Return an error to gdb when memory reads fail. (#71)
[riscv-isa-sim.git] / riscv / gdbserver.cc
1 #include <arpa/inet.h>
2 #include <errno.h>
3 #include <fcntl.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <sys/socket.h>
7 #include <sys/types.h>
8 #include <unistd.h>
9
10 #include <algorithm>
11 #include <cassert>
12 #include <cinttypes>
13 #include <cstdio>
14 #include <vector>
15
16 #include "disasm.h"
17 #include "sim.h"
18 #include "gdbserver.h"
19 #include "mmu.h"
20
21 #define C_EBREAK 0x9002
22 #define EBREAK 0x00100073
23
24 //////////////////////////////////////// Utility Functions
25
26 #undef DEBUG
27 #ifdef DEBUG
28 # define D(x) x
29 #else
30 # define D(x)
31 #endif // DEBUG
32
33 void die(const char* msg)
34 {
35 fprintf(stderr, "gdbserver code died: %s\n", msg);
36 abort();
37 }
38
39 // gdb's register list is defined in riscv_gdb_reg_names gdb/riscv-tdep.c in
40 // its source tree. We must interpret the numbers the same here.
41 enum {
42 REG_XPR0 = 0,
43 REG_XPR31 = 31,
44 REG_PC = 32,
45 REG_FPR0 = 33,
46 REG_FPR31 = 64,
47 REG_CSR0 = 65,
48 REG_CSR4095 = 4160,
49 REG_PRIV = 4161
50 };
51
52 //////////////////////////////////////// Functions to generate RISC-V opcodes.
53
54 // TODO: Does this already exist somewhere?
55
56 #define ZERO 0
57 // Using regnames.cc as source. The RVG Calling Convention of the 2.0 RISC-V
58 // spec says it should be 2 and 3.
59 #define S0 8
60 #define S1 9
61 static uint32_t bits(uint32_t value, unsigned int hi, unsigned int lo) {
62 return (value >> lo) & ((1 << (hi+1-lo)) - 1);
63 }
64
65 static uint32_t bit(uint32_t value, unsigned int b) {
66 return (value >> b) & 1;
67 }
68
69 static uint32_t jal(unsigned int rd, uint32_t imm) {
70 return (bit(imm, 20) << 31) |
71 (bits(imm, 10, 1) << 21) |
72 (bit(imm, 11) << 20) |
73 (bits(imm, 19, 12) << 12) |
74 (rd << 7) |
75 MATCH_JAL;
76 }
77
78 static uint32_t csrsi(unsigned int csr, uint16_t imm) {
79 return (csr << 20) |
80 (bits(imm, 4, 0) << 15) |
81 MATCH_CSRRSI;
82 }
83
84 static uint32_t csrci(unsigned int csr, uint16_t imm) {
85 return (csr << 20) |
86 (bits(imm, 4, 0) << 15) |
87 MATCH_CSRRCI;
88 }
89
90 static uint32_t csrr(unsigned int rd, unsigned int csr) {
91 return (csr << 20) | (rd << 7) | MATCH_CSRRS;
92 }
93
94 static uint32_t csrw(unsigned int source, unsigned int csr) {
95 return (csr << 20) | (source << 15) | MATCH_CSRRW;
96 }
97
98 static uint32_t fence_i()
99 {
100 return MATCH_FENCE_I;
101 }
102
103 static uint32_t sb(unsigned int src, unsigned int base, uint16_t offset)
104 {
105 return (bits(offset, 11, 5) << 25) |
106 (src << 20) |
107 (base << 15) |
108 (bits(offset, 4, 0) << 7) |
109 MATCH_SB;
110 }
111
112 static uint32_t sh(unsigned int src, unsigned int base, uint16_t offset)
113 {
114 return (bits(offset, 11, 5) << 25) |
115 (src << 20) |
116 (base << 15) |
117 (bits(offset, 4, 0) << 7) |
118 MATCH_SH;
119 }
120
121 static uint32_t sw(unsigned int src, unsigned int base, uint16_t offset)
122 {
123 return (bits(offset, 11, 5) << 25) |
124 (src << 20) |
125 (base << 15) |
126 (bits(offset, 4, 0) << 7) |
127 MATCH_SW;
128 }
129
130 static uint32_t sd(unsigned int src, unsigned int base, uint16_t offset)
131 {
132 return (bits(offset, 11, 5) << 25) |
133 (bits(src, 4, 0) << 20) |
134 (base << 15) |
135 (bits(offset, 4, 0) << 7) |
136 MATCH_SD;
137 }
138
139 static uint32_t sq(unsigned int src, unsigned int base, uint16_t offset)
140 {
141 #if 0
142 return (bits(offset, 11, 5) << 25) |
143 (bits(src, 4, 0) << 20) |
144 (base << 15) |
145 (bits(offset, 4, 0) << 7) |
146 MATCH_SQ;
147 #else
148 abort();
149 #endif
150 }
151
152 static uint32_t lq(unsigned int rd, unsigned int base, uint16_t offset)
153 {
154 #if 0
155 return (bits(offset, 11, 0) << 20) |
156 (base << 15) |
157 (bits(rd, 4, 0) << 7) |
158 MATCH_LQ;
159 #else
160 abort();
161 #endif
162 }
163
164 static uint32_t ld(unsigned int rd, unsigned int base, uint16_t offset)
165 {
166 return (bits(offset, 11, 0) << 20) |
167 (base << 15) |
168 (bits(rd, 4, 0) << 7) |
169 MATCH_LD;
170 }
171
172 static uint32_t lw(unsigned int rd, unsigned int base, uint16_t offset)
173 {
174 return (bits(offset, 11, 0) << 20) |
175 (base << 15) |
176 (bits(rd, 4, 0) << 7) |
177 MATCH_LW;
178 }
179
180 static uint32_t lh(unsigned int rd, unsigned int base, uint16_t offset)
181 {
182 return (bits(offset, 11, 0) << 20) |
183 (base << 15) |
184 (bits(rd, 4, 0) << 7) |
185 MATCH_LH;
186 }
187
188 static uint32_t lb(unsigned int rd, unsigned int base, uint16_t offset)
189 {
190 return (bits(offset, 11, 0) << 20) |
191 (base << 15) |
192 (bits(rd, 4, 0) << 7) |
193 MATCH_LB;
194 }
195
196 static uint32_t fsw(unsigned int src, unsigned int base, uint16_t offset)
197 {
198 return (bits(offset, 11, 5) << 25) |
199 (bits(src, 4, 0) << 20) |
200 (base << 15) |
201 (bits(offset, 4, 0) << 7) |
202 MATCH_FSW;
203 }
204
205 static uint32_t fsd(unsigned int src, unsigned int base, uint16_t offset)
206 {
207 return (bits(offset, 11, 5) << 25) |
208 (bits(src, 4, 0) << 20) |
209 (base << 15) |
210 (bits(offset, 4, 0) << 7) |
211 MATCH_FSD;
212 }
213
214 static uint32_t flw(unsigned int src, unsigned int base, uint16_t offset)
215 {
216 return (bits(offset, 11, 5) << 25) |
217 (bits(src, 4, 0) << 20) |
218 (base << 15) |
219 (bits(offset, 4, 0) << 7) |
220 MATCH_FLW;
221 }
222
223 static uint32_t fld(unsigned int src, unsigned int base, uint16_t offset)
224 {
225 return (bits(offset, 11, 5) << 25) |
226 (bits(src, 4, 0) << 20) |
227 (base << 15) |
228 (bits(offset, 4, 0) << 7) |
229 MATCH_FLD;
230 }
231
232 static uint32_t addi(unsigned int dest, unsigned int src, uint16_t imm)
233 {
234 return (bits(imm, 11, 0) << 20) |
235 (src << 15) |
236 (dest << 7) |
237 MATCH_ADDI;
238 }
239
240 static uint32_t ori(unsigned int dest, unsigned int src, uint16_t imm)
241 {
242 return (bits(imm, 11, 0) << 20) |
243 (src << 15) |
244 (dest << 7) |
245 MATCH_ORI;
246 }
247
248 static uint32_t xori(unsigned int dest, unsigned int src, uint16_t imm)
249 {
250 return (bits(imm, 11, 0) << 20) |
251 (src << 15) |
252 (dest << 7) |
253 MATCH_XORI;
254 }
255
256 static uint32_t srli(unsigned int dest, unsigned int src, uint8_t shamt)
257 {
258 return (bits(shamt, 4, 0) << 20) |
259 (src << 15) |
260 (dest << 7) |
261 MATCH_SRLI;
262 }
263
264
265 static uint32_t nop()
266 {
267 return addi(0, 0, 0);
268 }
269
270 template <typename T>
271 unsigned int circular_buffer_t<T>::size() const
272 {
273 if (end >= start)
274 return end - start;
275 else
276 return end + capacity - start;
277 }
278
279 template <typename T>
280 void circular_buffer_t<T>::consume(unsigned int bytes)
281 {
