pass in partition step parameter
[ieee754fpu.git] / src / ieee754 / part_mul_add / multiply.py
index 8e4ea8305ed43441254d33e1002c0c3d92c285a5..b5706014a3b404fbfa72978a46910bfe337d16a9 100644 (file)
@@ -71,17 +71,20 @@ class PartitionPoints(dict):
         for point, enabled in self.items():
             yield enabled.eq(rhs[point])
 
-    def as_mask(self, width):
+    def as_mask(self, width, mul=1):
         """Create a bit-mask from `self`.
 
         Each bit in the returned mask is clear only if the partition point at
         the same bit-index is enabled.
 
         :param width: the bit width of the resulting mask
+        :param mul: a "multiplier" which in-place expands the partition points
+                    typically set to "2" when used for multipliers
         """
         bits = []
         for i in range(width):
-            if i in self:
+            i /= mul
+            if i.is_integer() and int(i) in self:
                 bits.append(~self[i])
             else:
                 bits.append(True)
@@ -227,13 +230,16 @@ class PartitionedAdder(Elaboratable):
         supported, except for by ``Signal.eq``.
     """
 
-    def __init__(self, width, partition_points):
+    def __init__(self, width, partition_points, partition_step=1):
         """Create a ``PartitionedAdder``.
 
         :param width: the bit width of the input and output
         :param partition_points: the input partition points
+        :param partition_step: a multiplier (typically double) step
+                               which in-place "expands" the partition points
         """
         self.width = width
+        self.pmul = partition_step
         self.a = Signal(width, reset_less=True)
         self.b = Signal(width, reset_less=True)
         self.output = Signal(width, reset_less=True)
@@ -267,11 +273,12 @@ class PartitionedAdder(Elaboratable):
         # carry has been carried *over* the break point.
 
         for i in range(self.width):
-            if i in self.partition_points:
+            pi = i/self.pmul # double the range of the partition point test
+            if pi.is_integer() and pi in self.partition_points:
                 # add extra bit set to 0 + 0 for enabled partition points
                 # and 1 + 0 for disabled partition points
                 ea.append(expanded_a[expanded_index])
-                al.append(~self.partition_points[i]) # add extra bit in a
+                al.append(~self.partition_points[pi]) # add extra bit in a
                 eb.append(expanded_b[expanded_index])
                 bl.append(C(0)) # yes, add a zero
                 expanded_index += 1 # skip the extra point.  NOT in the output
@@ -298,60 +305,68 @@ FULL_ADDER_INPUT_COUNT = 3
 
 class AddReduceData:
 
-    def __init__(self, ppoints, n_inputs, output_width, n_parts):
+    def __init__(self, part_pts, n_inputs, output_width, n_parts):
         self.part_ops = [Signal(2, name=f"part_ops_{i}", reset_less=True)
                           for i in range(n_parts)]
-        self.inputs = [Signal(output_width, name=f"inputs_{i}",
+        self.terms = [Signal(output_width, name=f"inputs_{i}",
                               reset_less=True)
                         for i in range(n_inputs)]
-        self.reg_partition_points = ppoints.like()
+        self.part_pts = part_pts.like()
 
-    def eq_from(self, reg_partition_points, inputs, part_ops):
-        return [self.reg_partition_points.eq(reg_partition_points)] + \
-               [self.inputs[i].eq(inputs[i])
-                                     for i in range(len(self.inputs))] + \
+    def eq_from(self, part_pts, inputs, part_ops):
+        return [self.part_pts.eq(part_pts)] + \
+               [self.terms[i].eq(inputs[i])
+                                     for i in range(len(self.terms))] + \
                [self.part_ops[i].eq(part_ops[i])
                                      for i in range(len(self.part_ops))]
 
     def eq(self, rhs):
-        return self.eq_from(rhs.reg_partition_points, rhs.inputs, rhs.part_ops)
+        return self.eq_from(rhs.part_pts, rhs.terms, rhs.part_ops)
 
 
 class FinalReduceData:
 
-    def __init__(self, ppoints, output_width, n_parts):
+    def __init__(self, part_pts, output_width, n_parts):
         self.part_ops = [Signal(2, name=f"part_ops_{i}", reset_less=True)
                           for i in range(n_parts)]
         self.output = Signal(output_width, reset_less=True)
-        self.reg_partition_points = ppoints.like()
+        self.part_pts = part_pts.like()
 
