remove dead links
[libreriscv.git] / resources.mdwn
1 # Resources and Specifications
2
3 This page aims to collect all the resources and specifications we need
4 in one place for quick access. We will try our best to keep links here
5 up-to-date. Feel free to add more links here.
6
7 [[!toc ]]
8
9 # Getting Started
10
11 This section is primarily a series of useful links found online
12
13 * [FSiC2019](https://wiki.f-si.org/index.php/FSiC2019)
14 * Fundamentals to learn to get started [[3d_gpu/tutorial]]
15
16 ## Is Open Source Hardware Profitable?
17 [RaptorCS on FOSS Hardware Interview](https://www.youtube.com/watch?v=o5Ihqg72T3c&feature=youtu.be)
18
19 # OpenPOWER ISA
20
21 * [3.0 PDF](https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0)
22 * [2.07 PDF](https://openpowerfoundation.org/?resource_lib=ibm-power-isa-version-2-07-b)
23
24 ## Overview of the user ISA:
25
26 [Raymond Chen's PowerPC series](https://devblogs.microsoft.com/oldnewthing/20180806-00/?p=99425)
27
28 ## OpenPOWER OpenFSI Spec (2016)
29
30 * [OpenPOWER OpenFSI Spec](http://openpowerfoundation.org/wp-content/uploads/resources/OpenFSI-spec-100/OpenFSI-spec-20161212.pdf)
31
32 * [OpenPOWER OpenFSI Compliance Spec](http://openpowerfoundation.org/wp-content/uploads/resources/openpower-fsi-thts-1.0/openpower-fsi-thts-20180130.pdf)
33
34 # Energy-efficient cores
35
36 * https://arxiv.org/abs/2002.10143
37
38 # Communities
39
40 * <https://www.reddit.com/r/OpenPOWER/>
41 * <http://lists.mailinglist.openpowerfoundation.org/pipermail/openpower-hdl-cores/>
42 * <http://lists.mailinglist.openpowerfoundation.org/pipermail/openpower-community-dev/>
43 * Open tape-out mailing list <https://groups.google.com/a/opentapeout.dev/g/mailinglist>
44
45 # Other GPU Specifications
46
47 *
48 * https://developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf
49 * https://developer.amd.com/wp-content/resources/Vega_Shader_ISA_28July2017.pdf
50 * MALI Midgard
51 * [Nyuzi](https://github.com/jbush001/NyuziProcessor)
52 * VideoCore IV
53 * etnaviv
54
55 # JTAG
56
57 * [Useful JTAG implementation reference: Design Of IEEE 1149.1 TAP Controller IP Core by Shelja, Nandakumar and Muruganantham, DOI:10.5121/csit.2016.60910](https://web.archive.org/web/20201021174944/https://airccj.org/CSCP/vol6/csit65610.pdf)
58
59 Abstract
60
61 "The objective of this work is to design and implement a TAP controller IP core compatible with IEEE 1149.1-2013 revision of the standard. The test logic architecture also includes the Test Mode Persistence controller and its associated logic. This work is expected to serve as a ready to use module that can be directly inserted in to a new digital IC designs with little modifications."
62
63 # Radix MMU
64 - [Qemu emulation](https://github.com/qemu/qemu/commit/d5fee0bbe68d5e61e2d2beb5ff6de0b9c1cfd182)
65
66 # D-Cache
67
68 - [A Primer on Memory Consistency and Cache Coherence
69 ](https://www.morganclaypool.com/doi/10.2200/S00962ED2V01Y201910CAC049)
70
71 ## D-Cache Possible Optimizations papers and links
72 - [ACDC: Small, Predictable and High-Performance Data Cache](https://dl.acm.org/doi/10.1145/2677093)
73 - [Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of
74 Outstanding Misses in FPGAs](https://dl.acm.org/doi/abs/10.1145/3289602.3293901)
75
76 # BW Enhancing Shared L1 Cache Design research done in cooperation with AMD
77 - [Youtube video PACT 2020 - Analyzing and Leveraging Shared L1 Caches in GPUs](https://m.youtube.com/watch?v=CGIhOnt7F6s)
78 - [Url to PDF of paper on author's website (clicking will download the pdf)](https://adwaitjog.github.io/docs/pdf/sharedl1-pact20.pdf)
79
80
81 # RTL Arithmetic SQRT, FPU etc.
