Allow the formal engine to perform a same-cycle result in the ALU
[soc.git] / src / experiment / compalu.py
diff --git a/src/experiment/compalu.py b/src/experiment/compalu.py
deleted file mode 100644 (file)
index 7da6b5c..0000000
+++ /dev/null
@@ -1,207 +0,0 @@
-from nmigen.compat.sim import run_simulation
-from nmigen.cli import verilog, rtlil
-from nmigen import Module, Signal, Mux, Elaboratable
-
-from nmutil.latch import SRLatch, latchregister
-
-""" Computation Unit (aka "ALU Manager").
-
-    This module runs a "revolving door" set of three latches, based on
-    * Issue
-    * Go_Read
-    * Go_Write
-    where one of them cannot be set on any given cycle.
-    (Note however that opc_l has been inverted (and qn used), due to SRLatch
-     default reset state being "0" rather than "1")
-
-    * When issue is first raised, a busy signal is sent out.
-      The src1 and src2 registers and the operand can be latched in
-      at this point
-
-    * Read request is set, which is acknowledged through the Scoreboard
-      to the priority picker, which generates (one and only one) Go_Read
-      at a time.  One of those will (eventually) be this Computation Unit.
-
-    * Once Go_Read is set, the src1/src2/operand latch door shuts (locking
-      src1/src2/operand in place), and the ALU is told to proceed.
-
-    * As this is currently a "demo" unit, a countdown timer is activated
-      to simulate an ALU "pipeline", which activates "write request release",
-      and the ALU's output is captured into a temporary register.
-
-    * Write request release will go through a similar process as Read request,
-      resulting (eventually) in Go_Write being asserted.
-
-    * When Go_Write is asserted, two things happen: (1) the data in the temp
-      register is placed combinatorially onto the output, and (2) the
-      req_l latch is cleared, busy is dropped, and the Comp Unit is back
-      through its revolving door to do another task.
-
-    Notes on oper_i:
-
-    * bits[0:2] are for the ALU, add=0, sub=1, shift=2, mul=3
-    * bit[2] are the immediate (bit[2]=1 == immediate mode)
-"""
-
-class ComputationUnitNoDelay(Elaboratable):
-    def __init__(self, rwid, opwid, alu):
-        self.opwid = opwid
-        self.rwid = rwid
-        self.alu = alu
-
-        self.counter = Signal(4)
-        self.go_rd_i = Signal(reset_less=True) # go read in
-        self.go_wr_i = Signal(reset_less=True) # go write in
-        self.issue_i = Signal(reset_less=True) # fn issue in
-        self.shadown_i = Signal(reset=1) # shadow function, defaults to ON
-        self.go_die_i = Signal() # go die (reset)
-
-        self.oper_i = Signal(opwid, reset_less=True) # opcode in
-        self.imm_i = Signal(rwid, reset_less=True) # immediate in
-        self.src1_i = Signal(rwid, reset_less=True) # oper1 in
-        self.src2_i = Signal(rwid, reset_less=True) # oper2 in
-
-        self.busy_o = Signal(reset_less=True) # fn busy out
-        self.data_o = Signal(rwid, reset_less=True) # Dest out
-        self.rd_rel_o = Signal(reset_less=True) # release src1/src2 request
-        self.req_rel_o = Signal(reset_less=True) # release request out (valid_o)
-
-    def elaborate(self, platform):
-        m = Module()
-        m.submodules.alu = self.alu
-        m.submodules.src_l = src_l = SRLatch(sync=False)
-        m.submodules.opc_l = opc_l = SRLatch(sync=False)
-        m.submodules.req_l = req_l = SRLatch(sync=False)
-
-        # shadow/go_die
-        reset_w = Signal(reset_less=True)
-        reset_r = Signal(reset_less=True)
-        m.d.comb += reset_w.eq(self.go_wr_i | self.go_die_i)
-        m.d.comb += reset_r.eq(self.go_rd_i | self.go_die_i)
-
-        # This is fascinating and very important to observe that this
-        # is in effect a "3-way revolving door".  At no time may all 3
-        # latches be set at the same time.
-
-        # opcode latch (not using go_rd_i) - inverted so that busy resets to 0
-        m.d.sync += opc_l.s.eq(self.issue_i) # XXX NOTE: INVERTED FROM book!
-        m.d.sync += opc_l.r.eq(reset_w)      # XXX NOTE: INVERTED FROM book!