-    def eq_from(self, reg_partition_points, output, part_ops):
-        return [self.reg_partition_points.eq(reg_partition_points)] + \
+    def eq_from(self, part_pts, output, part_ops):
+        return [self.part_pts.eq(part_pts)] + \
                [self.output.eq(output)] + \
                [self.part_ops[i].eq(part_ops[i])
                                      for i in range(len(self.part_ops))]
 
     def eq(self, rhs):
-        return self.eq_from(rhs.reg_partition_points, rhs.output, rhs.part_ops)
+        return self.eq_from(rhs.part_pts, rhs.output, rhs.part_ops)
 
 
 class FinalAdd(Elaboratable):
     """ Final stage of add reduce
     """
 
-    def __init__(self, n_inputs, output_width, n_parts, register_levels,
-                       partition_points):
-        self.i = AddReduceData(partition_points, n_inputs,
-                               output_width, n_parts)
-        self.o = FinalReduceData(partition_points, output_width, n_parts)
+    def __init__(self, n_inputs, output_width, n_parts, partition_points,
+                       partition_step=1):
+        self.partition_step = partition_step
         self.output_width = output_width
         self.n_inputs = n_inputs
         self.n_parts = n_parts
-        self.register_levels = list(register_levels)
         self.partition_points = PartitionPoints(partition_points)
         if not self.partition_points.fits_in_width(output_width):
             raise ValueError("partition_points doesn't fit in output_width")
 
+        self.i = self.ispec()
+        self.o = self.ospec()
+
+    def ispec(self):
+        return AddReduceData(self.partition_points, self.n_inputs,
+                             self.output_width, self.n_parts)
+
+    def ospec(self):
+        return FinalReduceData(self.partition_points,
+                                 self.output_width, self.n_parts)
+
     def elaborate(self, platform):
         """Elaborate this module."""
         m = Module()
@@ -363,18 +378,19 @@ class FinalAdd(Elaboratable):
             m.d.comb += output.eq(0)
         elif self.n_inputs == 1:
             # handle single input
-            m.d.comb += output.eq(self.i.inputs[0])
+            m.d.comb += output.eq(self.i.terms[0])
         else:
             # base case for adding 2 inputs
             assert self.n_inputs == 2
-            adder = PartitionedAdder(output_width, self.i.reg_partition_points)
+            adder = PartitionedAdder(output_width,
+                                     self.i.part_pts, self.partition_step)
             m.submodules.final_adder = adder
-            m.d.comb += adder.a.eq(self.i.inputs[0])
-            m.d.comb += adder.b.eq(self.i.inputs[1])
+            m.d.comb += adder.a.eq(self.i.terms[0])
+            m.d.comb += adder.b.eq(self.i.terms[1])
             m.d.comb += output.eq(adder.output)
 
         # create output
-        m.d.comb += self.o.eq_from(self.i.reg_partition_points, output,
+        m.d.comb += self.o.eq_from(self.i.part_pts, output,
                                    self.i.part_ops)
 
         return m
@@ -392,35 +408,33 @@ class AddReduceSingle(Elaboratable):
         supported, except for by ``Signal.eq``.
     """
 
-    def __init__(self, n_inputs, output_width, n_parts, register_levels,
-                       partition_points):
+    def __init__(self, n_inputs, output_width, n_parts, partition_points):
         """Create an ``AddReduce``.
 
         :param inputs: input ``Signal``s to be summed.
         :param output_width: bit-width of ``output``.
-        :param register_levels: List of nesting levels that should have
-            pipeline registers.
         :param partition_points: the input partition points.
         """
         self.n_inputs = n_inputs
         self.n_parts = n_parts
         self.output_width = output_width
-        self.i = AddReduceData(partition_points, n_inputs,
-                               output_width, n_parts)
-        self.register_levels = list(register_levels)
         self.partition_points = PartitionPoints(partition_points)
         if not self.partition_points.fits_in_width(output_width):
             raise ValueError("partition_points doesn't fit in output_width")
 
-        max_level = AddReduceSingle.get_max_level(n_inputs)
-        for level in self.register_levels:
-            if level > max_level:
-                raise ValueError(
-                    "not enough adder levels for specified register levels")
-
         self.groups = AddReduceSingle.full_adder_groups(n_inputs)
-        n_terms = AddReduceSingle.calc_n_inputs(n_inputs, self.groups)
-        self.o = AddReduceData(partition_points, n_terms, output_width, n_parts)
+        self.n_terms = AddReduceSingle.calc_n_inputs(n_inputs, self.groups)
+
+        self.i = self.ispec()
+        self.o = self.ospec()
+
+    def ispec(self):
+        return AddReduceData(self.partition_points, self.n_inputs,
+                             self.output_width, self.n_parts)
+
+    def ospec(self):
+        return AddReduceData(self.partition_points, self.n_terms,
+                             self.output_width, self.n_parts)
 
