5a57c285c9bcada230568c2bc76991987c8a9fd3
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, simif_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdqc";
65
66 max_xlen = 64;
67 state.misa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, state.misa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = "imafdc";
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 state.misa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 state.misa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 state.misa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 if (supports_extension('Q') && !supports_extension('D'))
110 bad_isa_string(str);
111
112 if (supports_extension('Q') && max_xlen < 64)
113 bad_isa_string(str);
114
115 max_isa = state.misa;
116 }
117
118 void state_t::reset(reg_t max_isa)
119 {
120 memset(this, 0, sizeof(*this));
121 misa = max_isa;
122 prv = PRV_M;
123 pc = DEFAULT_RSTVEC;
124 load_reservation = -1;
125 tselect = 0;
126 for (unsigned int i = 0; i < num_triggers; i++)
127 mcontrol[i].type = 2;
128 }
129
130 void processor_t::set_debug(bool value)
131 {
132 debug = value;
133 if (ext)
134 ext->set_debug(value);
135 }
136
137 void processor_t::set_histogram(bool value)
138 {
139 histogram_enabled = value;
140 #ifndef RISCV_ENABLE_HISTOGRAM
141 if (value) {
142 fprintf(stderr, "PC Histogram support has not been properly enabled;");
143 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
144 }
145 #endif
146 }
147
148 void processor_t::reset()
149 {
150 state.reset(max_isa);
151 state.dcsr.halt = halt_on_reset;
152 halt_on_reset = false;
153 set_csr(CSR_MSTATUS, state.mstatus);
154
155 if (ext)
156 ext->reset(); // reset the extension
157
158 sim->proc_reset(id);
159 }
160
161 // Count number of contiguous 0 bits starting from the LSB.
162 static int ctz(reg_t val)
163 {
164 int res = 0;
165 if (val)
166 while ((val & 1) == 0)
167 val >>= 1, res++;
168 return res;
169 }
170
171 void processor_t::take_interrupt(reg_t pending_interrupts)
172 {
173 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
174 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
175 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
176
177 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
178 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
179 // M-ints have highest priority; consider S-ints only if no M-ints pending
180 if (enabled_interrupts == 0)
181 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
182
183 if (state.dcsr.cause == 0 && enabled_interrupts) {
184 // nonstandard interrupts have highest priority
185 if (enabled_interrupts >> IRQ_M_EXT)
186 enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT;
187 // external interrupts have next-highest priority
188 else if (enabled_interrupts & (MIP_MEIP | MIP_SEIP))
189 enabled_interrupts = enabled_interrupts & (MIP_MEIP | MIP_SEIP);
190 // software interrupts have next-highest priority
191 else if (enabled_interrupts & (MIP_MSIP | MIP_SSIP))
192 enabled_interrupts = enabled_interrupts & (MIP_MSIP | MIP_SSIP);
193 // timer interrupts have next-highest priority
194 else if (enabled_interrupts & (MIP_MTIP | MIP_STIP))
195 enabled_interrupts = enabled_interrupts & (MIP_MTIP | MIP_STIP);
196 else
197 abort();
198
199 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
200 }
201 }
202
203 static int xlen_to_uxl(int xlen)
204 {
205 if (xlen == 32)
206 return 1;
207 if (xlen == 64)
208 return 2;
209 abort();
210 }
211
212 reg_t processor_t::legalize_privilege(reg_t prv)
213 {
214 assert(prv <= PRV_M);
215
216 if (!supports_extension('U'))
217 return PRV_M;
218
219 if (prv == PRV_H || !supports_extension('S'))
220 return PRV_U;
221
222 return prv;
223 }
224
225 void processor_t::set_privilege(reg_t prv)
226 {
227 mmu->flush_tlb();
228 state.prv = legalize_privilege(prv);
229 }
230
231 void processor_t::enter_debug_mode(uint8_t cause)
232 {
233 state.dcsr.cause = cause;
234 state.dcsr.prv = state.prv;
235 set_privilege(PRV_M);
236 state.dpc = state.pc;
237 state.pc = DEBUG_ROM_ENTRY;
238 }
239
240 void processor_t::take_trap(trap_t& t, reg_t epc)
241 {
242 if (debug) {
243 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
244 id, t.name(), epc);
245 if (t.has_tval())
246 fprintf(stderr, "core %3d: tval 0x%016" PRIx64 "\n", id,
247 t.get_tval());
248 }
249
250 if (state.dcsr.cause) {
251 if (t.cause() == CAUSE_BREAKPOINT) {
252 state.pc = DEBUG_ROM_ENTRY;
253 } else {
254 state.pc = DEBUG_ROM_TVEC;
255 }
256 return;
257 }
258
259 if (t.cause() == CAUSE_BREAKPOINT && (
260 (state.prv == PRV_M && state.dcsr.ebreakm) ||
261 (state.prv == PRV_S && state.dcsr.ebreaks) ||
262 (state.prv == PRV_U && state.dcsr.ebreaku))) {
263 enter_debug_mode(DCSR_CAUSE_SWBP);
264 return;
265 }
266
267 // by default, trap to M-mode, unless delegated to S-mode
268 reg_t bit = t.cause();
269 reg_t deleg = state.medeleg;
270 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
271 if (interrupt)
272 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
273 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
274 // handle the trap in S-mode
275 state.pc = state.stvec;
276 state.scause = t.cause();
277 state.sepc = epc;
278 state.stval = t.get_tval();
279
280 reg_t s = state.mstatus;
281 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
282 s = set_field(s, MSTATUS_SPP, state.prv);
283 s = set_field(s, MSTATUS_SIE, 0);
284 set_csr(CSR_MSTATUS, s);
285 set_privilege(PRV_S);
286 } else {
287 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
288 state.pc = (state.mtvec & ~(reg_t)1) + vector;
