13bc501fb525e6466e8fa2ac75a32174c2da3b78
[riscv-tests.git] / mt / al_matmul / al_matmul.c
1 //**************************************************************************
2 // Multi-threaded Matrix Multiply benchmark
3 //--------------------------------------------------------------------------
4 // TA : Christopher Celio
5 // Student:
6 //
7 //
8 // This benchmark multiplies two 2-D arrays together and writes the results to
9 // a third vector. The input data (and reference data) should be generated
10 // using the matmul_gendata.pl perl script and dumped to a file named
11 // dataset.h.
12
13
14 // print out arrays, etc.
15 //#define DEBUG
16
17 //--------------------------------------------------------------------------
18 // Includes
19
20 #include <string.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23
24
25 //--------------------------------------------------------------------------
26 // Input/Reference Data
27
28 typedef float data_t;
29 #include "dataset.h"
30
31
32 //--------------------------------------------------------------------------
33 // Basic Utilities and Multi-thread Support
34
35 __thread unsigned long coreid;
36 unsigned long ncores;
37
38 #include "util.h"
39
40 #define stringify_1(s) #s
41 #define stringify(s) stringify_1(s)
42 #define stats(code) do { \
43 unsigned long _c = -rdcycle(), _i = -rdinstret(); \
44 code; \
45 _c += rdcycle(), _i += rdinstret(); \
46 if (coreid == 0) \
47 printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
48 stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
49 } while(0)
50
51
52 //--------------------------------------------------------------------------
53 // Helper functions
54
55 void printArrayMT( char name[], int n, data_t arr[] )
56 {
57 int i;
58 if (coreid != 0)
59 return;
60
61 printf( " %10s :", name );
62 for ( i = 0; i < n; i++ )
63 printf( " %3ld ", (long) arr[i] );
64 printf( "\n" );
65 }
66
67 void __attribute__((noinline)) verifyMT(size_t n, const data_t* test, const data_t* correct)
68 {
69 if (coreid != 0)
70 return;
71
72 size_t i;
73 for (i = 0; i < n; i++)
74 {
75 if (test[i] != correct[i])
76 {
77 printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
78 i, (long)test[i], i, (long)correct[i]);
79 exit(-1);
80 }
81 }
82
83 return;
84 }
85
86 //--------------------------------------------------------------------------
87 // matmul function
88
89 // single-thread, naive version
90 void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
91 {
92 int i, j, k;
93
94 if (coreid > 0)
95 return;
96
97 for ( i = 0; i < lda; i++ )
98 for ( j = 0; j < lda; j++ )
99 {
100 for ( k = 0; k < lda; k++ )
101 {
102 C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
103 }
104 }
105 }
106
107
108
109 void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
110 {
111 int i, j, k, x;
112 data_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7;
113 data_t temp8, temp9, temp10, temp11, temp12, temp13, temp14, temp15;
114
115 //complete Q1
116 if(coreid == 0) {
117 for(j = 0; j < 32; j++) {
118 temp0 = C[j*lda];
119 temp1 = C[1 + j*lda];
120 temp2 = C[2 + j*lda];
121 temp3 = C[3 + j*lda];
122 temp4 = C[4 + j*lda];
123 temp5 = C[5 + j*lda];
124 temp6 = C[6 + j*lda];
125 temp7 = C[7 + j*lda];
126 temp8 = C[8 + j*lda];
127 temp9 = C[9 + j*lda];
128 temp10 = C[10 + j*lda];
129 temp11 = C[11 + j*lda];
130 temp12 = C[12 + j*lda];
131 temp13 = C[13 + j*lda];
132 temp14 = C[14 + j*lda];
133 temp15 = C[15 + j*lda];
134 for(k = 0; k < 32; k++) {
135 temp0 += A[j*lda + k] * B[k*lda];
136 temp1 += A[j*lda + k] * B[1+k*lda];
137 temp2 += A[j*lda + k] * B[2+k*lda];
138 temp3 += A[j*lda + k] * B[3+k*lda];
139 temp4 += A[j*lda + k] * B[4+k*lda];
140 temp5 += A[j*lda + k] * B[5+k*lda];
141 temp6 += A[j*lda + k] * B[6+k*lda];
