
+
         # local variables
         signs = []
         for i in range(8):
@@ -993,10 +1091,10 @@ class Mul8_16_32_64(Elaboratable):
             m.d.comb += s.part_ops.eq(self.part_ops[i])
 
         n_levels = len(self.register_levels)+1
-        m.submodules.part_8 = part_8 = Part(128, 8, n_levels, 8)
-        m.submodules.part_16 = part_16 = Part(128, 4, n_levels, 8)
-        m.submodules.part_32 = part_32 = Part(128, 2, n_levels, 8)
-        m.submodules.part_64 = part_64 = Part(128, 1, n_levels, 8)
+        m.submodules.part_8 = part_8 = Part(eps, 128, 8, n_levels, 8)
+        m.submodules.part_16 = part_16 = Part(eps, 128, 4, n_levels, 8)
+        m.submodules.part_32 = part_32 = Part(eps, 128, 2, n_levels, 8)
+        m.submodules.part_64 = part_64 = Part(eps, 128, 1, n_levels, 8)
         nat_l, nbt_l, nla_l, nlb_l = [], [], [], []
         for mod in [part_8, part_16, part_32, part_64]:
             m.d.comb += mod.a.eq(self.a)
@@ -1037,22 +1135,17 @@ class Mul8_16_32_64(Elaboratable):
                 m.d.comb += mod.orin[i].eq(l[i])
             terms.append(mod.orout)
 
-        expanded_part_pts = PartitionPoints()
-        for i, v in self.part_pts.items():
-            signal = Signal(name=f"expanded_part_pts_{i*2}", reset_less=True)
-            expanded_part_pts[i * 2] = signal
-            m.d.comb += signal.eq(v)
-
         add_reduce = AddReduce(terms,
                                128,
                                self.register_levels,
                                expanded_part_pts,
                                self.part_ops)
 
-        out_part_ops = add_reduce.levels[-1].out_part_ops
+        out_part_ops = add_reduce.o.part_ops
+        out_part_pts = add_reduce.o.reg_partition_points
 
         m.submodules.add_reduce = add_reduce
-        m.d.comb += self._intermediate_output.eq(add_reduce.output)
+        m.d.comb += self._intermediate_output.eq(add_reduce.o.output)
         # create _output_64
         m.submodules.io64 = io64 = IntermediateOut(64, 128, 1)
         m.d.comb += io64.intermed.eq(self._intermediate_output)
@@ -1077,14 +1170,24 @@ class Mul8_16_32_64(Elaboratable):
         for i in range(8):
             m.d.comb += io8.part_ops[i].eq(out_part_ops[i])
 
+        m.submodules.p_8 = p_8 = Parts(8, eps, len(part_8.parts))
+        m.submodules.p_16 = p_16 = Parts(8, eps, len(part_16.parts))
+        m.submodules.p_32 = p_32 = Parts(8, eps, len(part_32.parts))
+        m.submodules.p_64 = p_64 = Parts(8, eps, len(part_64.parts))
+
+        m.d.comb += p_8.epps.eq(out_part_pts)
+        m.d.comb += p_16.epps.eq(out_part_pts)
+        m.d.comb += p_32.epps.eq(out_part_pts)
+        m.d.comb += p_64.epps.eq(out_part_pts)
+
         # final output
         m.submodules.finalout = finalout = FinalOut(64)
-        for i in range(len(part_8.delayed_parts[-1])):
-            m.d.comb += finalout.d8[i].eq(part_8.dplast[i])
-        for i in range(len(part_16.delayed_parts[-1])):
-            m.d.comb += finalout.d16[i].eq(part_16.dplast[i])
-        for i in range(len(part_32.delayed_parts[-1])):
-            m.d.comb += finalout.d32[i].eq(part_32.dplast[i])
+        for i in range(len(part_8.parts)):
+            m.d.comb += finalout.d8[i].eq(p_8.parts[i])
+        for i in range(len(part_16.parts)):
+            m.d.comb += finalout.d16[i].eq(p_16.parts[i])
+        for i in range(len(part_32.parts)):
+            m.d.comb += finalout.d32[i].eq(p_32.parts[i])
         m.d.comb += finalout.i8.eq(io8.output)
         m.d.comb += finalout.i16.eq(io16.output)
         m.d.comb += finalout.i32.eq(io32.output)