282 start = (start + bytes) % capacity;
283 }
284
285 template <typename T>
286 unsigned int circular_buffer_t<T>::contiguous_empty_size() const
287 {
288 if (end >= start)
289 if (start == 0)
290 return capacity - end - 1;
291 else
292 return capacity - end;
293 else
294 return start - end - 1;
295 }
296
297 template <typename T>
298 unsigned int circular_buffer_t<T>::contiguous_data_size() const
299 {
300 if (end >= start)
301 return end - start;
302 else
303 return capacity - start;
304 }
305
306 template <typename T>
307 void circular_buffer_t<T>::data_added(unsigned int bytes)
308 {
309 end += bytes;
310 assert(end <= capacity);
311 if (end == capacity)
312 end = 0;
313 }
314
315 template <typename T>
316 void circular_buffer_t<T>::reset()
317 {
318 start = 0;
319 end = 0;
320 }
321
322 template <typename T>
323 void circular_buffer_t<T>::append(const T *src, unsigned int count)
324 {
325 unsigned int copy = std::min(count, contiguous_empty_size());
326 memcpy(contiguous_empty(), src, copy * sizeof(T));
327 data_added(copy);
328 count -= copy;
329 if (count > 0) {
330 assert(count < contiguous_empty_size());
331 memcpy(contiguous_empty(), src, count * sizeof(T));
332 data_added(count);
333 }
334 }
335
336 ////////////////////////////// Debug Operations
337
338 class halt_op_t : public operation_t
339 {
340 public:
341 halt_op_t(gdbserver_t& gdbserver, bool send_status=false) :
342 operation_t(gdbserver), send_status(send_status),
343 state(ST_ENTER) {};
344
345 void write_dpc_program() {
346 gs.dr_write32(0, csrsi(CSR_DCSR, DCSR_HALT));
347 gs.dr_write32(1, csrr(S0, CSR_DPC));
348 gs.dr_write_store(2, S0, SLOT_DATA0);
349 gs.dr_write_jump(3);
350 gs.set_interrupt(0);
351 }
352
353 bool perform_step(unsigned int step) {
354 switch (state) {
355 gs.tselect_valid = false;
356 case ST_ENTER:
357 if (gs.xlen == 0) {
358 gs.dr_write32(0, xori(S1, ZERO, -1));
359 gs.dr_write32(1, srli(S1, S1, 31));
360 // 0x00000001 0x00000001:ffffffff 0x00000001:ffffffff:ffffffff:ffffffff
361 gs.dr_write32(2, sw(S1, ZERO, DEBUG_RAM_START));
362 gs.dr_write32(3, srli(S1, S1, 31));
363 // 0x00000000 0x00000000:00000003 0x00000000:00000003:ffffffff:ffffffff
364 gs.dr_write32(4, sw(S1, ZERO, DEBUG_RAM_START + 4));
365 gs.dr_write_jump(5);
366 gs.set_interrupt(0);
367 state = ST_XLEN;
368
369 } else {
370 write_dpc_program();
371 state = ST_DPC;
372 }
373 return false;
374
375 case ST_XLEN:
376 {
377 uint32_t word0 = gs.dr_read32(0);
378 uint32_t word1 = gs.dr_read32(1);
379
380 if (word0 == 1 && word1 == 0) {
381 gs.xlen = 32;
382 } else if (word0 == 0xffffffff && word1 == 3) {
383 gs.xlen = 64;
384 } else if (word0 == 0xffffffff && word1 == 0xffffffff) {
385 gs.xlen = 128;
386 }
387
388 write_dpc_program();
389 state = ST_DPC;
390 return false;
391 }
392
393 case ST_DPC:
394 gs.dpc = gs.dr_read(SLOT_DATA0);
395 gs.dr_write32(0, csrr(S0, CSR_MSTATUS));
396 gs.dr_write_store(1, S0, SLOT_DATA0);
397 gs.dr_write_jump(2);
398 gs.set_interrupt(0);
399 state = ST_MSTATUS;
400 return false;
401
402 case ST_MSTATUS:
403 gs.mstatus = gs.dr_read(SLOT_DATA0);
404 gs.dr_write32(0, csrr(S0, CSR_DCSR));
405 gs.dr_write32(1, sw(S0, 0, (uint16_t) DEBUG_RAM_START + 16));
406 gs.dr_write_jump(2);
407 gs.set_interrupt(0);
408 state = ST_DCSR;
409 return false;
410
411 case ST_DCSR:
412 gs.dcsr = gs.dr_read32(4);
413
414 gs.sptbr_valid = false;
415 gs.pte_cache.clear();
416
417 if (send_status) {
418 switch (get_field(gs.dcsr, DCSR_CAUSE)) {
419 case DCSR_CAUSE_NONE:
420 fprintf(stderr, "Internal error. Processor halted without reason.\n");
421 abort();
422
423 case DCSR_CAUSE_DEBUGINT:
424 gs.send_packet("S02"); // Pretend program received SIGINT.
425 break;
426
427 case DCSR_CAUSE_HWBP:
428 case DCSR_CAUSE_STEP:
429 case DCSR_CAUSE_HALT:
430 // There's no gdb code for this.
431 gs.send_packet("T05");
432 break;
433 case DCSR_CAUSE_SWBP:
434 gs.send_packet("T05swbreak:;");
435 break;
436 }
437 }
438 return true;
439
440 default:
441 assert(0);
442 }
443 }
444
445 private:
446 bool send_status;
447 enum {
448 ST_ENTER,
449 ST_XLEN,
450 ST_DPC,
451 ST_MSTATUS,
452 ST_DCSR
453 } state;
454 };
455
456 class continue_op_t : public operation_t
457 {
458 public:
459 continue_op_t(gdbserver_t& gdbserver, bool single_step) :
460 operation_t(gdbserver), single_step(single_step) {};
461
462 bool perform_step(unsigned int step) {
463 D(fprintf(stderr, "continue step %d\n", step));
464 switch (step) {
465 case 0:
466 gs.dr_write_load(0, S0, SLOT_DATA0);
467 gs.dr_write32(1, csrw(S0, CSR_DPC));
468 // TODO: Isn't there a fence.i in Debug ROM already?
469 if (gs.fence_i_required) {
470 gs.dr_write32(2, fence_i());
471 gs.dr_write_jump(3);
472 gs.fence_i_required = false;
473 } else {
474 gs.dr_write_jump(2);
475 }
476 gs.dr_write(SLOT_DATA0, gs.dpc);
477 gs.set_interrupt(0);
478 return false;
479
480 case 1:
481 gs.dr_write_load(0, S0, SLOT_DATA0);
482 gs.dr_write32(1, csrw(S0, CSR_MSTATUS));
483 gs.dr_write_jump(2);
484 gs.dr_write(SLOT_DATA0, gs.mstatus);
485 gs.set_interrupt(0);
486 return false;
487
488 case 2:
489 gs.dr_write32(0, lw(S0, 0, (uint16_t) DEBUG_RAM_START+16));
490 gs.dr_write32(1, csrw(S0, CSR_DCSR));
491 gs.dr_write_jump(2);
492
493 reg_t dcsr = set_field(gs.dcsr, DCSR_HALT, 0);
494 dcsr = set_field(dcsr, DCSR_STEP, single_step);
495 // Software breakpoints should go here.
496 dcsr = set_field(dcsr, DCSR_EBREAKM, 1);
497 dcsr = set_field(dcsr, DCSR_EBREAKH, 1);
498 dcsr = set_field(dcsr, DCSR_EBREAKS, 1);
499 dcsr = set_field(dcsr, DCSR_EBREAKU, 1);
500 gs.dr_write32(4, dcsr);
501
502 gs.set_interrupt(0);
503 return true;
504 }
505 return false;
506 }
507
508 private:
509 bool single_step;
510 };
511
512 class general_registers_read_op_t : public operation_t
513 {
514 // Register order that gdb expects is:
515 // "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
516 // "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
517 // "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
518 // "x24", "x25", "x26", "x27", "x28", "x29", "x30", "x31",
519
520 // Each byte of register data is described by two hex digits. The bytes with
521 // the register are transmitted in target byte order. The size of each
522 // register and their position within the ‘g’ packet are determined by the
523 // gdb internal gdbarch functions DEPRECATED_REGISTER_RAW_SIZE and
524 // gdbarch_register_name.
525
526 public:
527 general_registers_read_op_t(gdbserver_t& gdbserver) :
528 operation_t(gdbserver) {};
529
530 bool perform_step(unsigned int step)
531 {
532 D(fprintf(stderr, "register_read step %d\n", step));
533 if (step == 0) {
534 gs.start_packet();
535
536 // x0 is always zero.
