203394b679de0e3749d1ca7e96f943e3b07a26a6
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdqc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = "imafdc";
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 isa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 if (supports_extension('Q') && !supports_extension('D'))
110 bad_isa_string(str);
111
112 if (supports_extension('Q') && max_xlen < 64)
113 bad_isa_string(str);
114
115 // advertise support for supervisor and user modes
116 isa |= 1L << ('s' - 'a');
117 isa |= 1L << ('u' - 'a');
118
119 max_isa = isa;
120 }
121
122 void state_t::reset()
123 {
124 memset(this, 0, sizeof(*this));
125 prv = PRV_M;
126 pc = DEFAULT_RSTVEC;
127 load_reservation = -1;
128 tselect = 0;
129 for (unsigned int i = 0; i < num_triggers; i++)
130 mcontrol[i].type = 2;
131 }
132
133 void processor_t::set_debug(bool value)
134 {
135 debug = value;
136 if (ext)
137 ext->set_debug(value);
138 }
139
140 void processor_t::set_histogram(bool value)
141 {
142 histogram_enabled = value;
143 #ifndef RISCV_ENABLE_HISTOGRAM
144 if (value) {
145 fprintf(stderr, "PC Histogram support has not been properly enabled;");
146 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
147 }
148 #endif
149 }
150
151 void processor_t::reset()
152 {
153 state.reset();
154 state.dcsr.halt = halt_on_reset;
155 halt_on_reset = false;
156 set_csr(CSR_MSTATUS, state.mstatus);
157
158 if (ext)
159 ext->reset(); // reset the extension
160 }
161
162 // Count number of contiguous 0 bits starting from the LSB.
163 static int ctz(reg_t val)
164 {
165 int res = 0;
166 if (val)
167 while ((val & 1) == 0)
168 val >>= 1, res++;
169 return res;
170 }
171
172 void processor_t::take_interrupt(reg_t pending_interrupts)
173 {
174 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
175 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
176 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
177
178 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
179 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
180 if (enabled_interrupts == 0)
181 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
182
183 if (state.dcsr.cause == 0 && enabled_interrupts)
184 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
185 }
186
187 static int xlen_to_uxl(int xlen)
188 {
189 if (xlen == 32)
190 return 1;
191 if (xlen == 64)
192 return 2;
193 abort();
194 }
195
196 void processor_t::set_privilege(reg_t prv)
197 {
198 assert(prv <= PRV_M);
199 if (prv == PRV_H)
200 prv = PRV_U;
201 mmu->flush_tlb();
202 state.prv = prv;
203 }
204
205 void processor_t::enter_debug_mode(uint8_t cause)
206 {
207 state.dcsr.cause = cause;
208 state.dcsr.prv = state.prv;
209 set_privilege(PRV_M);
210 state.dpc = state.pc;
211 state.pc = DEBUG_ROM_ENTRY;
212 }
213
214 void processor_t::take_trap(trap_t& t, reg_t epc)
215 {
216 if (debug) {
217 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
218 id, t.name(), epc);
219 if (t.has_badaddr())
220 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
221 t.get_badaddr());
222 }
223
224 if (state.dcsr.cause) {
225 if (t.cause() == CAUSE_BREAKPOINT) {
226 state.pc = DEBUG_ROM_ENTRY;
227 } else {
228 state.pc = DEBUG_ROM_TVEC;
229 }
230 return;
231 }
232
233 if (t.cause() == CAUSE_BREAKPOINT && (
234 (state.prv == PRV_M && state.dcsr.ebreakm) ||
235 (state.prv == PRV_H && state.dcsr.ebreakh) ||
236 (state.prv == PRV_S && state.dcsr.ebreaks) ||
237 (state.prv == PRV_U && state.dcsr.ebreaku))) {
238 enter_debug_mode(DCSR_CAUSE_SWBP);
239 return;
240 }
241
242 // by default, trap to M-mode, unless delegated to S-mode
243 reg_t bit = t.cause();
244 reg_t deleg = state.medeleg;
245 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
246 if (interrupt)
247 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
248 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
249 // handle the trap in S-mode
