add (but comment out) reset signal
[ieee754fpu.git] / src / add / unit_test_single.py
1 from random import randint
2 from random import seed
3
4 import sys
5 from sfpy import Float32
6
7 def get_mantissa(x):
8 return 0x7fffff & x
9
10 def get_exponent(x):
11 return ((x & 0x7f800000) >> 23) - 127
12
13 def set_exponent(x, e):
14 return (x & ~0x7f800000) | ((e+127) << 23)
15
16 def get_sign(x):
17 return ((x & 0x80000000) >> 31)
18
19 def is_nan(x):
20 return get_exponent(x) == 128 and get_mantissa(x) != 0
21
22 def is_inf(x):
23 return get_exponent(x) == 128 and get_mantissa(x) == 0
24
25 def is_pos_inf(x):
26 return is_inf(x) and not get_sign(x)
27
28 def is_neg_inf(x):
29 return is_inf(x) and get_sign(x)
30
31 def match(x, y):
32 return (
33 (is_pos_inf(x) and is_pos_inf(y)) or
34 (is_neg_inf(x) and is_neg_inf(y)) or
35 (is_nan(x) and is_nan(y)) or
36 (x == y)
37 )
38
39 def get_case(dut, a, b, mid):
40 in_a, in_b = dut.rs[0]
41 out_z = dut.res[0]
42 yield dut.ids.in_mid.eq(mid)
43 yield in_a.v.eq(a)
44 yield in_a.stb.eq(1)
45 yield
46 yield
47 yield
48 yield
49 a_ack = (yield in_a.ack)
50 assert a_ack == 0
51
52 yield in_a.stb.eq(0)
53
54 yield in_b.v.eq(b)
55 yield in_b.stb.eq(1)
56 yield
57 yield
58 b_ack = (yield in_b.ack)
59 assert b_ack == 0
60
61 yield in_b.stb.eq(0)
62
63 yield out_z.ack.eq(1)
64
65 while True:
66 out_z_stb = (yield out_z.stb)
67 if not out_z_stb:
68 yield
69 continue
70 vout_z = yield out_z.v
71 #out_mid = yield dut.ids.out_mid
72 yield out_z.ack.eq(0)
73 yield
74 break
75
76 return vout_z, mid
77
78 def check_case(dut, a, b, z, mid=None):
79 if mid is None:
80 mid = randint(0, 6)
81 mid = 0
82 out_z, out_mid = yield from get_case(dut, a, b, mid)
83 assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
84 assert out_mid == mid, "Output mid 0x%x != expected 0x%x" % (out_mid, mid)
85
86
87 def run_test(dut, stimulus_a, stimulus_b, op):
88
89 expected_responses = []
90 actual_responses = []
91 for a, b in zip(stimulus_a, stimulus_b):
92 mid = randint(0, 6)
93 mid = 0
94 af = Float32.from_bits(a)
95 bf = Float32.from_bits(b)
96 z = op(af, bf)
97 expected_responses.append((z.get_bits(), mid))
98 #print (af, bf, z)
99 actual = yield from get_case(dut, a, b, mid)
100 actual_responses.append(actual)
101
102 if len(actual_responses) < len(expected_responses):
103 print ("Fail ... not enough results")
104 exit(0)
105
106 for expected, actual, a, b in zip(expected_responses, actual_responses,
107 stimulus_a, stimulus_b):
108 passed = match(expected[0], actual[0])
109 if expected[1] != actual[1]: # check mid
110 print ("MID failed", expected[1], actual[1])
111 sys.exit(0)
112
113 if not passed:
114
115 print ("Fail ... expected:", hex(expected), "actual:", hex(actual))
116
117 print (hex(a))
118 print ("a mantissa:", a & 0x7fffff)
119 print ("a exponent:", ((a & 0x7f800000) >> 23) - 127)
120 print ("a sign:", ((a & 0x80000000) >> 31))
121
122 print (hex(b))
123 print ("b mantissa:", b & 0x7fffff)
124 print ("b exponent:", ((b & 0x7f800000) >> 23) - 127)
125 print ("b sign:", ((b & 0x80000000) >> 31))
126
127 print (hex(expected))
128 print ("expected mantissa:", expected & 0x7fffff)
129 print ("expected exponent:", ((expected & 0x7f800000) >> 23) - 127)
130 print ("expected sign:", ((expected & 0x80000000) >> 31))
131
132 print (hex(actual))
133 print ("actual mantissa:", actual & 0x7fffff)
134 print ("actual exponent:", ((actual & 0x7f800000) >> 23) - 127)
135 print ("actual sign:", ((actual & 0x80000000) >> 31))
136
137 sys.exit(0)
138
139 corner_cases = [0x80000000, 0x00000000, 0x7f800000, 0xff800000,
140 0x7fc00000, 0xffc00000]
141
142 def run_corner_cases(dut, count, op):
143 #corner cases
144 from itertools import permutations
145 stimulus_a = [i[0] for i in permutations(corner_cases, 2)]
146 stimulus_b = [i[1] for i in permutations(corner_cases, 2)]
147 yield from run_test(dut, stimulus_a, stimulus_b, op)
148 count += len(stimulus_a)
149 print (count, "vectors passed")
150
151 def run_test_2(dut, stimulus_a, stimulus_b, op):
152 yield from run_test(dut, stimulus_a, stimulus_b, op)
153 yield from run_test(dut, stimulus_b, stimulus_a, op)
154
155 def run_cases(dut, count, op, fixed_num, num_entries):
156 if isinstance(fixed_num, int):
157 stimulus_a = [fixed_num for i in range(num_entries)]
158 report = hex(fixed_num)
159 else:
160 stimulus_a = fixed_num
161 report = "random"
162
163 stimulus_b = [randint(0, 1<<32) for i in range(num_entries)]
164 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
165 count += len(stimulus_a)
166 print (count, "vectors passed 2^32", report)
167
168 # non-canonical NaNs.
169 stimulus_b = [set_exponent(randint(0, 1<<32), 128) \
170 for i in range(num_entries)]
171 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
172 count += len(stimulus_a)
173 print (count, "vectors passed Non-Canonical NaN", report)
174
175 # -127
176 stimulus_b = [set_exponent(randint(0, 1<<32), -127) \
177 for i in range(num_entries)]
178 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
179 count += len(stimulus_a)
180 print (count, "vectors passed exp=-127", report)
181
182 # nearly zero
183 stimulus_b = [set_exponent(randint(0, 1<<32), -126) \
184 for i in range(num_entries)]
185 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
186 count += len(stimulus_a)
187 print (count, "vectors passed exp=-126", report)
188
189 # nearly inf
190 stimulus_b = [set_exponent(randint(0, 1<<32), 127) \
191 for i in range(num_entries)]
192 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
193 count += len(stimulus_a)
194 print (count, "vectors passed exp=127", report)
195
196 return count
197
198 def run_edge_cases(dut, count, op):
199 #edge cases
200 for testme in corner_cases:
201 count = yield from run_cases(dut, count, op, testme, 10)
202
203 for i in range(100000):
204 stimulus_a = [randint(0, 1<<32) for i in range(10)]
205 count = yield from run_cases(dut, count, op, stimulus_a, 10)
206 return count
207