537 if (gs.xlen == 32) {
538 gs.send((uint32_t) 0);
539 } else {
540 gs.send((uint64_t) 0);
541 }
542
543 gs.dr_write_store(0, 1, SLOT_DATA0);
544 gs.dr_write_store(1, 2, SLOT_DATA1);
545 gs.dr_write_jump(2);
546 gs.set_interrupt(0);
547 return false;
548 }
549
550 if (gs.xlen == 32) {
551 gs.send((uint32_t) gs.dr_read(SLOT_DATA0));
552 } else {
553 gs.send((uint64_t) gs.dr_read(SLOT_DATA0));
554 }
555 if (step >= 16) {
556 gs.end_packet();
557 return true;
558 }
559
560 if (gs.xlen == 32) {
561 gs.send((uint32_t) gs.dr_read(SLOT_DATA1));
562 } else {
563 gs.send((uint64_t) gs.dr_read(SLOT_DATA1));
564 }
565
566 unsigned int current_reg = 2 * step + 1;
567 unsigned int i = 0;
568 if (current_reg == S1) {
569 gs.dr_write_load(i++, S1, SLOT_DATA_LAST);
570 }
571 gs.dr_write_store(i++, current_reg, SLOT_DATA0);
572 if (current_reg + 1 == S0) {
573 gs.dr_write32(i++, csrr(S0, CSR_DSCRATCH));
574 }
575 if (step < 15) {
576 gs.dr_write_store(i++, current_reg+1, SLOT_DATA1);
577 }
578 gs.dr_write_jump(i);
579 gs.set_interrupt(0);
580
581 return false;
582 }
583 };
584
585 class register_read_op_t : public operation_t
586 {
587 public:
588 register_read_op_t(gdbserver_t& gdbserver, unsigned int reg) :
589 operation_t(gdbserver), reg(reg) {};
590
591 bool perform_step(unsigned int step)
592 {
593 switch (step) {
594 case 0:
595 if (reg >= REG_XPR0 && reg <= REG_XPR31) {
596 die("handle_register_read");
597 // send(p->state.XPR[reg - REG_XPR0]);
598 } else if (reg == REG_PC) {
599 gs.start_packet();
600 if (gs.xlen == 32) {
601 gs.send((uint32_t) gs.dpc);
602 } else {
603 gs.send(gs.dpc);
604 }
605 gs.end_packet();
606 return true;
607 } else if (reg >= REG_FPR0 && reg <= REG_FPR31) {
608 // send(p->state.FPR[reg - REG_FPR0]);
609 if (gs.xlen == 32) {
610 gs.dr_write32(0, fsw(reg - REG_FPR0, 0, (uint16_t) DEBUG_RAM_START + 16));
611 } else {
612 gs.dr_write32(0, fsd(reg - REG_FPR0, 0, (uint16_t) DEBUG_RAM_START + 16));
613 }
614 gs.dr_write_jump(1);
615 } else if (reg >= REG_CSR0 && reg <= REG_CSR4095) {
616 gs.dr_write32(0, csrr(S0, reg - REG_CSR0));
617 gs.dr_write_store(1, S0, SLOT_DATA0);
618 gs.dr_write_jump(2);
619 // If we hit an exception reading the CSR, we'll end up returning ~0 as
620 // the register's value, which is what we want. (Right?)
621 gs.dr_write(SLOT_DATA0, ~(uint64_t) 0);
622 } else if (reg == REG_PRIV) {
623 gs.start_packet();
624 gs.send((uint8_t) get_field(gs.dcsr, DCSR_PRV));
625 gs.end_packet();
626 return true;
627 } else {
628 gs.send_packet("E02");
629 return true;
630 }
631 gs.set_interrupt(0);
632 return false;
633
634 case 1:
635 gs.start_packet();
636 if (gs.xlen == 32) {
637 gs.send(gs.dr_read32(4));
638 } else {
639 gs.send(gs.dr_read(SLOT_DATA0));
640 }
641 gs.end_packet();
642 return true;
643 }
644 return false;
645 }
646
647 private:
648 unsigned int reg;
649 };
650
651 class register_write_op_t : public operation_t
652 {
653 public:
654 register_write_op_t(gdbserver_t& gdbserver, unsigned int reg, reg_t value) :
655 operation_t(gdbserver), reg(reg), value(value) {};
656
657 bool perform_step(unsigned int step)
658 {
659 gs.dr_write_load(0, S0, SLOT_DATA0);
660 gs.dr_write(SLOT_DATA0, value);
661 if (reg == S0) {
662 gs.dr_write32(1, csrw(S0, CSR_DSCRATCH));
663 gs.dr_write_jump(2);
664 } else if (reg == S1) {
665 gs.dr_write_store(1, S0, SLOT_DATA_LAST);
666 gs.dr_write_jump(2);
667 } else if (reg >= REG_XPR0 && reg <= REG_XPR31) {
668 gs.dr_write32(1, addi(reg, S0, 0));
669 gs.dr_write_jump(2);
670 } else if (reg == REG_PC) {
671 gs.dpc = value;
672 return true;
673 } else if (reg >= REG_FPR0 && reg <= REG_FPR31) {
674 if (gs.xlen == 32) {
675 gs.dr_write32(0, flw(reg - REG_FPR0, 0, (uint16_t) DEBUG_RAM_START + 16));
676 } else {
677 gs.dr_write32(0, fld(reg - REG_FPR0, 0, (uint16_t) DEBUG_RAM_START + 16));
678 }
679 gs.dr_write_jump(1);
680 } else if (reg >= REG_CSR0 && reg <= REG_CSR4095) {
681 gs.dr_write32(1, csrw(S0, reg - REG_CSR0));
682 gs.dr_write_jump(2);
683 if (reg == REG_CSR0 + CSR_SPTBR) {
684 gs.sptbr = value;
685 gs.sptbr_valid = true;
686 }
687 } else if (reg == REG_PRIV) {
688 gs.dcsr = set_field(gs.dcsr, DCSR_PRV, value);
689 return true;
690 } else {
691 gs.send_packet("E02");
692 return true;
693 }
694 gs.set_interrupt(0);
695 gs.send_packet("OK");
696 return true;
697 }
698
699 private:
700 unsigned int reg;
701 reg_t value;
702 };
703
704 class memory_read_op_t : public operation_t
705 {
706 public:
707 // Read length bytes from vaddr, storing the result into data.
708 // If data is NULL, send the result straight to gdb.
709 memory_read_op_t(gdbserver_t& gdbserver, reg_t vaddr, unsigned int length,
710 unsigned char *data=NULL) :
711 operation_t(gdbserver), vaddr(vaddr), length(length), data(data), index(0)
712 {
713 buf = new uint8_t[length];
714 };
715
716 ~memory_read_op_t()
717 {
718 delete[] buf;
719 }
720
721 bool perform_step(unsigned int step)
722 {
723 if (step == 0) {
724 // address goes in S0
725 paddr = gs.translate(vaddr);
726 access_size = gs.find_access_size(paddr, length);
727
728 gs.dr_write_load(0, S0, SLOT_DATA0);
729 switch (access_size) {
730 case 1:
731 gs.dr_write32(1, lb(S1, S0, 0));
732 break;
733 case 2:
734 gs.dr_write32(1, lh(S1, S0, 0));
735 break;
736 case 4:
737 gs.dr_write32(1, lw(S1, S0, 0));
738 break;
739 case 8:
740 gs.dr_write32(1, ld(S1, S0, 0));
741 break;
742 }
743 gs.dr_write_store(2, S1, SLOT_DATA1);
744 gs.dr_write_jump(3);
745 gs.dr_write(SLOT_DATA0, paddr);
746 gs.set_interrupt(0);
747
748 return false;
749 }
750
751 if (gs.dr_read32(DEBUG_RAM_SIZE / 4 - 1)) {
752 // Note that OpenOCD doesn't report this error to gdb by default. They
753 // think it can mess up stack tracing. So far I haven't seen any
754 // problems.