82
83 ## Wallace vs Dadda Multipliers
84
85 * [Paper comparing efficiency of Wallace and Dadda Multipliers in RTL implementations (clicking will download the pdf from archive.org)](https://web.archive.org/web/20180717013227/http://ieeemilestones.ethw.org/images/d/db/A_comparison_of_Dadda_and_Wallace_multiplier_delays.pdf)
86
87 ## Sqrt
88 * [Fast Floating Point Square Root](https://pdfs.semanticscholar.org/5060/4e9aff0e37089c4ab9a376c3f35761ffe28b.pdf)
89 * [Reciprocal Square Root Algorithm](http://www.acsel-lab.com/arithmetic/arith15/papers/ARITH15_Takagi.pdf)
90 * [Fast Calculation of Cube and Inverse Cube Roots Using a Magic Constant and Its Implementation on Microcontrollers (clicking will download the pdf)](https://res.mdpi.com/d_attachment/energies/energies-14-01058/article_deploy/energies-14-01058-v2.pdf)
91 * [Modified Fast Inverse Square Root and Square Root Approximation Algorithms: The Method of Switching Magic Constants (clicking will download the pdf)](https://res.mdpi.com/d_attachment/computation/computation-09-00021/article_deploy/computation-09-00021-v3.pdf)
92
93
94 ## CORDIC and related algorithms
95
96 * <https://bugs.libre-soc.org/show_bug.cgi?id=127> research into CORDIC
97 * <https://bugs.libre-soc.org/show_bug.cgi?id=208>
98 * [BKM (log(x) and e^x)](https://en.wikipedia.org/wiki/BKM_algorithm)
99 * [CORDIC](http://www.andraka.com/files/crdcsrvy.pdf)
100 - Does not have an easy way of computing tan(x)
101 * [zipcpu CORDIC](https://zipcpu.com/dsp/2017/08/30/cordic.html)
102 * [Low latency and Low error floating point TCORDIC](https://ieeexplore.ieee.org/document/7784797) (email Michael or Cole if you don't have IEEE access)
103 * <http://www.myhdl.org/docs/examples/sinecomp/> MyHDL version of CORDIC
104 * <https://dspguru.com/dsp/faqs/cordic/>
105
106 ## IEEE Standard for Floating-Point Arithmetic (IEEE 754)
107
108 Almost all modern computers follow the IEEE Floating-Point Standard. Of
109 course, we will follow it as well for interoperability.
110
111 * IEEE 754-2019: <https://standards.ieee.org/standard/754-2019.html>
112
113 Note: Even though this is such an important standard used by everyone,
114 it is unfortunately not freely available and requires a payment to
115 access. However, each of the Libre-SOC members already have access
116 to the document.
117
118 * [Lecture notes - Floating Point Appreciation](http://pages.cs.wisc.edu/~markhill/cs354/Fall2008/notes/flpt.apprec.html)
119
120 Among other things, has a nice explanation on arithmetic, rounding modes and the sticky bit.
121
122 * [What Every Computer Scientist Should Know About Floating-Point Arithmetic](https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html)
123
124 Nice resource on rounding errors (ulps and epsilon) and the "table maker's dilemma".
125
126 ## Past FPU Mistakes to learn from
127
128 * [Intel Underestimates Error Bounds by 1.3 quintillion on
129 Random ASCII – tech blog of Bruce Dawson ](https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/)
130 * [Intel overstates FPU accuracy 06/01/2013](http://notabs.org/fpuaccuracy)
131 * How not to design an ISA
132 <https://player.vimeo.com/video/450406346>
133 Meester Forsyth <http://eelpi.gotdns.org/>
134
135 # Khronos Standards
136
137 The Khronos Group creates open standards for authoring and acceleration
138 of graphics, media, and computation. It is a requirement for our hybrid
139 CPU/GPU to be compliant with these standards *as well* as with IEEE754,
140 in order to be commercially-competitive in both areas: especially Vulkan
141 and OpenCL being the most important. SPIR-V is also important for the
142 Kazan driver.
143
144 Thus the [[zfpacc_proposal]] has been created which permits runtime dynamic
145 switching between different accuracy levels, in userspace applications.