     @staticmethod
     def calc_n_inputs(n_inputs, groups):
@@ -473,13 +487,13 @@ class AddReduceSingle(Elaboratable):
             terms.append(adder_i.mcarry)
         # handle the remaining inputs.
         if self.n_inputs % FULL_ADDER_INPUT_COUNT == 1:
-            terms.append(self.i.inputs[-1])
+            terms.append(self.i.terms[-1])
         elif self.n_inputs % FULL_ADDER_INPUT_COUNT == 2:
             # Just pass the terms to the next layer, since we wouldn't gain
             # anything by using a half adder since there would still be 2 terms
             # and just passing the terms to the next layer saves gates.
-            terms.append(self.i.inputs[-2])
-            terms.append(self.i.inputs[-1])
+            terms.append(self.i.terms[-2])
+            terms.append(self.i.terms[-1])
         else:
             assert self.n_inputs % FULL_ADDER_INPUT_COUNT == 0
 
@@ -493,32 +507,33 @@ class AddReduceSingle(Elaboratable):
 
         # copy the intermediate terms to the output
         for i, value in enumerate(terms):
-            m.d.comb += self.o.inputs[i].eq(value)
+            m.d.comb += self.o.terms[i].eq(value)
 
         # copy reg part points and part ops to output
-        m.d.comb += self.o.reg_partition_points.eq(self.i.reg_partition_points)
+        m.d.comb += self.o.part_pts.eq(self.i.part_pts)
         m.d.comb += [self.o.part_ops[i].eq(self.i.part_ops[i])
                                      for i in range(len(self.i.part_ops))]
 
         # set up the partition mask (for the adders)
         part_mask = Signal(self.output_width, reset_less=True)
 
-        mask = self.i.reg_partition_points.as_mask(self.output_width)
+        # get partition points as a mask
+        mask = self.i.part_pts.as_mask(self.output_width, mul=2)
         m.d.comb += part_mask.eq(mask)
 
         # add and link the intermediate term modules
         for i, (iidx, adder_i) in enumerate(adders):
             setattr(m.submodules, f"adder_{i}", adder_i)
 
-            m.d.comb += adder_i.in0.eq(self.i.inputs[iidx])
-            m.d.comb += adder_i.in1.eq(self.i.inputs[iidx + 1])
-            m.d.comb += adder_i.in2.eq(self.i.inputs[iidx + 2])
+            m.d.comb += adder_i.in0.eq(self.i.terms[iidx])
+            m.d.comb += adder_i.in1.eq(self.i.terms[iidx + 1])
+            m.d.comb += adder_i.in2.eq(self.i.terms[iidx + 2])
             m.d.comb += adder_i.mask.eq(part_mask)
 
         return m
 
 
-class AddReduce(Elaboratable):
+class AddReduceInternal:
     """Recursively Add list of numbers together.
 
     :attribute inputs: input ``Signal``s to be summed. Modification not
@@ -530,42 +545,26 @@ class AddReduce(Elaboratable):
         supported, except for by ``Signal.eq``.
     """
 
-    def __init__(self, inputs, output_width, register_levels, partition_points,
-                       part_ops):
+    def __init__(self, i, output_width, partition_step=1):
         """Create an ``AddReduce``.
 
         :param inputs: input ``Signal``s to be summed.
         :param output_width: bit-width of ``output``.
-        :param register_levels: List of nesting levels that should have
-            pipeline registers.
         :param partition_points: the input partition points.
         """
-        self.inputs = inputs
-        self.part_ops = part_ops
-        n_parts = len(part_ops)
-        self.o = FinalReduceData(partition_points, output_width, n_parts)
+        self.i = i
+        self.inputs = i.terms
+        self.part_ops = i.part_ops
         self.output_width = output_width
-        self.register_levels = register_levels
-        self.partition_points = partition_points
+        self.partition_points = i.part_pts
+        self.partition_step = partition_step
 
         self.create_levels()
 