755 gs.send_packet("E99");
756 return true;
757 }
758
759 reg_t value = gs.dr_read(SLOT_DATA1);
760 for (unsigned int i = 0; i < access_size; i++) {
761 if (data) {
762 *(data++) = value & 0xff;
763 D(fprintf(stderr, "%02x", (unsigned int) (value & 0xff)));
764 } else {
765 buf[index++] = value & 0xff;
766 }
767 value >>= 8;
768 }
769 if (data) {
770 D(fprintf(stderr, "\n"));
771 }
772 length -= access_size;
773 paddr += access_size;
774
775 if (length == 0) {
776 if (!data) {
777 gs.start_packet();
778 char buffer[3];
779 for (unsigned int i = 0; i < index; i++) {
780 sprintf(buffer, "%02x", (unsigned int) buf[i]);
781 gs.send(buffer);
782 }
783 gs.end_packet();
784 }
785 return true;
786 } else {
787 gs.dr_write(SLOT_DATA0, paddr);
788 gs.set_interrupt(0);
789 return false;
790 }
791 }
792
793 private:
794 reg_t vaddr;
795 unsigned int length;
796 unsigned char* data;
797 reg_t paddr;
798 unsigned int access_size;
799 unsigned int index;
800 uint8_t *buf;
801 };
802
803 class memory_write_op_t : public operation_t
804 {
805 public:
806 memory_write_op_t(gdbserver_t& gdbserver, reg_t vaddr, unsigned int length,
807 const unsigned char *data) :
808 operation_t(gdbserver), vaddr(vaddr), offset(0), length(length), data(data) {};
809
810 ~memory_write_op_t() {
811 delete[] data;
812 }
813
814 bool perform_step(unsigned int step)
815 {
816 reg_t paddr = gs.translate(vaddr);
817
818 unsigned int data_offset;
819 switch (gs.xlen) {
820 case 32:
821 data_offset = slot_offset32[SLOT_DATA1];
822 break;
823 case 64:
824 data_offset = slot_offset64[SLOT_DATA1];
825 break;
826 case 128:
827 data_offset = slot_offset128[SLOT_DATA1];
828 break;
829 default:
830 abort();
831 }
832
833 if (step == 0) {
834 access_size = gs.find_access_size(paddr, length);
835
836 D(fprintf(stderr, "write to 0x%lx -> 0x%lx (access=%d): ", vaddr, paddr,
837 access_size));
838 for (unsigned int i = 0; i < length; i++) {
839 D(fprintf(stderr, "%02x", data[i]));
840 }
841 D(fprintf(stderr, "\n"));
842
843 // address goes in S0
844 gs.dr_write_load(0, S0, SLOT_DATA0);
845 switch (access_size) {
846 case 1:
847 gs.dr_write32(1, lb(S1, 0, (uint16_t) DEBUG_RAM_START + 4*data_offset));
848 gs.dr_write32(2, sb(S1, S0, 0));
849 gs.dr_write32(data_offset, data[0]);
850 break;
851 case 2:
852 gs.dr_write32(1, lh(S1, 0, (uint16_t) DEBUG_RAM_START + 4*data_offset));
853 gs.dr_write32(2, sh(S1, S0, 0));
854 gs.dr_write32(data_offset, data[0] | (data[1] << 8));
855 break;
856 case 4:
857 gs.dr_write32(1, lw(S1, 0, (uint16_t) DEBUG_RAM_START + 4*data_offset));
858 gs.dr_write32(2, sw(S1, S0, 0));
859 gs.dr_write32(data_offset, data[0] | (data[1] << 8) |
860 (data[2] << 16) | (data[3] << 24));
861 break;
862 case 8:
863 gs.dr_write32(1, ld(S1, 0, (uint16_t) DEBUG_RAM_START + 4*data_offset));
864 gs.dr_write32(2, sd(S1, S0, 0));
865 gs.dr_write32(data_offset, data[0] | (data[1] << 8) |
866 (data[2] << 16) | (data[3] << 24));
867 gs.dr_write32(data_offset+1, data[4] | (data[5] << 8) |
868 (data[6] << 16) | (data[7] << 24));
869 break;
870 default:
871 fprintf(stderr, "gdbserver error: write %d bytes to 0x%016" PRIx64
872 " -> 0x%016" PRIx64 "; access_size=%d\n",
873 length, vaddr, paddr, access_size);
874 gs.send_packet("E12");
875 return true;
876 }
877 gs.dr_write_jump(3);
878 gs.dr_write(SLOT_DATA0, paddr);
879 gs.set_interrupt(0);
880
881 return false;
882 }
883
884 if (gs.dr_read32(DEBUG_RAM_SIZE / 4 - 1)) {
885 fprintf(stderr, "Exception happened while writing to 0x%016" PRIx64
886 " -> 0x%016" PRIx64 "\n", vaddr, paddr);
887 }
888
889 offset += access_size;
890 if (offset >= length) {
891 gs.send_packet("OK");
892 return true;
893 } else {
894 const unsigned char *d = data + offset;
895 switch (access_size) {
896 case 1:
897 gs.dr_write32(data_offset, d[0]);
898 break;
899 case 2:
900 gs.dr_write32(data_offset, d[0] | (d[1] << 8));
901 break;
902 case 4:
903 gs.dr_write32(data_offset, d[0] | (d[1] << 8) |
904 (d[2] << 16) | (d[3] << 24));
905 break;
906 case 8:
907 gs.dr_write32(data_offset, d[0] | (d[1] << 8) |
908 (d[2] << 16) | (d[3] << 24));
909 gs.dr_write32(data_offset+1, d[4] | (d[5] << 8) |
910 (d[6] << 16) | (d[7] << 24));
911 break;
912 default:
913 gs.send_packet("E13");
914 return true;
915 }
916 gs.dr_write(SLOT_DATA0, paddr + offset);
917 gs.set_interrupt(0);
918 return false;
919 }
920 }
921
922 private:
923 reg_t vaddr;
924 unsigned int offset;
925 unsigned int length;
926 unsigned int access_size;
927 const unsigned char *data;
928 };
929
930 class collect_translation_info_op_t : public operation_t
931 {
932 public:
933 // Read sufficient information from the target into gdbserver structures so
934 // that it's possible to translate vaddr, vaddr+length, and all addresses
935 // in between to physical addresses.
936 collect_translation_info_op_t(gdbserver_t& gdbserver, reg_t vaddr, size_t length) :
937 operation_t(gdbserver), state(STATE_START), vaddr(vaddr), length(length) {};
938
939 bool perform_step(unsigned int step)
940 {
941 unsigned int vm = gs.virtual_memory();
942
943 if (step == 0) {
944 switch (vm) {
945 case VM_MBARE:
946 // Nothing to be done.
947 return true;
948
949 case VM_SV32:
950 levels = 2;
951 ptidxbits = 10;
952 ptesize = 4;
953 break;
954 case VM_SV39:
955 levels = 3;
956 ptidxbits = 9;
957 ptesize = 8;
958 break;
959 case VM_SV48:
960 levels = 4;
961 ptidxbits = 9;
962 ptesize = 8;
963 break;
964
965 default:
966 {
967 char buf[100];
968 sprintf(buf, "VM mode %d is not supported by gdbserver.cc.", vm);
969 die(buf);
970 return true; // die doesn't return, but gcc doesn't know that.
971 }
972 }
973 }
974
975 // Perform any reads from the just-completed action.
976 switch (state) {
977 case STATE_START:
978 break;
979 case STATE_READ_SPTBR:
980 gs.sptbr = gs.dr_read(SLOT_DATA0);
981 gs.sptbr_valid = true;
982 break;
983 case STATE_READ_PTE:
984 if (ptesize == 4) {
985 gs.pte_cache[pte_addr] = gs.dr_read32(4);
986 } else {
987 gs.pte_cache[pte_addr] = ((uint64_t) gs.dr_read32(5) << 32) |
988 gs.dr_read32(4);
989 }
990 D(fprintf(stderr, "pte_cache[0x%lx] = 0x%lx\n", pte_addr, gs.pte_cache[pte_addr]));
991 break;
992 }
993
994 // Set up the next action.
995 // We only get here for VM_SV32/39/38.
996
997 if (!gs.sptbr_valid) {
998 state = STATE_READ_SPTBR;
999 gs.dr_write32(0, csrr(S0, CSR_SPTBR));
1000 gs.dr_write_store(1, S0, SLOT_DATA0);
1001 gs.dr_write_jump(2);
1002 gs.set_interrupt(0);
1003 return false;
1004 }
1005
1006 reg_t base = gs.sptbr << PGSHIFT;
1007 int ptshift = (levels - 1) * ptidxbits;
1008 for (unsigned int i = 0; i < levels; i++, ptshift -= ptidxbits) {
1009 reg_t idx = (vaddr >> (PGSHIFT + ptshift)) & ((1 << ptidxbits) - 1);
1010
1011 pte_addr = base + idx * ptesize;
1012 auto it = gs.pte_cache.find(pte_addr);
1013 if (it == gs.pte_cache.end()) {
1014 state = STATE_READ_PTE;
1015 if (ptesize == 4) {
1016 gs.dr_write32(0, lw(S0, 0, (uint16_t) DEBUG_RAM_START + 16));
1017 gs.dr_write32(1, lw(S1, S0, 0));
1018 gs.dr_write32(2, sw(S1, 0, (uint16_t) DEBUG_RAM_START + 16));
1019 } else {
1020 assert(gs.xlen >= 64);
1021 gs.dr_write32(0, ld(S0, 0, (uint16_t) DEBUG_RAM_START + 16));
1022 gs.dr_write32(1, ld(S1, S0, 0));
1023 gs.dr_write32(2, sd(S1, 0, (uint16_t) DEBUG_RAM_START + 16));
1024 }
1025 gs.dr_write32(3, jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*3))));
1026 gs.dr_write32(4, pte_addr);
1027 gs.dr_write32(5, pte_addr >> 32);
1028 gs.set_interrupt(0);
1029 return false;
1030 }
1031
1032 reg_t pte = gs.pte_cache[pte_addr];
1033 reg_t ppn = pte >> PTE_PPN_SHIFT;
1034
1035 if (PTE_TABLE(pte)) { // next level of page table
1036 base = ppn << PGSHIFT;
1037 } else {
1038 // We've collected all the data required for the translation.
1039 return true;
1040 }
1041 }
1042 fprintf(stderr,
1043 "ERROR: gdbserver couldn't find appropriate PTEs to translate 0x%016" PRIx64 "\n",
1044 vaddr);
1045 return true;
1046 }
1047
1048 private:
1049 enum {
1050 STATE_START,
1051 STATE_READ_SPTBR,
1052 STATE_READ_PTE
1053 } state;
1054 reg_t vaddr;
1055 size_t length;
1056 unsigned int levels;
1057 unsigned int ptidxbits;
1058 unsigned int ptesize;
1059 reg_t pte_addr;
1060 };
1061
1062 class hardware_breakpoint_insert_op_t : public operation_t
1063 {
1064 public:
1065 hardware_breakpoint_insert_op_t(gdbserver_t& gdbserver,
1066 hardware_breakpoint_t bp) :
1067 operation_t(gdbserver), state(STATE_START), bp(bp) {};
1068
1069 void write_new_index_program()
1070 {
1071 gs.dr_write_load(0, S0, SLOT_DATA1);
1072 gs.dr_write32(1, csrw(S0, CSR_TSELECT));
1073 gs.dr_write32(2, csrr(S0, CSR_TSELECT));
1074 gs.dr_write_store(3, S0, SLOT_DATA1);
1075 gs.dr_write_jump(4);
1076 gs.dr_write(SLOT_DATA1, bp.index);
1077 }
1078
1079 bool perform_step(unsigned int step)
1080 {
1081 switch (state) {
1082 case STATE_START:
1083 bp.index = 0;
1084 write_new_index_program();
1085 state = STATE_CHECK_INDEX;
1086 break;
1087
1088 case STATE_CHECK_INDEX:
1089 if (gs.dr_read(SLOT_DATA1) != bp.index) {
1090 // We've exhausted breakpoints without finding an appropriate one.