146
147 [**SPIR-V Main Page Link**](https://www.khronos.org/registry/spir-v/)
148
149 * [SPIR-V 1.5 Specification Revision 1](https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html)
150 * [SPIR-V OpenCL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.100.html)
151 * [SPIR-V GLSL Extended Instruction Set](https://www.khronos.org/registry/spir-v/specs/unified1/GLSL.std.450.html)
152
153 [**Vulkan Main Page Link**](https://www.khronos.org/registry/vulkan/)
154
155 * [Vulkan 1.1.122](https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/index.html)
156
157 [**OpenCL Main Page**](https://www.khronos.org/registry/OpenCL/)
158
159 * [OpenCL 2.2 API Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_API.html)
160 * [OpenCL 2.2 Extension Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Ext.html)
161 * [OpenCL 2.2 SPIR-V Environment Specification](https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_Env.html)
162
163 * OpenCL released the proposed OpenCL 3.0 spec for comments in april 2020
164
165 * [Announcement video](https://youtu.be/h0_syTg6TtY)
166 * [Announcement video slides (PDF)](https://www.khronos.org/assets/uploads/apis/OpenCL-3.0-Launch-Apr20.pdf)
167
168 Note: We are implementing hardware accelerated Vulkan and
169 OpenCL while relying on other software projects to translate APIs to
170 Vulkan. E.g. Zink allows for OpenGL-to-Vulkan in software.
171
172 # Open Source (CC BY + MIT) DirectX specs (by Microsoft, but not official specs)
173
174 https://github.com/Microsoft/DirectX-Specs
175
176 # Graphics and Compute API Stack
177
178 I found this informative post that mentions Kazan and a whole bunch of
179 other stuff. It looks like *many* APIs can be emulated on top of Vulkan,
180 although performance is not evaluated.
181
182 <https://synappsis.wordpress.com/2017/06/03/opengl-over-vulkan-dev/>
183
184 * Pixilica is heading up an initiative to create a RISC-V graphical ISA
185
186 * [Pixilica 3D Graphical ISA Slides](https://b5792ddd-543e-4dd4-9b97-fe259caf375d.filesusr.com/ugd/841f2a_c8685ced353b4c3ea20dbb993c4d4d18.pdf)
187
188 # 3D Graphics Texture compression software and hardware
189
190 * [Proprietary Rad Game Tools Oddle Texture Software Compression](https://web.archive.org/web/20200913122043/http://www.radgametools.com/oodle.htm)
191
192 * [Blog post by one of the engineers who developed the proprietary Rad Game Tools Oddle Texture Software Compression and the Oodle Kraken decompression software and hardware decoder used in the ps5 ssd](https://archive.vn/oz0pG)
193
194 # Various POWER Communities
195 - [An effort to make a 100% Libre POWER Laptop](https://www.powerpc-notebook.org/en/)
196 The T2080 is a POWER8 chip.
197 - [Power Progress Community](https://www.powerprogress.org/campaigns/donations-to-all-the-power-progress-community-projects/)
198 Supporting/Raising awareness of various POWER related open projects on the FOSS
199 community
200 - [OpenPOWER](https://openpowerfoundation.org)
201 Promotes and ensure compliance with the Power ISA amongst members.
202 - [OpenCapi](https://opencapi.org)
203 High performance interconnect for POWER machines. One of the big advantages
204 of the POWER architecture. Notably more performant than PCIE Gen4, and is
205 designed to be layered on top of the physical PCIE link.
206 - [OpenPOWER “Virtual Coffee” Calls](https://openpowerfoundation.org/openpower-virtual-coffee-calls/)
207 Truly open bi-weekly teleconference lines for anybody interested in helping
208 advance or adopting the POWER architecture.
209
210 # Conferences
211
212 see [[conferences]]
213
214
215 # Coriolis2
216
217 * LIP6's Coriolis - a set of backend design tools:
218 <https://www-soc.lip6.fr/equipe-cian/logiciels/coriolis/>
219
220 Note: The rest of LIP6's website is in French, but there is a UK flag
221 in the corner that gives the English version.