-    @staticmethod
-    def get_max_level(input_count):
-        return AddReduceSingle.get_max_level(input_count)
-
-    @staticmethod
-    def next_register_levels(register_levels):
-        """``Iterable`` of ``register_levels`` for next recursive level."""
-        for level in register_levels:
-            if level > 0:
-                yield level - 1
-
     def create_levels(self):
         """creates reduction levels"""
 
         mods = []
-        next_levels = self.register_levels
         partition_points = self.partition_points
         part_ops = self.part_ops
         n_parts = len(part_ops)
@@ -576,38 +575,76 @@ class AddReduce(Elaboratable):
             if len(groups) == 0:
                 break
             next_level = AddReduceSingle(ilen, self.output_width, n_parts,
-                                         next_levels, partition_points)
+                                         partition_points)
             mods.append(next_level)
-            next_levels = list(AddReduce.next_register_levels(next_levels))
-            partition_points = next_level.i.reg_partition_points
-            inputs = next_level.o.inputs
+            partition_points = next_level.i.part_pts
+            inputs = next_level.o.terms
             ilen = len(inputs)
             part_ops = next_level.i.part_ops
 
         next_level = FinalAdd(ilen, self.output_width, n_parts,
-                              next_levels, partition_points)
+                              partition_points, self.partition_step)
         mods.append(next_level)
 
         self.levels = mods
 
+
+class AddReduce(AddReduceInternal, Elaboratable):
+    """Recursively Add list of numbers together.
+
+    :attribute inputs: input ``Signal``s to be summed. Modification not
+        supported, except for by ``Signal.eq``.
+    :attribute register_levels: List of nesting levels that should have
+        pipeline registers.
+    :attribute output: output sum.
+    :attribute partition_points: the input partition points. Modification not
+        supported, except for by ``Signal.eq``.
+    """
+
+    def __init__(self, inputs, output_width, register_levels, part_pts,
+                       part_ops, partition_step=1):
+        """Create an ``AddReduce``.
+
+        :param inputs: input ``Signal``s to be summed.
+        :param output_width: bit-width of ``output``.
+        :param register_levels: List of nesting levels that should have
+            pipeline registers.
+        :param partition_points: the input partition points.
+        """
+        self._inputs = inputs
+        self._part_pts = part_pts
+        self._part_ops = part_ops
+        n_parts = len(part_ops)
+        self.i = AddReduceData(part_pts, len(inputs),
+                             output_width, n_parts)
+        AddReduceInternal.__init__(self, self.i, output_width, partition_step)
+        self.o = FinalReduceData(part_pts, output_width, n_parts)
+        self.register_levels = register_levels
+
+    @staticmethod
+    def get_max_level(input_count):
+        return AddReduceSingle.get_max_level(input_count)
+
+    @staticmethod
+    def next_register_levels(register_levels):
+        """``Iterable`` of ``register_levels`` for next recursive level."""
+        for level in register_levels:
+            if level > 0:
+                yield level - 1
+
     def elaborate(self, platform):
         """Elaborate this module."""
         m = Module()
 
+        m.d.comb += self.i.eq_from(self._part_pts, self._inputs, self._part_ops)
+
         for i, next_level in enumerate(self.levels):
             setattr(m.submodules, "next_level%d" % i, next_level)
 
-        partition_points = self.partition_points
-        inputs = self.inputs
-        part_ops = self.part_ops
-        n_parts = len(part_ops)
-        n_inputs = len(inputs)
-        output_width = self.output_width
-        i = AddReduceData(partition_points, n_inputs, output_width, n_parts)
-        m.d.comb += i.eq_from(partition_points, inputs, part_ops)
+        i = self.i
         for idx in range(len(self.levels)):
             mcur = self.levels[idx]
-            if 0 in mcur.register_levels:
+            if idx in self.register_levels:
                 m.d.sync += mcur.i.eq(i)
             else:
                 m.d.comb += mcur.i.eq(i)
@@ -680,8 +717,8 @@ class ProductTerm(Elaboratable):
         bsb = Signal(self.width, reset_less=True)
         a_index, b_index = self.a_index, self.b_index
         pwidth = self.pwidth
-        m.d.comb += bsa.eq(self.a.part(a_index * pwidth, pwidth))
-        m.d.comb += bsb.eq(self.b.part(b_index * pwidth, pwidth))
+        m.d.comb += bsa.eq(self.a.bit_select(a_index * pwidth, pwidth))
+        m.d.comb += bsb.eq(self.b.bit_select(b_index * pwidth, pwidth))
         m.d.comb += self.ti.eq(bsa * bsb)
         m.d.comb += self.term.eq(get_term(self.ti, self.shift, self.enabled))
         """
@@ -695,8 +732,8 @@ class ProductTerm(Elaboratable):
         asel = Signal(width, reset_less=True)
         bsel = Signal(width, reset_less=True)
         a_index, b_index = self.a_index, self.b_index
-        m.d.comb += asel.eq(self.a.part(a_index * pwidth, pwidth))
-        m.d.comb += bsel.eq(self.b.part(b_index * pwidth, pwidth))
+        m.d.comb += asel.eq(self.a.bit_select(a_index * pwidth, pwidth))
+        m.d.comb += bsel.eq(self.b.bit_select(b_index * pwidth, pwidth))
         m.d.comb += bsa.eq(get_term(asel, self.shift, self.enabled))
         m.d.comb += bsb.eq(get_term(bsel, self.shift, self.enabled))
         m.d.comb += self.ti.eq(bsa * bsb)
@@ -777,10 +814,10 @@ class LSBNegTerm(Elaboratable):
 
 class Parts(Elaboratable):
 