1091 gs.send_packet("E58");
1092 return true;
1093 }
1094
1095 gs.dr_write32(0, csrr(S0, CSR_TDATA1));
1096 gs.dr_write_store(1, S0, SLOT_DATA0);
1097 gs.dr_write_jump(2);
1098 state = STATE_CHECK_MCONTROL;
1099 break;
1100
1101 case STATE_CHECK_MCONTROL:
1102 {
1103 reg_t mcontrol = gs.dr_read(SLOT_DATA0);
1104 unsigned int type = mcontrol >> (gs.xlen - 4);
1105 if (type == 0) {
1106 // We've exhausted breakpoints without finding an appropriate one.
1107 gs.send_packet("E58");
1108 return true;
1109 }
1110
1111 if (type == 2 &&
1112 !get_field(mcontrol, MCONTROL_EXECUTE) &&
1113 !get_field(mcontrol, MCONTROL_LOAD) &&
1114 !get_field(mcontrol, MCONTROL_STORE)) {
1115 // Found an unused trigger.
1116 gs.dr_write_load(0, S0, SLOT_DATA1);
1117 gs.dr_write32(1, csrw(S0, CSR_TDATA1));
1118 gs.dr_write_jump(2);
1119 mcontrol = set_field(0, MCONTROL_ACTION, MCONTROL_ACTION_DEBUG_MODE);
1120 mcontrol = set_field(mcontrol, MCONTROL_DMODE(gs.xlen), 1);
1121 mcontrol = set_field(mcontrol, MCONTROL_MATCH, MCONTROL_MATCH_EQUAL);
1122 mcontrol = set_field(mcontrol, MCONTROL_M, 1);
1123 mcontrol = set_field(mcontrol, MCONTROL_H, 1);
1124 mcontrol = set_field(mcontrol, MCONTROL_S, 1);
1125 mcontrol = set_field(mcontrol, MCONTROL_U, 1);
1126 mcontrol = set_field(mcontrol, MCONTROL_EXECUTE, bp.execute);
1127 mcontrol = set_field(mcontrol, MCONTROL_LOAD, bp.load);
1128 mcontrol = set_field(mcontrol, MCONTROL_STORE, bp.store);
1129 // For store triggers it's nicer to fire just before the
1130 // instruction than just after. However, gdb doesn't clear the
1131 // breakpoints and step before resuming from a store trigger.
1132 // That means that without extra code, you'll keep hitting the
1133 // same watchpoint over and over again. That's not useful at all.
1134 // Instead of fixing this the right way, just set timing=1 for
1135 // those triggers.
1136 if (bp.load || bp.store)
1137 mcontrol = set_field(mcontrol, MCONTROL_TIMING, 1);
1138
1139 gs.dr_write(SLOT_DATA1, mcontrol);
1140 state = STATE_WRITE_ADDRESS;
1141 } else {
1142 bp.index++;
1143 write_new_index_program();
1144 state = STATE_CHECK_INDEX;
1145 }
1146 }
1147 break;
1148
1149 case STATE_WRITE_ADDRESS:
1150 {
1151 gs.dr_write_load(0, S0, SLOT_DATA1);
1152 gs.dr_write32(1, csrw(S0, CSR_TDATA2));
1153 gs.dr_write_jump(2);
1154 gs.dr_write(SLOT_DATA1, bp.vaddr);
1155 gs.set_interrupt(0);
1156 gs.send_packet("OK");
1157
1158 gs.hardware_breakpoints.insert(bp);
1159
1160 return true;
1161 }
1162 }
1163
1164 gs.set_interrupt(0);
1165 return false;
1166 }
1167
1168 private:
1169 enum {
1170 STATE_START,
1171 STATE_CHECK_INDEX,
1172 STATE_CHECK_MCONTROL,
1173 STATE_WRITE_ADDRESS
1174 } state;
1175 hardware_breakpoint_t bp;
1176 };
1177
1178 class maybe_save_tselect_op_t : public operation_t
1179 {
1180 public:
1181 maybe_save_tselect_op_t(gdbserver_t& gdbserver) : operation_t(gdbserver) {};
1182 bool perform_step(unsigned int step) {
1183 if (gs.tselect_valid)
1184 return true;
1185
1186 switch (step) {
1187 case 0:
1188 gs.dr_write32(0, csrr(S0, CSR_TDATA1));
1189 gs.dr_write_store(1, S0, SLOT_DATA0);
1190 gs.dr_write_jump(2);
1191 gs.set_interrupt(0);
1192 return false;
1193 case 1:
1194 gs.tselect = gs.dr_read(SLOT_DATA0);
1195 gs.tselect_valid = true;
1196 break;
1197 }
1198 return true;
1199 }
1200 };
1201
1202 class maybe_restore_tselect_op_t : public operation_t
1203 {
1204 public:
1205 maybe_restore_tselect_op_t(gdbserver_t& gdbserver) : operation_t(gdbserver) {};
1206 bool perform_step(unsigned int step) {
1207 if (gs.tselect_valid) {
1208 gs.dr_write_load(0, S0, SLOT_DATA1);
1209 gs.dr_write32(1, csrw(S0, CSR_TSELECT));
1210 gs.dr_write_jump(2);
1211 gs.dr_write(SLOT_DATA1, gs.tselect);
1212 }
1213 return true;
1214 }
1215 };
1216
1217 class hardware_breakpoint_remove_op_t : public operation_t
1218 {
1219 public:
1220 hardware_breakpoint_remove_op_t(gdbserver_t& gdbserver,
1221 hardware_breakpoint_t bp) :
1222 operation_t(gdbserver), bp(bp) {};
1223
1224 bool perform_step(unsigned int step) {
1225 gs.dr_write32(0, addi(S0, ZERO, bp.index));
1226 gs.dr_write32(1, csrw(S0, CSR_TSELECT));
1227 gs.dr_write32(2, csrw(ZERO, CSR_TDATA1));
1228 gs.dr_write_jump(3);
1229 gs.set_interrupt(0);
1230 return true;
1231 }
1232
1233 private:
1234 hardware_breakpoint_t bp;
1235 };
1236
1237 ////////////////////////////// gdbserver itself
1238
1239 gdbserver_t::gdbserver_t(uint16_t port, sim_t *sim) :
1240 xlen(0),
1241 sim(sim),
1242 client_fd(0),
1243 recv_buf(64 * 1024), send_buf(64 * 1024)
1244 {
1245 socket_fd = socket(AF_INET, SOCK_STREAM, 0);
1246 if (socket_fd == -1) {
1247 fprintf(stderr, "failed to make socket: %s (%d)\n", strerror(errno), errno);
1248 abort();
1249 }
1250
1251 fcntl(socket_fd, F_SETFL, O_NONBLOCK);
1252 int reuseaddr = 1;
1253 if (setsockopt(socket_fd, SOL_SOCKET, SO_REUSEADDR, &reuseaddr,
1254 sizeof(int)) == -1) {
1255 fprintf(stderr, "failed setsockopt: %s (%d)\n", strerror(errno), errno);
1256 abort();
1257 }
1258
1259 struct sockaddr_in addr;
1260 memset(&addr, 0, sizeof(addr));
1261 addr.sin_family = AF_INET;
1262 addr.sin_addr.s_addr = INADDR_ANY;
1263 addr.sin_port = htons(port);
1264
1265 if (bind(socket_fd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
1266 fprintf(stderr, "failed to bind socket: %s (%d)\n", strerror(errno), errno);
1267 abort();
1268 }
1269
1270 if (listen(socket_fd, 1) == -1) {
1271 fprintf(stderr, "failed to listen on socket: %s (%d)\n", strerror(errno), errno);
1272 abort();
1273 }
1274 }
1275
1276 unsigned int gdbserver_t::find_access_size(reg_t address, int length)
1277 {
1278 reg_t composite = address | length;
1279 if ((composite & 0x7) == 0 && xlen >= 64)
1280 return 8;
1281 if ((composite & 0x3) == 0)
1282 return 4;
1283 return 1;
1284 }
1285
1286 reg_t gdbserver_t::translate(reg_t vaddr)
1287 {
1288 unsigned int vm = virtual_memory();
1289 unsigned int levels, ptidxbits, ptesize;
1290
1291 switch (vm) {
1292 case VM_MBARE:
1293 return vaddr;
1294
1295 case VM_SV32:
1296 levels = 2;
1297 ptidxbits = 10;
1298 ptesize = 4;
1299 break;
1300 case VM_SV39:
1301 levels = 3;
1302 ptidxbits = 9;
1303 ptesize = 8;
1304 break;
1305 case VM_SV48:
1306 levels = 4;
1307 ptidxbits = 9;
1308 ptesize = 8;
1309 break;
1310
1311 default:
1312 {
1313 char buf[100];
1314 sprintf(buf, "VM mode %d is not supported by gdbserver.cc.", vm);
1315 die(buf);
1316 return true; // die doesn't return, but gcc doesn't know that.