250 state.pc = state.stvec;
251 state.scause = t.cause();
252 state.sepc = epc;
253 if (t.has_badaddr())
254 state.sbadaddr = t.get_badaddr();
255
256 reg_t s = state.mstatus;
257 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
258 s = set_field(s, MSTATUS_SPP, state.prv);
259 s = set_field(s, MSTATUS_SIE, 0);
260 set_csr(CSR_MSTATUS, s);
261 set_privilege(PRV_S);
262 } else {
263 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
264 state.pc = (state.mtvec & ~(reg_t)1) + vector;
265 state.mepc = epc;
266 state.mcause = t.cause();
267 if (t.has_badaddr())
268 state.mbadaddr = t.get_badaddr();
269
270 reg_t s = state.mstatus;
271 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
272 s = set_field(s, MSTATUS_MPP, state.prv);
273 s = set_field(s, MSTATUS_MIE, 0);
274 set_csr(CSR_MSTATUS, s);
275 set_privilege(PRV_M);
276 }
277
278 yield_load_reservation();
279 }
280
281 void processor_t::disasm(insn_t insn)
282 {
283 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
284 if (last_pc != state.pc || last_bits != bits) {
285 if (executions != 1) {
286 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
287 }
288
289 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
290 id, state.pc, bits, disassembler->disassemble(insn).c_str());
291 last_pc = state.pc;
292 last_bits = bits;
293 executions = 1;
294 } else {
295 executions++;
296 }
297 }
298
299 int processor_t::paddr_bits()
300 {
301 assert(xlen == max_xlen);
302 return max_xlen == 64 ? 50 : 34;
303 }
304
305 void processor_t::set_csr(int which, reg_t val)
306 {
307 val = zext_xlen(val);
308 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
309 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
310 switch (which)
311 {
312 case CSR_FFLAGS:
313 dirty_fp_state;
314 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
315 break;
316 case CSR_FRM:
317 dirty_fp_state;
318 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
319 break;
320 case CSR_FCSR:
321 dirty_fp_state;
322 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
323 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
324 break;
325 case CSR_MSTATUS: {
326 if ((val ^ state.mstatus) &
327 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
328 mmu->flush_tlb();
329
330 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
331 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
332 | MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
333 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
334 (ext ? MSTATUS_XS : 0);
335
336 state.mstatus = (state.mstatus & ~mask) | (val & mask);
337
338 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
339 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
340 if (max_xlen == 32)
341 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
342 else
343 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
344
345 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
346 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
347 // U-XLEN == S-XLEN == M-XLEN
348 xlen = max_xlen;
349 break;
350 }
351 case CSR_MIP: {
352 reg_t mask = MIP_SSIP | MIP_STIP;
353 state.mip = (state.mip & ~mask) | (val & mask);
354 break;
355 }
356 case CSR_MIE:
357 state.mie = (state.mie & ~all_ints) | (val & all_ints);
358 break;
359 case CSR_MIDELEG:
360 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
361 break;
362 case CSR_MEDELEG: {
363 reg_t mask = CAUSE_MISALIGNED_FETCH | CAUSE_BREAKPOINT
364 | CAUSE_USER_ECALL | CAUSE_FETCH_PAGE_FAULT
365 | CAUSE_LOAD_PAGE_FAULT | CAUSE_STORE_PAGE_FAULT;
366 state.medeleg = (state.medeleg & ~mask) | (val & mask);
367 break;
368 }
369 case CSR_MINSTRET:
370 case CSR_MCYCLE:
371 if (xlen == 32)
372 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
373 else
374 state.minstret = val;
375 break;
376 case CSR_MINSTRETH:
377 case CSR_MCYCLEH:
378 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
379 break;