-    def __init__(self, pbwid, epps, n_parts):
+    def __init__(self, pbwid, part_pts, n_parts):
         self.pbwid = pbwid
         # inputs
-        self.epps = PartitionPoints.like(epps, name="epps") # expanded points
+        self.part_pts = PartitionPoints.like(part_pts)
         # outputs
         self.parts = [Signal(name=f"part_{i}", reset_less=True)
                       for i in range(n_parts)]
@@ -788,13 +825,13 @@ class Parts(Elaboratable):
     def elaborate(self, platform):
         m = Module()
 
-        epps, parts = self.epps, self.parts
+        part_pts, parts = self.part_pts, self.parts
         # collect part-bytes (double factor because the input is extended)
         pbs = Signal(self.pbwid, reset_less=True)
         tl = []
         for i in range(self.pbwid):
             pb = Signal(name="pb%d" % i, reset_less=True)
-            m.d.comb += pb.eq(epps.part_byte(i, mfactor=2)) # double
+            m.d.comb += pb.eq(part_pts.part_byte(i))
             tl.append(pb)
         m.d.comb += pbs.eq(Cat(*tl))
 
@@ -830,10 +867,10 @@ class Part(Elaboratable):
         the extra terms - as separate terms - are then thrown at the
         AddReduce alongside the multiplication part-results.
     """
-    def __init__(self, epps, width, n_parts, n_levels, pbwid):
+    def __init__(self, part_pts, width, n_parts, n_levels, pbwid):
 
         self.pbwid = pbwid
-        self.epps = epps
+        self.part_pts = part_pts
 
         # inputs
         self.a = Signal(64, reset_less=True)
@@ -857,9 +894,9 @@ class Part(Elaboratable):
         m = Module()
 
         pbs, parts = self.pbs, self.parts
-        epps = self.epps
-        m.submodules.p = p = Parts(self.pbwid, epps, len(parts))
-        m.d.comb += p.epps.eq(epps)
+        part_pts = self.part_pts
+        m.submodules.p = p = Parts(self.pbwid, part_pts, len(parts))
+        m.d.comb += p.part_pts.eq(part_pts)
         parts = p.parts
 
         byte_count = 8 // len(parts)
@@ -876,7 +913,7 @@ class Part(Elaboratable):
             pa = LSBNegTerm(bit_wid)
             setattr(m.submodules, "lnt_%d_a_%d" % (bit_wid, i), pa)
             m.d.comb += pa.part.eq(parts[i])
-            m.d.comb += pa.op.eq(self.a.part(bit_wid * i, bit_wid))
+            m.d.comb += pa.op.eq(self.a.bit_select(bit_wid * i, bit_wid))
             m.d.comb += pa.signed.eq(self.b_signed[i * byte_width]) # yes b
             m.d.comb += pa.msb.eq(self.b[(i + 1) * bit_wid - 1]) # really, b
             nat.append(pa.nt)
@@ -886,7 +923,7 @@ class Part(Elaboratable):
             pb = LSBNegTerm(bit_wid)
             setattr(m.submodules, "lnt_%d_b_%d" % (bit_wid, i), pb)
             m.d.comb += pb.part.eq(parts[i])
-            m.d.comb += pb.op.eq(self.b.part(bit_wid * i, bit_wid))
+            m.d.comb += pb.op.eq(self.b.bit_select(bit_wid * i, bit_wid))
             m.d.comb += pb.signed.eq(self.a_signed[i * byte_width]) # yes a
             m.d.comb += pb.msb.eq(self.a[(i + 1) * bit_wid - 1]) # really, a
             nbt.append(pb.nt)
@@ -924,8 +961,8 @@ class IntermediateOut(Elaboratable):
             op = Signal(w, reset_less=True, name="op%d_%d" % (w, i))
             m.d.comb += op.eq(
                 Mux(self.part_ops[sel * i] == OP_MUL_LOW,
-                    self.intermed.part(i * w*2, w),
-                    self.intermed.part(i * w*2 + w, w)))
+                    self.intermed.bit_select(i * w*2, w),
+                    self.intermed.bit_select(i * w*2 + w, w)))
             ol.append(op)
         m.d.comb += self.output.eq(Cat(*ol))
 