222
223 # Logical Equivalence and extraction
224
225 * NETGEN
226 * CVC https://github.com/d-m-bailey/cvc
227
228 # Klayout
229
230 * KLayout - Layout viewer and editor: <https://www.klayout.de/>
231
232 # image to GDS-II
233
234 * https://nazca-design.org/convert-image-to-gds/
235
236 # The OpenROAD Project
237
238 OpenROAD seeks to develop and foster an autonomous, 24-hour, open-source
239 layout generation flow (RTL-to-GDS).
240
241 * <https://theopenroadproject.org/>
242
243 # Other RISC-V GPU attempts
244
245 * <https://fossi-foundation.org/2019/09/03/gsoc-64b-pointers-in-rv32>
246
247 * <http://bjump.org/manycore/>
248
249 * <https://resharma.github.io/RISCV32-GPU/>
250
251 TODO: Get in touch and discuss collaboration
252
253 # Tests, Benchmarks, Conformance, Compliance, Verification, etc.
254
255 ## RISC-V Tests
256
257 RISC-V Foundation is in the process of creating an official conformance
258 test. It's still in development as far as I can tell.
259
260 * //TODO LINK TO RISC-V CONFORMANCE TEST
261
262 ## IEEE 754 Testing/Emulation
263
264 IEEE 754 has no official tests for floating-point but there are
265 well-known third party tools to check such as John Hauser's TestFloat.
266
267 There is also his SoftFloat library, which is a software emulation
268 library for IEEE 754.
269
270 * <http://www.jhauser.us/arithmetic/>
271
272 Jacob is also working on an IEEE 754 software emulation library written
273 in Rust which also has Python bindings:
274
275 * Source: <https://salsa.debian.org/Kazan-team/simple-soft-float>
276 * Crate: <https://crates.io/crates/simple-soft-float>
277 * Autogenerated Docs: <https://docs.rs/simple-soft-float/>
278
279 A cool paper I came across in my research is "IeeeCC754++ : An Advanced
280 Set of Tools to Check IEEE 754-2008 Conformity" by Dr. Matthias Hüsken.
281
282 * Direct link to PDF:
283 <http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-7505/dc1735.pdf>
284
285 ## Khronos Tests
286
287 OpenCL Conformance Tests
288
289 * <https://github.com/KhronosGroup/OpenCL-CTS>
290
291 Vulkan Conformance Tests
292
293 * <https://github.com/KhronosGroup/VK-GL-CTS>
294
295 MAJOR NOTE: We are **not** allowed to say we are compliant with any of
296 the Khronos standards until we actually make an official submission,
297 do the paperwork, and pay the relevant fees.
298
299 ## Formal Verification
300
301 Formal verification of Libre RISC-V ensures that it is bug-free in
302 regards to what we specify. Of course, it is important to do the formal
303 verification as a final step in the development process before we produce
304 thousands or millions of silicon.