380 case CSR_SCOUNTEREN:
381 state.scounteren = val;
382 break;
383 case CSR_MCOUNTEREN:
384 state.mcounteren = val;
385 break;
386 case CSR_SSTATUS: {
387 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
388 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
389 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
390 }
391 case CSR_SIP: {
392 reg_t mask = MIP_SSIP & state.mideleg;
393 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
394 }
395 case CSR_SIE:
396 return set_csr(CSR_MIE,
397 (state.mie & ~state.mideleg) | (val & state.mideleg));
398 case CSR_SPTBR: {
399 mmu->flush_tlb();
400 if (max_xlen == 32)
401 state.sptbr = val & (SPTBR32_PPN | SPTBR32_MODE);
402 if (max_xlen == 64 && (get_field(val, SPTBR64_MODE) == SPTBR_MODE_OFF ||
403 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV39 ||
404 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV48))
405 state.sptbr = val & (SPTBR64_PPN | SPTBR64_MODE);
406 break;
407 }
408 case CSR_SEPC: state.sepc = val; break;
409 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
410 case CSR_SSCRATCH: state.sscratch = val; break;
411 case CSR_SCAUSE: state.scause = val; break;
412 case CSR_SBADADDR: state.sbadaddr = val; break;
413 case CSR_MEPC: state.mepc = val; break;
414 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
415 case CSR_MSCRATCH: state.mscratch = val; break;
416 case CSR_MCAUSE: state.mcause = val; break;
417 case CSR_MBADADDR: state.mbadaddr = val; break;
418 case CSR_MISA: {
419 if (!(val & (1L << ('F' - 'A'))))
420 val &= ~(1L << ('D' - 'A'));
421
422 // allow MAFDC bits in MISA to be modified
423 reg_t mask = 0;
424 mask |= 1L << ('M' - 'A');
425 mask |= 1L << ('A' - 'A');
426 mask |= 1L << ('F' - 'A');
427 mask |= 1L << ('D' - 'A');
428 mask |= 1L << ('C' - 'A');
429 mask &= max_isa;
430
431 isa = (val & mask) | (isa & ~mask);
432 break;
433 }
434 case CSR_TSELECT:
435 if (val < state.num_triggers) {
436 state.tselect = val;
437 }
438 break;
439 case CSR_TDATA1:
440 {
441 mcontrol_t *mc = &state.mcontrol[state.tselect];
442 if (mc->dmode && !state.dcsr.cause) {
443 break;
444 }
445 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
446 mc->select = get_field(val, MCONTROL_SELECT);
447 mc->timing = get_field(val, MCONTROL_TIMING);
448 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
449 mc->chain = get_field(val, MCONTROL_CHAIN);
450 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
451 mc->m = get_field(val, MCONTROL_M);
452 mc->h = get_field(val, MCONTROL_H);
453 mc->s = get_field(val, MCONTROL_S);
454 mc->u = get_field(val, MCONTROL_U);
455 mc->execute = get_field(val, MCONTROL_EXECUTE);
456 mc->store = get_field(val, MCONTROL_STORE);
457 mc->load = get_field(val, MCONTROL_LOAD);
458 // Assume we're here because of csrw.
459 if (mc->execute)
460 mc->timing = 0;
461 trigger_updated();
462 }
463 break;
464 case CSR_TDATA2:
465 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
466 break;
467 }
468 if (state.tselect < state.num_triggers) {
469 state.tdata2[state.tselect] = val;
470 }
471 break;
472 case CSR_DCSR:
473 state.dcsr.prv = get_field(val, DCSR_PRV);
474 state.dcsr.step = get_field(val, DCSR_STEP);
475 // TODO: ndreset and fullreset
476 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
477 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
478 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
479 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
480 state.dcsr.halt = get_field(val, DCSR_HALT);
481 break;
482 case CSR_DPC:
483 state.dpc = val;
484 break;
485 case CSR_DSCRATCH:
486 state.dscratch = val;
487 break;
488 }
489 }
490
491 reg_t processor_t::get_csr(int which)
492 {
493 uint32_t ctr_en = -1;
494 if (state.prv < PRV_M)
495 ctr_en &= state.mcounteren;
496 if (state.prv < PRV_S)
497 ctr_en &= state.scounteren;
498 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
499
500 if (ctr_ok) {