@@ -939,24 +976,31 @@ class FinalOut(Elaboratable):
         that some partitions requested 8-bit computation whilst others
         requested 16 or 32 bit.
     """
-    def __init__(self, output_width, n_parts, partition_points):
-        self.expanded_part_points = partition_points
-        self.i = IntermediateData(partition_points, output_width, n_parts)
+    def __init__(self, output_width, n_parts, part_pts):
+        self.part_pts = part_pts
+        self.output_width = output_width
+        self.n_parts = n_parts
         self.out_wid = output_width//2
-        # output
-        self.out = Signal(self.out_wid, reset_less=True)
-        self.intermediate_output = Signal(output_width, reset_less=True)
+
+        self.i = self.ispec()
+        self.o = self.ospec()
+
+    def ispec(self):
+        return IntermediateData(self.part_pts, self.output_width, self.n_parts)
+
+    def ospec(self):
+        return OutputData()
 
     def elaborate(self, platform):
         m = Module()
 
-        eps = self.expanded_part_points
-        m.submodules.p_8 = p_8 = Parts(8, eps, 8)
-        m.submodules.p_16 = p_16 = Parts(8, eps, 4)
-        m.submodules.p_32 = p_32 = Parts(8, eps, 2)
-        m.submodules.p_64 = p_64 = Parts(8, eps, 1)
+        part_pts = self.part_pts
+        m.submodules.p_8 = p_8 = Parts(8, part_pts, 8)
+        m.submodules.p_16 = p_16 = Parts(8, part_pts, 4)
+        m.submodules.p_32 = p_32 = Parts(8, part_pts, 2)
+        m.submodules.p_64 = p_64 = Parts(8, part_pts, 1)
 
-        out_part_pts = self.i.reg_partition_points
+        out_part_pts = self.i.part_pts
 
         # temporaries
         d8 = [Signal(name=f"d8_{i}", reset_less=True) for i in range(8)]
@@ -968,10 +1012,10 @@ class FinalOut(Elaboratable):
         i32 = Signal(self.out_wid, reset_less=True)
         i64 = Signal(self.out_wid, reset_less=True)
 
-        m.d.comb += p_8.epps.eq(out_part_pts)
-        m.d.comb += p_16.epps.eq(out_part_pts)
-        m.d.comb += p_32.epps.eq(out_part_pts)
-        m.d.comb += p_64.epps.eq(out_part_pts)
+        m.d.comb += p_8.part_pts.eq(out_part_pts)
+        m.d.comb += p_16.part_pts.eq(out_part_pts)
+        m.d.comb += p_32.part_pts.eq(out_part_pts)
+        m.d.comb += p_64.part_pts.eq(out_part_pts)
 
         for i in range(len(p_8.parts)):
             m.d.comb += d8[i].eq(p_8.parts[i])
@@ -994,11 +1038,16 @@ class FinalOut(Elaboratable):
             op = Signal(8, reset_less=True, name="op_%d" % i)
             m.d.comb += op.eq(
                 Mux(d8[i] | d16[i // 2],
-                    Mux(d8[i], i8.part(i * 8, 8), i16.part(i * 8, 8)),
-                    Mux(d32[i // 4], i32.part(i * 8, 8), i64.part(i * 8, 8))))
+                    Mux(d8[i], i8.bit_select(i * 8, 8),
+                               i16.bit_select(i * 8, 8)),
+                    Mux(d32[i // 4], i32.bit_select(i * 8, 8),
+                                      i64.bit_select(i * 8, 8))))
             ol.append(op)
-        m.d.comb += self.out.eq(Cat(*ol))
-        m.d.comb += self.intermediate_output.eq(self.i.intermediate_output)
+
+        # create outputs
+        m.d.comb += self.o.output.eq(Cat(*ol))
+        m.d.comb += self.o.intermediate_output.eq(self.i.intermediate_output)
+
         return m
 
 
@@ -1047,18 +1096,18 @@ class Signs(Elaboratable):
 
 class IntermediateData:
 
-    def __init__(self, ppoints, output_width, n_parts):
+    def __init__(self, part_pts, output_width, n_parts):
         self.part_ops = [Signal(2, name=f"part_ops_{i}", reset_less=True)
                           for i in range(n_parts)]
-        self.reg_partition_points = ppoints.like()
+        self.part_pts = part_pts.like()
         self.outputs = [Signal(output_width, name="io%d" % i, reset_less=True)
                           for i in range(4)]
         # intermediates (needed for unit tests)
         self.intermediate_output = Signal(output_width)
 