305
306 * Possible way to speed up our solvers for our formal proofs <https://web.archive.org/web/20201029205507/https://github.com/eth-sri/fastsmt>
307
308 * Algorithms (papers) submitted for 2018 International SAT Competition <https://web.archive.org/web/20201029205239/https://helda.helsinki.fi/bitstream/handle/10138/237063/sc2018_proceedings.pdf> <https://web.archive.org/web/20201029205637/http://www.satcompetition.org/>
309 * Minisail <https://www.isa-afp.org/entries/MiniSail.html> - compiler
310 for SAIL into c
311
312 Some learning resources I found in the community:
313
314 * ZipCPU: <http://zipcpu.com/> ZipCPU provides a comprehensive
315 tutorial for beginners and many exercises/quizzes/slides:
316 <http://zipcpu.com/tutorial/>
317 * Western Digital's SweRV CPU blog (I recommend looking at all their
318 posts): <https://tomverbeure.github.io/>
319 * <https://tomverbeure.github.io/risc-v/2018/11/19/A-Bug-Free-RISC-V-Core-without-Simulation.html>
320 * <https://tomverbeure.github.io/rtl/2019/01/04/Under-the-Hood-of-Formal-Verification.html>
321
322 ## Automation
323
324 * <https://www.ohwr.org/project/wishbone-gen>
325
326 # Bus Architectures
327
328 * Avalon <https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf>
329 * CXM <https://www.computeexpresslink.org/download-the-specification>
330
331 # Vector Processors
332
333 * THOR <https://github.com/robfinch/Thor/blob/main/Thor2021/doc/Thor2021.pdf>
334 * NEC SX-Aurora
335 * RVV
336 * MRISC32 <https://github.com/mrisc32/mrisc32>
337
338 # LLVM
339
340 ## Adding new instructions:
341
342 * <https://archive.fosdem.org/2015/schedule/event/llvm_internal_asm/>
343
344 # Branch Prediction
345
346 * <https://danluu.com/branch-prediction/>
347
348 # Python RTL Tools
349
350 * [Migen - a Python RTL](https://jeffrey.co.in/blog/2014/01/d-flip-flop-using-migen/)
351 * [LiTeX](https://github.com/timvideos/litex-buildenv/wiki/LiteX-for-Hardware-Engineers)
352 An SOC builder written in Python Migen DSL. Allows you to generate functional
353 RTL for a SOC configured with cache, a RISCV core, ethernet, DRAM support,
354 and parameterizeable CSRs.
355 * [Migen Tutorial](http://blog.lambdaconcept.com/doku.php?id=migen:tutorial>)
356 * There is a great guy, Robert Baruch, who has a good
357 [tutorial](https://github.com/RobertBaruch/nmigen-tutorial) on nMigen.
358 He also build an FPGA-proven Motorola 6800 CPU clone with nMigen and put
359 [the code](https://github.com/RobertBaruch/n6800) and
360 [instructional videos](https://www.youtube.com/playlist?list=PLEeZWGE3PwbbjxV7_XnPSR7ouLR2zjktw)
361 online.
362 There is now a page [[docs/learning_nmigen]].
363 * [Minerva](https://github.com/lambdaconcept/minerva)
364 An SOC written in Python nMigen DSL
365 * Minerva example using nmigen-soc
366 <https://github.com/jfng/minerva-examples/blob/master/hello/core.py>
367 * [Using our Python Unit Tests(old)](http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-March/000705.html)
368 * <https://chisel.eecs.berkeley.edu/api/latest/chisel3/util/DecoupledIO.html>
369
370 # Other
371
372 * <https://debugger.medium.com/why-is-apples-m1-chip-so-fast-3262b158cba2> N1
373 * <https://codeberg.org/tok/librecell> Libre Cell Library
374 * <https://wiki.f-si.org/index.php/FSiC2019>
375 * <https://fusesoc.net>
376 * <https://www.lowrisc.org/open-silicon/>
377 * <http://fpgacpu.ca/fpga/Pipeline_Skid_Buffer.html> pipeline skid buffer
378 * <https://pyvcd.readthedocs.io/en/latest/vcd.gtkw.html> GTKwave
379 * <https://github.com/ics-jku/wal> - Waveform Analysis
380 * <http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_Resets.pdf>
381 Synchronous Resets? Asynchronous Resets? I am so confused! How will I
382 ever know which to use? by Clifford E. Cummings
383 * <http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf>
384 Clock Domain Crossing (CDC) Design & Verification Techniques Using
385 SystemVerilog, by Clifford E. Cummings
386 In particular, see section 5.8.2: Multi-bit CDC signal passing using
387 1-deep / 2-register FIFO synchronizer.
388 * <http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.pdf>
389 Understanding Latency Hiding on GPUs, by Vasily Volkov
390 * Efabless "Openlane" <https://github.com/efabless/openlane>
391 * example of openlane with nmigen
392 <https://github.com/lethalbit/nmigen/tree/openlane>
393 * Co-simulation plugin for verilator, transferring to ECP5
394 <https://github.com/vmware/cascade>
395 * Multi-read/write ported memories
396 <https://tomverbeure.github.io/2019/08/03/Multiport-Memories.html>
397 * Data-dependent fail-on-first aka "Fault-tolerant speculative vectorisation"
398 <https://arxiv.org/pdf/1803.06185.pdf>
399 * OpenPOWER Foundation Membership
400 <https://openpowerfoundation.org/membership/how-to-join/membership-kit-9-27-16-4/>
401 * Clock switching (and formal verification)
402 <https://zipcpu.com/formal/2018/05/31/clkswitch.html>
403 * Circuit of Compunit <http://home.macintosh.garden/~mepy2/libre-soc/comp_unit_req_rel.html>
404 * Circuitverse 16-bit <https://circuitverse.org/users/17603/projects/54486>
405 * Nice example model of a Tomasulo-based architecture, with multi-issue, in-order issue, out-of-order execution, in-order commit, with reservation stations and reorder buffers, and hazard avoidance.