142 temp7 += A[j*lda + k] * B[7+k*lda];
143 temp8 += A[j*lda + k] * B[8+k*lda];
144 temp9 += A[j*lda + k] * B[9+k*lda];
145 temp10 += A[j*lda + k] * B[10+k*lda];
146 temp11 += A[j*lda + k] * B[11+k*lda];
147 temp12 += A[j*lda + k] * B[12+k*lda];
148 temp13 += A[j*lda + k] * B[13+k*lda];
149 temp14 += A[j*lda + k] * B[14+k*lda];
150 temp15 += A[j*lda + k] * B[15+k*lda];
151 }
152 C[j*lda] = temp0;
153 C[1 + j*lda] = temp1;
154 C[2 + j*lda] = temp2;
155 C[3 + j*lda] = temp3;
156 C[4 + j*lda] = temp4;
157 C[5 + j*lda] = temp5;
158 C[6 + j*lda] = temp6;
159 C[7 + j*lda] = temp7;
160 C[8 + j*lda] = temp8;
161 C[9 + j*lda] = temp9;
162 C[10 + j*lda] = temp10;
163 C[11 + j*lda] = temp11;
164 C[12 + j*lda] = temp12;
165 C[13 + j*lda] = temp13;
166 C[14 + j*lda] = temp14;
167 C[15 + j*lda] = temp15;
168 }
169 }
170
171 else {
172 for(j = 0; j < 32; j++) {
173 temp0 = C[16 + j*lda];
174 temp1 = C[17 + j*lda];
175 temp2 = C[18 + j*lda];
176 temp3 = C[19 + j*lda];
177 temp4 = C[20 + j*lda];
178 temp5 = C[21 + j*lda];
179 temp6 = C[22 + j*lda];
180 temp7 = C[23 + j*lda];
181 temp8 = C[24 + j*lda];
182 temp9 = C[25 + j*lda];
183 temp10 = C[26 + j*lda];
184 temp11 = C[27 + j*lda];
185 temp12 = C[28 + j*lda];
186 temp13 = C[29 + j*lda];
187 temp14 = C[30 + j*lda];
188 temp15 = C[31 + j*lda];
189 for(k = 0; k < 32; k++) {
190 temp0 += A[j*lda + k] * B[16 + k*lda];
191 temp1 += A[j*lda + k] * B[17 + k*lda];
192 temp2 += A[j*lda + k] * B[18 + k*lda];
193 temp3 += A[j*lda + k] * B[19 + k*lda];
194 temp4 += A[j*lda + k] * B[20 + k*lda];
195 temp5 += A[j*lda + k] * B[21 + k*lda];
196 temp6 += A[j*lda + k] * B[22 + k*lda];
197 temp7 += A[j*lda + k] * B[23 + k*lda];
198 temp8 += A[j*lda + k] * B[24 + k*lda];
199 temp9 += A[j*lda + k] * B[25 + k*lda];
200 temp10 += A[j*lda + k] * B[26 + k*lda];
201 temp11 += A[j*lda + k] * B[27 + k*lda];
202 temp12 += A[j*lda + k] * B[28 + k*lda];
203 temp13 += A[j*lda + k] * B[29 + k*lda];
204 temp14 += A[j*lda + k] * B[30 + k*lda];
205 temp15 += A[j*lda + k] * B[31 + k*lda];
206 }
207 C[16 + j*lda] = temp0;
208 C[17 + j*lda] = temp1;
209 C[18 + j*lda] = temp2;
210 C[19 + j*lda] = temp3;
211 C[20 + j*lda] = temp4;
212 C[21 + j*lda] = temp5;
213 C[22 + j*lda] = temp6;
214 C[23 + j*lda] = temp7;
215 C[24 + j*lda] = temp8;
216 C[25 + j*lda] = temp9;
217 C[26 + j*lda] = temp10;
218 C[27 + j*lda] = temp11;
219 C[28 + j*lda] = temp12;
220 C[29 + j*lda] = temp13;
221 C[30 + j*lda] = temp14;
222 C[31 + j*lda] = temp15;
223 }
224 }
225 }
226
227 //--------------------------------------------------------------------------
228 // Main
229 //
230 // all threads start executing thread_entry(). Use their "coreid" to
231 // differentiate between threads (each thread is running on a separate core).
232
233 void thread_entry(int cid, int nc)
234 {
235 coreid = cid;
236 ncores = nc;
237
238 // static allocates data in the binary, which is visible to both threads
239 static data_t results_data[ARRAY_SIZE];
240
241
242 // // Execute the provided, naive matmul
243 // barrier(nc);
244 // stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
245 //
246 //
247 // // verify
248 // verifyMT(ARRAY_SIZE, results_data, verify_data);
249 //
250 // // clear results from the first trial
251 // size_t i;
252 // if (coreid == 0)
253 // for (i=0; i < ARRAY_SIZE; i++)
254 // results_data[i] = 0;
255 // barrier(nc);
256
257
258 // Execute your faster matmul
259 barrier(nc);
260 stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
261
262 #ifdef DEBUG
263 printArrayMT("results:", ARRAY_SIZE, results_data);
264 printArrayMT("verify :", ARRAY_SIZE, verify_data);
265 #endif
266
267 // verify
268 verifyMT(ARRAY_SIZE, results_data, verify_data);
269 barrier(nc);
270
271 exit(0);
272 }
273