1317 }
1318 }
1319
1320 // Handle page tables here. There's a bunch of duplicated code with
1321 // collect_translation_info_op_t. :-(
1322 reg_t base = sptbr << PGSHIFT;
1323 int ptshift = (levels - 1) * ptidxbits;
1324 for (unsigned int i = 0; i < levels; i++, ptshift -= ptidxbits) {
1325 reg_t idx = (vaddr >> (PGSHIFT + ptshift)) & ((1 << ptidxbits) - 1);
1326
1327 reg_t pte_addr = base + idx * ptesize;
1328 auto it = pte_cache.find(pte_addr);
1329 if (it == pte_cache.end()) {
1330 fprintf(stderr, "ERROR: gdbserver tried to translate 0x%016" PRIx64
1331 " without first collecting the relevant PTEs.\n", vaddr);
1332 die("gdbserver_t::translate()");
1333 }
1334
1335 reg_t pte = pte_cache[pte_addr];
1336 reg_t ppn = pte >> PTE_PPN_SHIFT;
1337
1338 if (PTE_TABLE(pte)) { // next level of page table
1339 base = ppn << PGSHIFT;
1340 } else {
1341 // We've collected all the data required for the translation.
1342 reg_t vpn = vaddr >> PGSHIFT;
1343 reg_t paddr = (ppn | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT;
1344 paddr += vaddr & (PGSIZE-1);
1345 D(fprintf(stderr, "gdbserver translate 0x%lx -> 0x%lx\n", vaddr, paddr));
1346 return paddr;
1347 }
1348 }
1349
1350 fprintf(stderr, "ERROR: gdbserver tried to translate 0x%016" PRIx64
1351 " but the relevant PTEs are invalid.\n", vaddr);
1352 // TODO: Is it better to throw an exception here?
1353 return -1;
1354 }
1355
1356 unsigned int gdbserver_t::privilege_mode()
1357 {
1358 unsigned int mode = get_field(dcsr, DCSR_PRV);
1359 if (get_field(mstatus, MSTATUS_MPRV))
1360 mode = get_field(mstatus, MSTATUS_MPP);
1361 return mode;
1362 }
1363
1364 unsigned int gdbserver_t::virtual_memory()
1365 {
1366 unsigned int mode = privilege_mode();
1367 if (mode == PRV_M)
1368 return VM_MBARE;
1369 return get_field(mstatus, MSTATUS_VM);
1370 }
1371
1372 void gdbserver_t::dr_write32(unsigned int index, uint32_t value)
1373 {
1374 sim->debug_module.ram_write32(index, value);
1375 }
1376
1377 void gdbserver_t::dr_write64(unsigned int index, uint64_t value)
1378 {
1379 dr_write32(index, value);
1380 dr_write32(index+1, value >> 32);
1381 }
1382
1383 void gdbserver_t::dr_write(enum slot slot, uint64_t value)
1384 {
1385 switch (xlen) {
1386 case 32:
1387 dr_write32(slot_offset32[slot], value);
1388 break;
1389 case 64:
1390 dr_write64(slot_offset64[slot], value);
1391 break;
1392 case 128:
1393 default:
1394 abort();
1395 }
1396 }
1397
1398 void gdbserver_t::dr_write_jump(unsigned int index)
1399 {
1400 dr_write32(index, jal(0,
1401 (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*index))));
1402 }
1403
1404 void gdbserver_t::dr_write_store(unsigned int index, unsigned int reg, enum slot slot)
1405 {
1406 assert(slot != SLOT_INST0 || index > 2);
1407 assert(slot != SLOT_DATA0 || index < 4 || index > 6);
1408 assert(slot != SLOT_DATA1 || index < 5 || index > 10);
1409 assert(slot != SLOT_DATA_LAST || index < 6 || index > 14);
1410 switch (xlen) {
1411 case 32:
1412 return dr_write32(index,
1413 sw(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset32[slot]));
1414 case 64:
1415 return dr_write32(index,
1416 sd(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset64[slot]));
1417 case 128:
1418 return dr_write32(index,
1419 sq(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset128[slot]));
1420 default:
1421 fprintf(stderr, "xlen is %d!\n", xlen);
1422 abort();
1423 }
1424 }
1425
1426 void gdbserver_t::dr_write_load(unsigned int index, unsigned int reg, enum slot slot)
1427 {
1428 switch (xlen) {
1429 case 32:
1430 return dr_write32(index,
1431 lw(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset32[slot]));
1432 case 64:
1433 return dr_write32(index,
1434 ld(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset64[slot]));
1435 case 128:
1436 return dr_write32(index,
1437 lq(reg, 0, (uint16_t) DEBUG_RAM_START + 4 * slot_offset128[slot]));
1438 default:
1439 fprintf(stderr, "xlen is %d!\n", xlen);
1440 abort();
1441 }
1442 }
1443
1444 uint32_t gdbserver_t::dr_read32(unsigned int index)
1445 {
1446 uint32_t value = sim->debug_module.ram_read32(index);
1447 D(fprintf(stderr, "read32(%d) -> 0x%x\n", index, value));
1448 return value;
1449 }
1450
1451 uint64_t gdbserver_t::dr_read64(unsigned int index)
1452 {
1453 return ((uint64_t) dr_read32(index+1) << 32) | dr_read32(index);
1454 }
1455
1456 uint64_t gdbserver_t::dr_read(enum slot slot)
1457 {
1458 switch (xlen) {
1459 case 32:
1460 return dr_read32(slot_offset32[slot]);
1461 case 64:
1462 return dr_read64(slot_offset64[slot]);
1463 case 128:
1464 abort();
1465 default:
1466 abort();
1467 }
1468 }
1469
1470 void gdbserver_t::add_operation(operation_t* operation)
1471 {
1472 operation_queue.push(operation);
1473 }
1474
1475 void gdbserver_t::accept()
1476 {
1477 client_fd = ::accept(socket_fd, NULL, NULL);
1478 if (client_fd == -1) {
1479 if (errno == EAGAIN) {
1480 // No client waiting to connect right now.
1481 } else {
1482 fprintf(stderr, "failed to accept on socket: %s (%d)\n", strerror(errno),
1483 errno);
1484 abort();
1485 }
1486 } else {
1487 fcntl(client_fd, F_SETFL, O_NONBLOCK);
1488
1489 expect_ack = false;
1490 extended_mode = false;
1491
1492 // gdb wants the core to be halted when it attaches.
1493 add_operation(new halt_op_t(*this));
1494 }
1495 }
1496
1497 void gdbserver_t::read()
1498 {
1499 // Reading from a non-blocking socket still blocks if there is no data
1500 // available.
1501
1502 size_t count = recv_buf.contiguous_empty_size();
1503 assert(count > 0);
1504 ssize_t bytes = ::read(client_fd, recv_buf.contiguous_empty(), count);
1505 if (bytes == -1) {
1506 if (errno == EAGAIN) {
1507 // We'll try again the next call.
1508 } else {
1509 fprintf(stderr, "failed to read on socket: %s (%d)\n", strerror(errno), errno);
1510 abort();
1511 }
1512 } else if (bytes == 0) {
1513 // The remote disconnected.
1514 client_fd = 0;
1515 processor_t *p = sim->get_core(0);
1516 // TODO p->set_halted(false, HR_NONE);
1517 recv_buf.reset();
1518 send_buf.reset();
1519 } else {
1520 recv_buf.data_added(bytes);
1521 }
1522 }
1523
1524 void gdbserver_t::write()
1525 {
1526 if (send_buf.empty())
1527 return;
1528
1529 while (!send_buf.empty()) {
1530 unsigned int count = send_buf.contiguous_data_size();
1531 assert(count > 0);
1532 ssize_t bytes = ::write(client_fd, send_buf.contiguous_data(), count);
1533 if (bytes == -1) {
1534 fprintf(stderr, "failed to write to socket: %s (%d)\n", strerror(errno), errno);
1535 abort();
1536 } else if (bytes == 0) {
1537 // Client can't take any more data right now.
1538 break;
1539 } else {
1540 D(fprintf(stderr, "wrote %ld bytes: ", bytes));
1541 for (unsigned int i = 0; i < bytes; i++) {
1542 D(fprintf(stderr, "%c", send_buf[i]));
1543 }
1544 D(fprintf(stderr, "\n"));
1545 send_buf.consume(bytes);
1546 }
1547 }
1548 }
1549
1550 void print_packet(const std::vector<uint8_t> &packet)
1551 {
1552 for (uint8_t c : packet) {
1553 if (c >= ' ' and c <= '~')
1554 fprintf(stderr, "%c", c);
1555 else
1556 fprintf(stderr, "\\x%02x", c);
1557 }
1558 fprintf(stderr, "\n");
1559 }
1560
1561 uint8_t compute_checksum(const std::vector<uint8_t> &packet)
1562 {
1563 uint8_t checksum = 0;
1564 for (auto i = packet.begin() + 1; i != packet.end() - 3; i++ ) {
1565 checksum += *i;
1566 }
1567 return checksum;
1568 }
1569
1570 uint8_t character_hex_value(uint8_t character)
1571 {
1572 if (character >= '0' && character <= '9')
1573 return character - '0';
1574 if (character >= 'a' && character <= 'f')
1575 return 10 + character - 'a';
1576 if (character >= 'A' && character <= 'F')
1577 return 10 + character - 'A';
1578 return 0xff;
1579 }
1580
1581 uint8_t extract_checksum(const std::vector<uint8_t> &packet)
1582 {
1583 return character_hex_value(*(packet.end() - 1)) +
1584 16 * character_hex_value(*(packet.end() - 2));
1585 }
1586
1587 void gdbserver_t::process_requests()
1588 {
1589 // See https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
1590
1591 while (!recv_buf.empty()) {
1592 std::vector<uint8_t> packet;
1593 for (unsigned int i = 0; i < recv_buf.size(); i++) {
1594 uint8_t b = recv_buf[i];
1595
1596 if (packet.empty() && expect_ack && b == '+') {
1597 recv_buf.consume(1);
1598 break;
1599 }
1600
1601 if (packet.empty() && b == 3) {
1602 D(fprintf(stderr, "Received interrupt\n"));
1603 recv_buf.consume(1);
1604 handle_interrupt();
1605 break;
1606 }
1607
1608 if (b == '$') {
1609 // Start of new packet.