-
-        # src operand latch (not using go_wr_i)
-        m.d.sync += src_l.s.eq(self.issue_i)
-        m.d.sync += src_l.r.eq(reset_r)
-
-        # dest operand latch (not using issue_i)
-        m.d.sync += req_l.s.eq(self.go_rd_i)
-        m.d.sync += req_l.r.eq(reset_w)
-
-
-        # create a latch/register for the operand
-        oper_r = Signal(self.opwid+1, reset_less=True) # opcode reg
-        latchregister(m, self.oper_i, oper_r, self.issue_i)
-
-        # and one for the output from the ALU
-        data_r = Signal(self.rwid, reset_less=True) # Dest register
-        latchregister(m, self.alu.o, data_r, req_l.q)
-
-        # get the top 2 bits for the ALU
-        m.d.comb += self.alu.op.eq(oper_r[0:2])
-
-        # 3rd bit is whether this is an immediate or not
-        op_is_imm = Signal(reset_less=True)
-        m.d.comb += op_is_imm.eq(oper_r[2])
-
-        # select immediate if opcode says so.  however also change the latch
-        # to trigger *from* the opcode latch instead.
-        src2_or_imm = Signal(self.rwid, reset_less=True)
-        src_sel = Signal(reset_less=True)
-        m.d.comb += src_sel.eq(Mux(op_is_imm, opc_l.qn, src_l.q))
-        m.d.comb += src2_or_imm.eq(Mux(op_is_imm, self.imm_i, self.src2_i))
-
-        # create a latch/register for src1/src2
-        latchregister(m, self.src1_i, self.alu.a, src_l.q)
-        latchregister(m, src2_or_imm, self.alu.b, src_sel)
-
-        # -----
-        # outputs
-        # -----
-
-        # all request signals gated by busy_o.  prevents picker problems
-        busy_o = self.busy_o
-        m.d.comb += busy_o.eq(opc_l.q) # busy out
-        m.d.comb += self.rd_rel_o.eq(src_l.q & busy_o) # src1/src2 req rel
-
-        # on a go_read, tell the ALU we're accepting data.
-        # NOTE: this spells TROUBLE if the ALU isn't ready!
-        # go_read is only valid for one clock!
-        with m.If(self.go_rd_i):                     # src operands ready, GO!
-            with m.If(~self.alu.p_ready_o):          # no ACK yet
-                m.d.comb += self.alu.p_valid_i.eq(1) # so indicate valid
-
-        # only proceed if ALU says its output is valid
-        with m.If(self.alu.n_valid_o):
-            # when ALU ready, write req release out. waits for shadow
-            m.d.comb += self.req_rel_o.eq(req_l.q & busy_o & self.shadown_i)
-            # when output latch is ready, and ALU says ready, accept ALU output
-            with m.If(self.req_rel_o):
-                m.d.comb += self.alu.n_ready_i.eq(1) # tells ALU "thanks got it"
-
-        # output the data from the latch on go_write
-        with m.If(self.go_wr_i):
-            m.d.comb += self.data_o.eq(data_r)
-
-        return m
-
-    def __iter__(self):
-        yield self.go_rd_i
-        yield self.go_wr_i
-        yield self.issue_i
-        yield self.shadown_i
-        yield self.go_die_i
-        yield self.oper_i
-        yield self.imm_i
-        yield self.src1_i
-        yield self.src2_i
-        yield self.busy_o
-        yield self.rd_rel_o
-        yield self.req_rel_o
-        yield self.data_o
-
-    def ports(self):
-        return list(self)
-
-
-def scoreboard_sim(dut):
-    yield dut.dest_i.eq(1)
-    yield dut.issue_i.eq(1)
-    yield
-    yield dut.issue_i.eq(0)
-    yield
-    yield dut.src1_i.eq(1)
-    yield dut.issue_i.eq(1)
-    yield
-    yield
-    yield
-    yield dut.issue_i.eq(0)
-    yield
-    yield dut.go_read_i.eq(1)
-    yield
-    yield dut.go_read_i.eq(0)
-    yield
-    yield dut.go_write_i.eq(1)
-    yield
-    yield dut.go_write_i.eq(0)
-    yield
-
-def test_scoreboard():
-    from alu_hier import ALU
-    alu = ALU(16)
-    dut = ComputationUnitNoDelay(16, 8, alu)
-    vl = rtlil.convert(dut, ports=dut.ports())
-    with open("test_compalu.il", "w") as f:
-        f.write(vl)
-
-    run_simulation(dut, scoreboard_sim(dut), vcd_name='test_compalu.vcd')
-
-if __name__ == '__main__':
-    test_scoreboard()