501 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
502 return 0;
503 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
504 return 0;
505 }
506 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
507 return 0;
508 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
509 return 0;
510 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
511 return 0;
512
513 switch (which)
514 {
515 case CSR_FFLAGS:
516 require_fp;
517 if (!supports_extension('F'))
518 break;
519 return state.fflags;
520 case CSR_FRM:
521 require_fp;
522 if (!supports_extension('F'))
523 break;
524 return state.frm;
525 case CSR_FCSR:
526 require_fp;
527 if (!supports_extension('F'))
528 break;
529 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
530 case CSR_INSTRET:
531 case CSR_CYCLE:
532 if (ctr_ok)
533 return state.minstret;
534 break;
535 case CSR_MINSTRET:
536 case CSR_MCYCLE:
537 return state.minstret;
538 case CSR_MINSTRETH:
539 case CSR_MCYCLEH:
540 if (xlen == 32)
541 return state.minstret >> 32;
542 break;
543 case CSR_SCOUNTEREN: return state.scounteren;
544 case CSR_MCOUNTEREN: return state.mcounteren;
545 case CSR_SSTATUS: {
546 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
547 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_UXL;
548 reg_t sstatus = state.mstatus & mask;
549 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
550 (sstatus & SSTATUS_XS) == SSTATUS_XS)
551 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
552 return sstatus;
553 }
554 case CSR_SIP: return state.mip & state.mideleg;
555 case CSR_SIE: return state.mie & state.mideleg;
556 case CSR_SEPC: return state.sepc;
557 case CSR_SBADADDR: return state.sbadaddr;
558 case CSR_STVEC: return state.stvec;
559 case CSR_SCAUSE:
560 if (max_xlen > xlen)
561 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
562 return state.scause;
563 case CSR_SPTBR:
564 if (get_field(state.mstatus, MSTATUS_TVM))
565 require_privilege(PRV_M);
566 return state.sptbr;
567 case CSR_SSCRATCH: return state.sscratch;
568 case CSR_MSTATUS: return state.mstatus;
569 case CSR_MIP: return state.mip;
570 case CSR_MIE: return state.mie;
571 case CSR_MEPC: return state.mepc;
572 case CSR_MSCRATCH: return state.mscratch;
573 case CSR_MCAUSE: return state.mcause;
574 case CSR_MBADADDR: return state.mbadaddr;
575 case CSR_MISA: return isa;
576 case CSR_MARCHID: return 0;
577 case CSR_MIMPID: return 0;
578 case CSR_MVENDORID: return 0;
579 case CSR_MHARTID: return id;
580 case CSR_MTVEC: return state.mtvec;
581 case CSR_MEDELEG: return state.medeleg;
582 case CSR_MIDELEG: return state.mideleg;
583 case CSR_TSELECT: return state.tselect;
584 case CSR_TDATA1:
585 if (state.tselect < state.num_triggers) {
586 reg_t v = 0;
587 mcontrol_t *mc = &state.mcontrol[state.tselect];
588 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
589 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
590 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
591 v = set_field(v, MCONTROL_SELECT, mc->select);
592 v = set_field(v, MCONTROL_TIMING, mc->timing);
593 v = set_field(v, MCONTROL_ACTION, mc->action);
594 v = set_field(v, MCONTROL_CHAIN, mc->chain);
595 v = set_field(v, MCONTROL_MATCH, mc->match);
596 v = set_field(v, MCONTROL_M, mc->m);
597 v = set_field(v, MCONTROL_H, mc->h);
598 v = set_field(v, MCONTROL_S, mc->s);
599 v = set_field(v, MCONTROL_U, mc->u);
600 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
601 v = set_field(v, MCONTROL_STORE, mc->store);
602 v = set_field(v, MCONTROL_LOAD, mc->load);
603 return v;
604 } else {
605 return 0;
606 }
607 break;
608 case CSR_TDATA2:
609 if (state.tselect < state.num_triggers) {
610 return state.tdata2[state.tselect];
611 } else {
612 return 0;
613 }
614 break;
615 case CSR_TDATA3: return 0;
616 case CSR_DCSR:
617 {
618 uint32_t v = 0;
619 v = set_field(v, DCSR_XDEBUGVER, 1);
620 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