1610 if (!packet.empty()) {
1611 fprintf(stderr, "Received malformed %ld-byte packet from debug client: ",
1612 packet.size());
1613 print_packet(packet);
1614 recv_buf.consume(i);
1615 break;
1616 }
1617 }
1618
1619 packet.push_back(b);
1620
1621 // Packets consist of $<packet-data>#<checksum>
1622 // where <checksum> is
1623 if (packet.size() >= 4 &&
1624 packet[packet.size()-3] == '#') {
1625 handle_packet(packet);
1626 recv_buf.consume(i+1);
1627 break;
1628 }
1629 }
1630 // There's a partial packet in the buffer. Wait until we get more data to
1631 // process it.
1632 if (packet.size()) {
1633 break;
1634 }
1635 }
1636 }
1637
1638 void gdbserver_t::handle_halt_reason(const std::vector<uint8_t> &packet)
1639 {
1640 send_packet("S00");
1641 }
1642
1643 void gdbserver_t::handle_general_registers_read(const std::vector<uint8_t> &packet)
1644 {
1645 add_operation(new general_registers_read_op_t(*this));
1646 }
1647
1648 void gdbserver_t::set_interrupt(uint32_t hartid) {
1649 sim->debug_module.set_interrupt(hartid);
1650 }
1651
1652 // First byte is the most-significant one.
1653 // Eg. "08675309" becomes 0x08675309.
1654 uint64_t consume_hex_number(std::vector<uint8_t>::const_iterator &iter,
1655 std::vector<uint8_t>::const_iterator end)
1656 {
1657 uint64_t value = 0;
1658
1659 while (iter != end) {
1660 uint8_t c = *iter;
1661 uint64_t c_value = character_hex_value(c);
1662 if (c_value > 15)
1663 break;
1664 iter++;
1665 value <<= 4;
1666 value += c_value;
1667 }
1668 return value;
1669 }
1670
1671 // First byte is the least-significant one.
1672 // Eg. "08675309" becomes 0x09536708
1673 uint64_t consume_hex_number_le(std::vector<uint8_t>::const_iterator &iter,
1674 std::vector<uint8_t>::const_iterator end)
1675 {
1676 uint64_t value = 0;
1677 unsigned int shift = 4;
1678
1679 while (iter != end) {
1680 uint8_t c = *iter;
1681 uint64_t c_value = character_hex_value(c);
1682 if (c_value > 15)
1683 break;
1684 iter++;
1685 value |= c_value << shift;
1686 if ((shift % 8) == 0)
1687 shift += 12;
1688 else
1689 shift -= 4;
1690 }
1691 return value;
1692 }
1693
1694 void consume_string(std::string &str, std::vector<uint8_t>::const_iterator &iter,
1695 std::vector<uint8_t>::const_iterator end, uint8_t separator)
1696 {
1697 while (iter != end && *iter != separator) {
1698 str.append(1, (char) *iter);
1699 iter++;
1700 }
1701 }
1702
1703 void gdbserver_t::handle_register_read(const std::vector<uint8_t> &packet)
1704 {
1705 // p n
1706
1707 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1708 unsigned int n = consume_hex_number(iter, packet.end());
1709 if (*iter != '#')
1710 return send_packet("E01");
1711
1712 add_operation(new register_read_op_t(*this, n));
1713 }
1714
1715 void gdbserver_t::handle_register_write(const std::vector<uint8_t> &packet)
1716 {
1717 // P n...=r...
1718
1719 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1720 unsigned int n = consume_hex_number(iter, packet.end());
1721 if (*iter != '=')
1722 return send_packet("E05");
1723 iter++;
1724
1725 reg_t value = consume_hex_number_le(iter, packet.end());
1726 if (*iter != '#')
1727 return send_packet("E06");
1728
1729 processor_t *p = sim->get_core(0);
1730
1731 add_operation(new register_write_op_t(*this, n, value));
1732
1733 return send_packet("OK");
1734 }
1735
1736 void gdbserver_t::handle_memory_read(const std::vector<uint8_t> &packet)
1737 {
1738 // m addr,length
1739 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1740 reg_t address = consume_hex_number(iter, packet.end());
1741 if (*iter != ',')
1742 return send_packet("E10");
1743 iter++;
1744 reg_t length = consume_hex_number(iter, packet.end());
1745 if (*iter != '#')
1746 return send_packet("E11");
1747
1748 add_operation(new collect_translation_info_op_t(*this, address, length));
1749 add_operation(new memory_read_op_t(*this, address, length));
1750 }
1751
1752 void gdbserver_t::handle_memory_binary_write(const std::vector<uint8_t> &packet)
1753 {
1754 // X addr,length:XX...
1755 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1756 reg_t address = consume_hex_number(iter, packet.end());
1757 if (*iter != ',')
1758 return send_packet("E20");
1759 iter++;
1760 reg_t length = consume_hex_number(iter, packet.end());
1761 if (*iter != ':')
1762 return send_packet("E21");
1763 iter++;
1764
1765 if (length == 0) {
1766 return send_packet("OK");
1767 }
1768
1769 unsigned char *data = new unsigned char[length];
1770 for (unsigned int i = 0; i < length; i++) {
1771 if (iter == packet.end()) {
1772 return send_packet("E22");
1773 }
1774 uint8_t c = *iter;
1775 iter++;
1776 if (c == '}') {
1777 // The binary data representation uses 7d (ascii ‘}’) as an escape
1778 // character. Any escaped byte is transmitted as the escape character
1779 // followed by the original character XORed with 0x20. For example, the
1780 // byte 0x7d would be transmitted as the two bytes 0x7d 0x5d. The bytes
1781 // 0x23 (ascii ‘#’), 0x24 (ascii ‘$’), and 0x7d (ascii ‘}’) must always
1782 // be escaped.
1783 if (iter == packet.end()) {
1784 return send_packet("E23");
1785 }
1786 c = (*iter) ^ 0x20;
1787 iter++;
1788 }
1789 data[i] = c;
1790 }
1791 if (*iter != '#')
1792 return send_packet("E4b"); // EOVERFLOW
1793
1794 add_operation(new collect_translation_info_op_t(*this, address, length));
1795 add_operation(new memory_write_op_t(*this, address, length, data));
1796 }
1797
1798 void gdbserver_t::handle_continue(const std::vector<uint8_t> &packet)
1799 {
1800 // c [addr]
1801 processor_t *p = sim->get_core(0);
1802 if (packet[2] != '#') {
1803 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1804 dpc = consume_hex_number(iter, packet.end());
1805 if (*iter != '#')
1806 return send_packet("E30");
1807 }
1808
1809 add_operation(new maybe_restore_tselect_op_t(*this));
1810 add_operation(new continue_op_t(*this, false));
1811 }
1812
1813 void gdbserver_t::handle_step(const std::vector<uint8_t> &packet)
1814 {
1815 // s [addr]
1816 if (packet[2] != '#') {
1817 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1818 die("handle_step");
1819 //p->state.pc = consume_hex_number(iter, packet.end());
1820 if (*iter != '#')
1821 return send_packet("E40");
1822 }
1823
1824 add_operation(new maybe_restore_tselect_op_t(*this));
1825 add_operation(new continue_op_t(*this, true));
1826 }
1827
1828 void gdbserver_t::handle_kill(const std::vector<uint8_t> &packet)
1829 {
1830 // k
1831 // The exact effect of this packet is not specified.
1832 // Looks like OpenOCD disconnects?
1833 // TODO
1834 }
1835
1836 void gdbserver_t::handle_extended(const std::vector<uint8_t> &packet)
1837 {
1838 // Enable extended mode. In extended mode, the remote server is made
1839 // persistent. The ‘R’ packet is used to restart the program being debugged.