-    def eq_from(self, reg_partition_points, outputs, intermediate_output,
+    def eq_from(self, part_pts, outputs, intermediate_output,
                       part_ops):
-        return [self.reg_partition_points.eq(reg_partition_points)] + \
+        return [self.part_pts.eq(part_pts)] + \
                [self.intermediate_output.eq(intermediate_output)] + \
                [self.outputs[i].eq(outputs[i])
                                      for i in range(4)] + \
@@ -1066,34 +1115,46 @@ class IntermediateData:
                                      for i in range(len(self.part_ops))]
 
     def eq(self, rhs):
-        return self.eq_from(rhs.reg_partition_points, rhs.outputs,
+        return self.eq_from(rhs.part_pts, rhs.outputs,
                             rhs.intermediate_output, rhs.part_ops)
 
 
-class AllTermsData:
+class InputData:
 
-    def __init__(self, partition_points):
+    def __init__(self):
         self.a = Signal(64)
         self.b = Signal(64)
-        self.epps = partition_points.like()
+        self.part_pts = PartitionPoints()
+        for i in range(8, 64, 8):
+            self.part_pts[i] = Signal(name=f"part_pts_{i}")
         self.part_ops = [Signal(2, name=f"part_ops_{i}") for i in range(8)]
 
-    def eq_from(self, epps, inputs, part_ops):
-        return [self.epps.eq(epps)] + \
+    def eq_from(self, part_pts, a, b, part_ops):
+        return [self.part_pts.eq(part_pts)] + \
                [self.a.eq(a), self.b.eq(b)] + \
                [self.part_ops[i].eq(part_ops[i])
                                      for i in range(len(self.part_ops))]
 
     def eq(self, rhs):
-        return self.eq_from(rhs.epps, rhs.a, rhs.b, rhs.part_ops)
+        return self.eq_from(rhs.part_pts, rhs.a, rhs.b, rhs.part_ops)
+
+
+class OutputData:
+
+    def __init__(self):
+        self.intermediate_output = Signal(128) # needed for unit tests
+        self.output = Signal(64)
+
+    def eq(self, rhs):
+        return [self.intermediate_output.eq(rhs.intermediate_output),
+                self.output.eq(rhs.output)]
 
 
 class AllTerms(Elaboratable):
     """Set of terms to be added together
     """
 
-    def __init__(self, n_inputs, output_width, n_parts, register_levels,
-                       partition_points):
+    def __init__(self, n_inputs, output_width, n_parts, register_levels):
         """Create an ``AddReduce``.
 
         :param inputs: input ``Signal``s to be summed.
@@ -1102,25 +1163,32 @@ class AllTerms(Elaboratable):
             pipeline registers.
         :param partition_points: the input partition points.
         """
-        self.i = AllTermsData(partition_points)
         self.register_levels = register_levels
         self.n_inputs = n_inputs
         self.n_parts = n_parts
         self.output_width = output_width
-        self.o = AddReduceData(self.i.epps, n_inputs,
-                               output_width, n_parts)
+
+        self.i = self.ispec()
+        self.o = self.ospec()
+
+    def ispec(self):
+        return InputData()
+
+    def ospec(self):
+        return AddReduceData(self.i.part_pts, self.n_inputs,
+                             self.output_width, self.n_parts)
 
     def elaborate(self, platform):
         m = Module()
 
-        eps = self.i.epps
+        eps = self.i.part_pts
 
         # collect part-bytes
         pbs = Signal(8, reset_less=True)
         tl = []
         for i in range(8):
             pb = Signal(name="pb%d" % i, reset_less=True)
-            m.d.comb += pb.eq(eps.part_byte(i, mfactor=2))
+            m.d.comb += pb.eq(eps.part_byte(i))
             tl.append(pb)
         m.d.comb += pbs.eq(Cat(*tl))
 
@@ -1179,10 +1247,10 @@ class AllTerms(Elaboratable):
 
         # copy the intermediate terms to the output
         for i, value in enumerate(terms):
-            m.d.comb += self.o.inputs[i].eq(value)
+            m.d.comb += self.o.terms[i].eq(value)
 
         # copy reg part points and part ops to output
-        m.d.comb += self.o.reg_partition_points.eq(eps)
+        m.d.comb += self.o.part_pts.eq(eps)
         m.d.comb += [self.o.part_ops[i].eq(self.i.part_ops[i])
                                      for i in range(len(self.i.part_ops))]
 
@@ -1193,15 +1261,25 @@ class Intermediates(Elaboratable):
     """ Intermediate output modules
     """
 