406 <https://www.brown.edu/Departments/Engineering/Courses/En164/Tomasulo_10.pdf>
407
408 # Real/Physical Projects
409
410 * [Samuel's KC5 code](http://chiselapp.com/user/kc5tja/repository/kestrel-3/dir?ci=6c559135a301f321&name=cores/cpu)
411 * <https://chips4makers.io/blog/>
412 * <https://hackaday.io/project/7817-zynqberry>
413 * <https://github.com/efabless/raven-picorv32>
414 * <https://efabless.com>
415 * <https://efabless.com/design_catalog/default>
416 * <https://wiki.f-si.org/index.php/The_Raven_chip:_First-time_silicon_success_with_qflow_and_efabless>
417 * <https://mshahrad.github.io/openpiton-asplos16.html>
418
419 # ASIC tape-out pricing
420
421 * <https://europractice-ic.com/wp-content/uploads/2020/05/General-MPW-EUROPRACTICE-200505-v8.pdf>
422
423 # Funding
424
425 * <https://toyota-ai.ventures/>
426 * [NLNet Applications](http://bugs.libre-riscv.org/buglist.cgi?columnlist=assigned_to%2Cbug_status%2Cresolution%2Cshort_desc%2Ccf_budget&f1=cf_nlnet_milestone&o1=equals&query_format=advanced&resolution=---&v1=NLnet.2019.02)
427
428 # Good Programming/Design Practices
429
430 * [Liskov Substitution Principle](https://en.wikipedia.org/wiki/Liskov_substitution_principle)
431 * [Principle of Least Astonishment](https://en.wikipedia.org/wiki/Principle_of_least_astonishment)
432 * <https://peertube.f-si.org/videos/watch/379ef007-40b7-4a51-ba1a-0db4f48e8b16>
433 * [Rust-Lang Philosophy and Consensus](http://smallcultfollowing.com/babysteps/blog/2019/04/19/aic-adventures-in-consensus/)
434
435 * <https://youtu.be/o5Ihqg72T3c>
436 * <http://flopoco.gforge.inria.fr/>
437 * Fundamentals of Modern VLSI Devices
438 <https://groups.google.com/a/groups.riscv.org/d/msg/hw-dev/b4pPvlzBzu0/7hDfxArEAgAJ>
439
440 # 12 skills summary
441
442 * <https://www.crnhq.org/cr-kit/>
443
444 # Analog Simulation
445
446 * <https://github.com/Isotel/mixedsim>
447 * <http://www.vlsiacademy.org/open-source-cad-tools.html>
448 * <http://ngspice.sourceforge.net/adms.html>
449 * <https://en.wikipedia.org/wiki/Verilog-AMS#Open_Source_Implementations>
450
451 # Libre-SOC Standards
452
453 This list auto-generated from a page tag "standards":
454
455 [[!inline pages="tagged(standards)" actions="no" archive="yes" quick="yes"]]
456
457 # Server setup
458
459 * [[resources/server-setup/web-server]]
460 * [[resources/server-setup/git-mirroring]]
461 * [[resources/server-setup/nagios-monitoring]]
462
463 # Testbeds
464
465 * <https://www.fed4fire.eu/testbeds/>
466
467 # Really Useful Stuff
468
469 * <https://github.com/im-tomu/fomu-workshop/blob/master/docs/requirements.txt>
470 * <https://github.com/im-tomu/fomu-workshop/blob/master/docs/conf.py#L39-L47>
471
472 # Digilent Arty
473
474 * https://store.digilentinc.com/pmod-sf3-32-mb-serial-nor-flash/
475 * https://store.digilentinc.com/arty-a7-artix-7-fpga-development-board-for-makers-and-hobbyists/
476 * https://store.digilentinc.com/pmod-vga-video-graphics-array/
477 * https://store.digilentinc.com/pmod-microsd-microsd-card-slot/
478 * https://store.digilentinc.com/pmod-rtcc-real-time-clock-calendar/
479 * https://store.digilentinc.com/pmod-i2s2-stereo-audio-input-and-output/