1840 send_packet("OK");
1841 extended_mode = true;
1842 }
1843
1844 void gdbserver_t::software_breakpoint_insert(reg_t vaddr, unsigned int size)
1845 {
1846 fence_i_required = true;
1847 add_operation(new collect_translation_info_op_t(*this, vaddr, size));
1848 unsigned char* inst = new unsigned char[4];
1849 if (size == 2) {
1850 inst[0] = C_EBREAK & 0xff;
1851 inst[1] = (C_EBREAK >> 8) & 0xff;
1852 } else {
1853 inst[0] = EBREAK & 0xff;
1854 inst[1] = (EBREAK >> 8) & 0xff;
1855 inst[2] = (EBREAK >> 16) & 0xff;
1856 inst[3] = (EBREAK >> 24) & 0xff;
1857 }
1858
1859 software_breakpoint_t bp = {
1860 .vaddr = vaddr,
1861 .size = size
1862 };
1863 software_breakpoints[vaddr] = bp;
1864 add_operation(new memory_read_op_t(*this, bp.vaddr, bp.size,
1865 software_breakpoints[bp.vaddr].instruction));
1866 add_operation(new memory_write_op_t(*this, bp.vaddr, bp.size, inst));
1867 }
1868
1869 void gdbserver_t::software_breakpoint_remove(reg_t vaddr, unsigned int size)
1870 {
1871 fence_i_required = true;
1872 add_operation(new collect_translation_info_op_t(*this, vaddr, size));
1873
1874 software_breakpoint_t found_bp = software_breakpoints[vaddr];
1875 unsigned char* instruction = new unsigned char[4];
1876 memcpy(instruction, found_bp.instruction, 4);
1877 add_operation(new memory_write_op_t(*this, found_bp.vaddr,
1878 found_bp.size, instruction));
1879 software_breakpoints.erase(vaddr);
1880 }
1881
1882 void gdbserver_t::hardware_breakpoint_insert(const hardware_breakpoint_t &bp)
1883 {
1884 add_operation(new maybe_save_tselect_op_t(*this));
1885 add_operation(new hardware_breakpoint_insert_op_t(*this, bp));
1886 }
1887
1888 void gdbserver_t::hardware_breakpoint_remove(const hardware_breakpoint_t &bp)
1889 {
1890 add_operation(new maybe_save_tselect_op_t(*this));
1891 hardware_breakpoint_t found = *hardware_breakpoints.find(bp);
1892 add_operation(new hardware_breakpoint_remove_op_t(*this, found));
1893 }
1894
1895 void gdbserver_t::handle_breakpoint(const std::vector<uint8_t> &packet)
1896 {
1897 // insert: Z type,addr,length
1898 // remove: z type,addr,length
1899
1900 // type: 0 - software breakpoint, 1 - hardware breakpoint, 2 - write
1901 // watchpoint, 3 - read watchpoint, 4 - access watchpoint; addr is address;
1902 // length is in bytes. For a software breakpoint, length specifies the size
1903 // of the instruction to be patched. For hardware breakpoints and watchpoints
1904 // length specifies the memory region to be monitored. To avoid potential
1905 // problems with duplicate packets, the operations should be implemented in
1906 // an idempotent way.
1907
1908 bool insert = (packet[1] == 'Z');
1909 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1910 gdb_breakpoint_type_t type = static_cast<gdb_breakpoint_type_t>(
1911 consume_hex_number(iter, packet.end()));
1912 if (*iter != ',')
1913 return send_packet("E50");
1914 iter++;
1915 reg_t address = consume_hex_number(iter, packet.end());
1916 if (*iter != ',')
1917 return send_packet("E51");
1918 iter++;
1919 unsigned int size = consume_hex_number(iter, packet.end());
1920 // There may be more options after a ; here, but we don't support that.
1921 if (*iter != '#')
1922 return send_packet("E52");
1923
1924 switch (type) {
1925 case GB_SOFTWARE:
1926 if (size != 2 && size != 4) {
1927 return send_packet("E53");
1928 }
1929 if (insert) {
1930 software_breakpoint_insert(address, size);
1931 } else {
1932 software_breakpoint_remove(address, size);
1933 }
1934 break;
1935
1936 case GB_HARDWARE:
1937 case GB_WRITE:
1938 case GB_READ:
1939 case GB_ACCESS:
1940 {
1941 hardware_breakpoint_t bp = {
1942 .vaddr = address,
1943 .size = size
1944 };
1945 bp.load = (type == GB_READ || type == GB_ACCESS);
1946 bp.store = (type == GB_WRITE || type == GB_ACCESS);
1947 bp.execute = (type == GB_HARDWARE || type == GB_ACCESS);
1948 if (insert) {
1949 hardware_breakpoint_insert(bp);
1950 // Insert might fail if there's no space, so the insert operation will
1951 // send its own OK (or not).
1952 return;
1953 } else {
1954 hardware_breakpoint_remove(bp);
1955 }
1956 }
1957 break;
1958
1959 default:
1960 return send_packet("E56");
1961 }
1962
1963 return send_packet("OK");
1964 }
1965
1966 void gdbserver_t::handle_query(const std::vector<uint8_t> &packet)
1967 {
1968 std::string name;
1969 std::vector<uint8_t>::const_iterator iter = packet.begin() + 2;
1970
1971 consume_string(name, iter, packet.end(), ':');
1972 if (iter != packet.end())
1973 iter++;
1974 if (name == "Supported") {
1975 start_packet();
1976 while (iter != packet.end()) {
1977 std::string feature;
1978 consume_string(feature, iter, packet.end(), ';');
1979 if (iter != packet.end())
1980 iter++;
1981 if (feature == "swbreak+") {
1982 send("swbreak+;");
1983 }
1984 }
1985 send("PacketSize=131072;");
1986 return end_packet();
1987 }
1988
1989 D(fprintf(stderr, "Unsupported query %s\n", name.c_str()));
1990 return send_packet("");
1991 }
1992
1993 void gdbserver_t::handle_packet(const std::vector<uint8_t> &packet)
1994 {
1995 if (compute_checksum(packet) != extract_checksum(packet)) {
1996 fprintf(stderr, "Received %ld-byte packet with invalid checksum\n", packet.size());
1997 fprintf(stderr, "Computed checksum: %x\n", compute_checksum(packet));
1998 print_packet(packet);
1999 send("-");
2000 return;
2001 }
2002
2003 D(fprintf(stderr, "Received %ld-byte packet from debug client: ", packet.size()));
2004 D(print_packet(packet));
2005 send("+");
2006
2007 switch (packet[1]) {
2008 case '!':
2009 return handle_extended(packet);
2010 case '?':
2011 return handle_halt_reason(packet);
2012 case 'g':
2013 return handle_general_registers_read(packet);
2014 // case 'k':
2015 // return handle_kill(packet);
2016 case 'm':
2017 return handle_memory_read(packet);
2018 // case 'M':
2019 // return handle_memory_write(packet);
2020 case 'X':
2021 return handle_memory_binary_write(packet);
2022 case 'p':
2023 return handle_register_read(packet);
2024 case 'P':
2025 return handle_register_write(packet);
2026 case 'c':
2027 return handle_continue(packet);
2028 case 's':
2029 return handle_step(packet);
2030 case 'z':
2031 case 'Z':
2032 return handle_breakpoint(packet);
2033 case 'q':
2034 case 'Q':
2035 return handle_query(packet);
2036 }
2037
2038 // Not supported.
2039 D(fprintf(stderr, "** Unsupported packet: "));
2040 D(print_packet(packet));
2041 send_packet("");
2042 }
2043
2044 void gdbserver_t::handle_interrupt()
2045 {
2046 processor_t *p = sim->get_core(0);
2047 add_operation(new halt_op_t(*this, true));
2048 }
2049
2050 void gdbserver_t::handle()
2051 {
2052 if (client_fd > 0) {
2053 processor_t *p = sim->get_core(0);
2054
2055 bool interrupt = sim->debug_module.get_interrupt(0);
2056
2057 if (!interrupt && !operation_queue.empty()) {
2058 operation_t *operation = operation_queue.front();
2059 if (operation->step()) {
2060 operation_queue.pop();
2061 delete operation;
2062 }
2063 }
2064
2065 bool halt_notification = sim->debug_module.get_halt_notification(0);
2066 if (halt_notification) {
2067 sim->debug_module.clear_halt_notification(0);
2068 add_operation(new halt_op_t(*this, true));
2069 }
2070
2071 this->read();
2072 this->write();
2073
2074 } else {
2075 this->accept();
2076 }
2077
2078 if (operation_queue.empty()) {
2079 this->process_requests();
2080 }
2081 }
2082
2083 void gdbserver_t::send(const char* msg)
2084 {
2085 unsigned int length = strlen(msg);
2086 for (const char *c = msg; *c; c++)
2087 running_checksum += *c;
2088 send_buf.append((const uint8_t *) msg, length);
2089 }
2090
2091 void gdbserver_t::send(uint64_t value)
2092 {
2093 char buffer[3];
2094 for (unsigned int i = 0; i < 8; i++) {
2095 sprintf(buffer, "%02x", (int) (value & 0xff));
2096 send(buffer);
2097 value >>= 8;
2098 }
2099 }
2100
2101 void gdbserver_t::send(uint32_t value)
2102 {
2103 char buffer[3];
2104 for (unsigned int i = 0; i < 4; i++) {
2105 sprintf(buffer, "%02x", (int) (value & 0xff));
2106 send(buffer);
2107 value >>= 8;
2108 }
2109 }
2110
2111 void gdbserver_t::send(uint8_t value)
2112 {
2113 char buffer[3];
2114 sprintf(buffer, "%02x", (int) value);
2115 send(buffer);
2116 }
2117
2118 void gdbserver_t::send_packet(const char* data)
2119 {
2120 start_packet();
2121 send(data);
2122 end_packet();
2123 expect_ack = true;
2124 }
2125
2126 void gdbserver_t::start_packet()
2127 {
2128 send("$");
2129 running_checksum = 0;
2130 }
2131
2132 void gdbserver_t::end_packet(const char* data)
2133 {
2134 if (data) {
2135 send(data);
2136 }
2137
2138 char checksum_string[4];
2139 sprintf(checksum_string, "#%02x", running_checksum);
2140 send(checksum_string);
2141 expect_ack = true;
2142 }