621 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
622 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
623 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
624 v = set_field(v, DCSR_STOPCYCLE, 0);
625 v = set_field(v, DCSR_STOPTIME, 0);
626 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
627 v = set_field(v, DCSR_STEP, state.dcsr.step);
628 v = set_field(v, DCSR_PRV, state.dcsr.prv);
629 return v;
630 }
631 case CSR_DPC:
632 return state.dpc;
633 case CSR_DSCRATCH:
634 return state.dscratch;
635 }
636 throw trap_illegal_instruction(0);
637 }
638
639 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
640 {
641 throw trap_illegal_instruction(0);
642 }
643
644 insn_func_t processor_t::decode_insn(insn_t insn)
645 {
646 // look up opcode in hash table
647 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
648 insn_desc_t desc = opcode_cache[idx];
649
650 if (unlikely(insn.bits() != desc.match)) {
651 // fall back to linear search
652 insn_desc_t* p = &instructions[0];
653 while ((insn.bits() & p->mask) != p->match)
654 p++;
655 desc = *p;
656
657 if (p->mask != 0 && p > &instructions[0]) {
658 if (p->match != (p-1)->match && p->match != (p+1)->match) {
659 // move to front of opcode list to reduce miss penalty
660 while (--p >= &instructions[0])
661 *(p+1) = *p;
662 instructions[0] = desc;
663 }
664 }
665
666 opcode_cache[idx] = desc;
667 opcode_cache[idx].match = insn.bits();
668 }
669
670 return xlen == 64 ? desc.rv64 : desc.rv32;
671 }
672
673 void processor_t::register_insn(insn_desc_t desc)
674 {
675 instructions.push_back(desc);
676 }
677
678 void processor_t::build_opcode_map()
679 {
680 struct cmp {
681 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
682 if (lhs.match == rhs.match)
683 return lhs.mask > rhs.mask;
684 return lhs.match > rhs.match;
685 }
686 };
687 std::sort(instructions.begin(), instructions.end(), cmp());
688
689 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
690 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
691 }
692
693 void processor_t::register_extension(extension_t* x)
694 {
695 for (auto insn : x->get_instructions())
696 register_insn(insn);
697 build_opcode_map();
698 for (auto disasm_insn : x->get_disasms())
699 disassembler->add_insn(disasm_insn);
700 if (ext != NULL)
701 throw std::logic_error("only one extension may be registered");
702 ext = x;
703 x->set_processor(this);
704 }
705
706 void processor_t::register_base_instructions()
707 {
708 #define DECLARE_INSN(name, match, mask) \
709 insn_bits_t name##_match = (match), name##_mask = (mask);
710 #include "encoding.h"
711 #undef DECLARE_INSN
712
713 #define DEFINE_INSN(name) \
714 REGISTER_INSN(this, name, name##_match, name##_mask)
715 #include "insn_list.h"
716 #undef DEFINE_INSN
717
718 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
719 build_opcode_map();
720 }
721
722 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
723 {
724 switch (addr)
725 {
726 case 0:
727 if (len <= 4) {
728 memset(bytes, 0, len);
729 bytes[0] = get_field(state.mip, MIP_MSIP);
730 return true;
731 }
732 break;
733 }
734
735 return false;
736 }
737
738 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
739 {
740 switch (addr)
741 {
742 case 0:
743 if (len <= 4) {
744 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
745 return true;
746 }
747 break;
748 }
749
750 return false;
751 }
752
753 void processor_t::trigger_updated()
754 {
755 mmu->flush_tlb();
756 mmu->check_triggers_fetch = false;
757 mmu->check_triggers_load = false;
758 mmu->check_triggers_store = false;
759
760 for (unsigned i = 0; i < state.num_triggers; i++) {
761 if (state.mcontrol[i].execute) {
762 mmu->check_triggers_fetch = true;
763 }
764 if (state.mcontrol[i].load) {
765 mmu->check_triggers_load = true;
766 }
767 if (state.mcontrol[i].store) {
768 mmu->check_triggers_store = true;
769 }
770 }
771 }