-    def __init__(self, output_width, n_parts, partition_points):
-        self.i = FinalReduceData(partition_points, output_width, n_parts)
-        self.o = IntermediateData(partition_points, output_width, n_parts)
+    def __init__(self, output_width, n_parts, part_pts):
+        self.part_pts = part_pts
+        self.output_width = output_width
+        self.n_parts = n_parts
+
+        self.i = self.ispec()
+        self.o = self.ospec()
+
+    def ispec(self):
+        return FinalReduceData(self.part_pts, self.output_width, self.n_parts)
+
+    def ospec(self):
+        return IntermediateData(self.part_pts, self.output_width, self.n_parts)
 
     def elaborate(self, platform):
         m = Module()
 
         out_part_ops = self.i.part_ops
-        out_part_pts = self.i.reg_partition_points
+        out_part_pts = self.i.part_pts
 
         # create _output_64
         m.submodules.io64 = io64 = IntermediateOut(64, 128, 1)
@@ -1233,7 +1311,7 @@ class Intermediates(Elaboratable):
 
         for i in range(8):
             m.d.comb += self.o.part_ops[i].eq(out_part_ops[i])
-        m.d.comb += self.o.reg_partition_points.eq(out_part_pts)
+        m.d.comb += self.o.part_pts.eq(out_part_pts)
         m.d.comb += self.o.intermediate_output.eq(self.i.output)
 
         return m
@@ -1275,63 +1353,55 @@ class Mul8_16_32_64(Elaboratable):
         # parameter(s)
         self.register_levels = list(register_levels)
 
-        # inputs
-        self.part_pts = PartitionPoints()
-        for i in range(8, 64, 8):
-            self.part_pts[i] = Signal(name=f"part_pts_{i}")
-        self.part_ops = [Signal(2, name=f"part_ops_{i}") for i in range(8)]
-        self.a = Signal(64)
-        self.b = Signal(64)
+        self.i = self.ispec()
+        self.o = self.ospec()
 
-        # intermediates (needed for unit tests)
-        self.intermediate_output = Signal(128)
+        # inputs
+        self.part_pts = self.i.part_pts
+        self.part_ops = self.i.part_ops
+        self.a = self.i.a
+        self.b = self.i.b
 
         # output
-        self.output = Signal(64)
+        self.intermediate_output = self.o.intermediate_output
+        self.output = self.o.output
+
+    def ispec(self):
+        return InputData()
+
+    def ospec(self):
+        return OutputData()
 
     def elaborate(self, platform):
         m = Module()
 
-        # create (doubled) PartitionPoints (output is double input width)
-        expanded_part_pts = eps = PartitionPoints()
-        for i, v in self.part_pts.items():
-            ep = Signal(name=f"expanded_part_pts_{i*2}", reset_less=True)
-            expanded_part_pts[i * 2] = ep
-            m.d.comb += ep.eq(v)
+        part_pts = self.part_pts
 
         n_inputs = 64 + 4
-        n_parts = 8 #len(self.part_pts)
-        t = AllTerms(n_inputs, 128, n_parts, self.register_levels,
-                       eps)
+        n_parts = 8
+        t = AllTerms(n_inputs, 128, n_parts, self.register_levels)
         m.submodules.allterms = t
-        m.d.comb += t.i.a.eq(self.a)
-        m.d.comb += t.i.b.eq(self.b)
-        m.d.comb += t.i.epps.eq(eps)
-        for i in range(8):
-            m.d.comb += t.i.part_ops[i].eq(self.part_ops[i])
+        m.d.comb += t.i.eq(self.i)
 
-        terms = t.o.inputs
+        terms = t.o.terms
 
         add_reduce = AddReduce(terms,
                                128,
                                self.register_levels,
-                               t.o.reg_partition_points,
-                               t.o.part_ops)
-
-        out_part_ops = add_reduce.o.part_ops
-        out_part_pts = add_reduce.o.reg_partition_points
+                               t.o.part_pts,
+                               t.o.part_ops,
+                               partition_step=2)
 
         m.submodules.add_reduce = add_reduce
 
-        interm = Intermediates(128, 8, expanded_part_pts)
+        interm = Intermediates(128, 8, part_pts)
         m.submodules.intermediates = interm
         m.d.comb += interm.i.eq(add_reduce.o)
 
         # final output
-        m.submodules.finalout = finalout = FinalOut(128, 8, expanded_part_pts)
+        m.submodules.finalout = finalout = FinalOut(128, 8, part_pts)
         m.d.comb += finalout.i.eq(interm.o)
-        m.d.comb += self.output.eq(finalout.out)
-        m.d.comb += self.intermediate_output.eq(finalout.intermediate_output)
+        m.d.comb += self.o.eq(finalout.o)
 
         return m