480
481 # CircuitJS experiments
482
483 * [[resources/high-speed-serdes-in-circuitjs]]
484
485 # Logic Simulator 2
486 * <https://github.com/dkilfoyle/logic2>
487 [Live web version](https://dkilfoyle.github.io/logic2/)
488
489 > ## Features
490 > 1. Micro-subset verilog-like DSL for coding the array of logic gates (parsed using Antlr)
491 > 2. Monaco-based code editor with automatic linting/error reporting, smart indentation, code folding, hints
492 > 3. IDE docking ui courtesy of JupyterLab's Lumino widgets
493 > 4. Schematic visualisation courtesy of d3-hwschematic
494 > 5. Testbench simulation with graphical trace output and schematic animation
495 > 6. Circuit description as gates, boolean logic or verilog behavioural model
496 > 7. Generate arbitrary outputs from truth table and Sum of Products or Karnaugh Map
497
498 [from the GitHub page. As of 2021/03/29]
499
500 # ASIC Timing and Design flow resources
501
502 * <https://www.linkedin.com/pulse/asic-design-flow-introduction-timing-constraints-mahmoud-abdellatif/>
503 * <https://www.icdesigntips.com/2020/10/setup-and-hold-time-explained.html>
504 * <https://www.vlsiguide.com/2018/07/clock-tree-synthesis-cts.html>
505 * <https://en.wikipedia.org/wiki/Frequency_divider>
506
507 # Geometric Haskell Library
508
509 * <https://github.com/julialongtin/hslice/blob/master/Graphics/Slicer/Math/GeometricAlgebra.hs>
510 * <https://github.com/julialongtin/hslice/blob/master/Graphics/Slicer/Math/PGA.hs>
511 * <https://arxiv.org/pdf/1501.06511.pdf>
512 * <https://bivector.net/index.html>
513
514 # TODO investigate
515
516 ```
517 https://github.com/idea-fasoc/OpenFASOC
518 https://www.quicklogic.com/2020/06/18/the-tipping-point/
519 https://www.quicklogic.com/blog/
520 https://www.quicklogic.com/2020/09/15/why-open-source-ecosystems-make-good-business-sense/
521 https://www.quicklogic.com/qorc/
522 https://en.wikipedia.org/wiki/RAD750
523 The RAD750 system has a price that is comparable to the RAD6000, the latter of which as of 2002 was listed at US$200,000 (equivalent to $284,292 in 2019).
524 https://theamphour.com/525-open-fpga-toolchains-and-machine-learning-with-brian-faith-of-quicklogic/
525 https://github.blog/2021-03-22-open-innovation-winning-strategy-digital-sovereignty-human-progress/
526 https://github.com/olofk/edalize
527 https://github.com/hdl/containers
528 https://twitter.com/OlofKindgren/status/1374848733746192394
529 You might also want to check out https://umarcor.github.io/osvb/index.html
530 https://www.linkedin.com/pulse/1932021-python-now-replaces-tcl-all-besteda-apis-avidan-efody/
531 “TCL has served us well, over the years, allowing us to provide an API, and at the same time ensure nobody will ever use it. I will miss it”.
532 https://sphinxcontrib-hdl-diagrams.readthedocs.io/en/latest/examples/comb-full-adder.html
533 https://sphinxcontrib-hdl-diagrams.readthedocs.io/en/latest/examples/carry4.html
534 FuseSoC is used by MicroWatt and Western Digital cores
535 OpenTitan also uses FuseSoC
536 LowRISC is UK based
537 https://antmicro.com/blog/2020/12/ibex-support-in-verilator-yosys-via-uhdm-surelog/
538 ```