289 state.mepc = epc;
290 state.mcause = t.cause();
291 state.mtval = t.get_tval();
292
293 reg_t s = state.mstatus;
294 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
295 s = set_field(s, MSTATUS_MPP, state.prv);
296 s = set_field(s, MSTATUS_MIE, 0);
297 set_csr(CSR_MSTATUS, s);
298 set_privilege(PRV_M);
299 }
300
301 yield_load_reservation();
302 }
303
304 void processor_t::disasm(insn_t insn)
305 {
306 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
307 if (last_pc != state.pc || last_bits != bits) {
308 if (executions != 1) {
309 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
310 }
311
312 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
313 id, state.pc, bits, disassembler->disassemble(insn).c_str());
314 last_pc = state.pc;
315 last_bits = bits;
316 executions = 1;
317 } else {
318 executions++;
319 }
320 }
321
322 int processor_t::paddr_bits()
323 {
324 assert(xlen == max_xlen);
325 return max_xlen == 64 ? 50 : 34;
326 }
327
328 void processor_t::set_csr(int which, reg_t val)
329 {
330 val = zext_xlen(val);
331 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
332 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
333 switch (which)
334 {
335 case CSR_FFLAGS:
336 dirty_fp_state;
337 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
338 break;
339 case CSR_FRM:
340 dirty_fp_state;
341 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
342 break;
343 case CSR_FCSR:
344 dirty_fp_state;
345 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
346 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
347 break;
348 case CSR_MSTATUS: {
349 if ((val ^ state.mstatus) &
350 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
351 mmu->flush_tlb();
352
353 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
354 | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
355 | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
356 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
357 (ext ? MSTATUS_XS : 0);
358
359 reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP));
360 state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp);
361 if (supports_extension('S'))
362 mask |= MSTATUS_SPP;
363
364 state.mstatus = (state.mstatus & ~mask) | (val & mask);
365
366 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
367 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
368 if (max_xlen == 32)
369 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
370 else
371 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
372
373 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
374 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
375 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
376 // U-XLEN == S-XLEN == M-XLEN
377 xlen = max_xlen;
378 break;
379 }
380 case CSR_MIP: {
381 reg_t mask = MIP_SSIP | MIP_STIP;
382 state.mip = (state.mip & ~mask) | (val & mask);
383 break;
384 }
385 case CSR_MIE:
386 state.mie = (state.mie & ~all_ints) | (val & all_ints);
387 break;
388 case CSR_MIDELEG:
389 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
390 break;
391 case CSR_MEDELEG: {
392 reg_t mask =
393 (1 << CAUSE_MISALIGNED_FETCH) |
394 (1 << CAUSE_BREAKPOINT) |
395 (1 << CAUSE_USER_ECALL) |
396 (1 << CAUSE_FETCH_PAGE_FAULT) |
397 (1 << CAUSE_LOAD_PAGE_FAULT) |
398 (1 << CAUSE_STORE_PAGE_FAULT);
399 state.medeleg = (state.medeleg & ~mask) | (val & mask);
400 break;
401 }
402 case CSR_MINSTRET:
403 case CSR_MCYCLE:
404 if (xlen == 32)
405 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
406 else
407 state.minstret = val;
408 break;
409 case CSR_MINSTRETH:
410 case CSR_MCYCLEH:
411 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
412 break;
413 case CSR_SCOUNTEREN:
414 state.scounteren = val;
415 break;
416 case CSR_MCOUNTEREN:
417 state.mcounteren = val;
418 break;
419 case CSR_SSTATUS: {
420 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
421 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
422 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
423 }
424 case CSR_SIP: {
425 reg_t mask = MIP_SSIP & state.mideleg;
426 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
427 }
428 case CSR_SIE:
429 return set_csr(CSR_MIE,
430 (state.mie & ~state.mideleg) | (val & state.mideleg));
431 case CSR_SATP: {
432 mmu->flush_tlb();
433 if (max_xlen == 32)
434 state.satp = val & (SATP32_PPN | SATP32_MODE);
435 if (max_xlen == 64 && (get_field(val, SATP64_MODE) == SATP_MODE_OFF ||
436 get_field(val, SATP64_MODE) == SATP_MODE_SV39 ||
437 get_field(val, SATP64_MODE) == SATP_MODE_SV48))
438 state.satp = val & (SATP64_PPN | SATP64_MODE);
439 break;
440 }
441 case CSR_SEPC: state.sepc = val & ~(reg_t)1; break;
442 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
443 case CSR_SSCRATCH: state.sscratch = val; break;
444 case CSR_SCAUSE: state.scause = val; break;
445 case CSR_STVAL: state.stval = val; break;
446 case CSR_MEPC: state.mepc = val & ~(reg_t)1; break;
447 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
448 case CSR_MSCRATCH: state.mscratch = val; break;
449 case CSR_MCAUSE: state.mcause = val; break;
450 case CSR_MTVAL: state.mtval = val; break;
451 case CSR_MISA: {
452 if (!(val & (1L << ('F' - 'A'))))
453 val &= ~(1L << ('D' - 'A'));
454
455 // allow MAFDC bits in MISA to be modified
456 reg_t mask = 0;
457 mask |= 1L << ('M' - 'A');
458 mask |= 1L << ('A' - 'A');
459 mask |= 1L << ('F' - 'A');
460 mask |= 1L << ('D' - 'A');
461 mask |= 1L << ('C' - 'A');
462 mask &= max_isa;
463
464 state.misa = (val & mask) | (state.misa & ~mask);
465 break;
466 }
467 case CSR_TSELECT:
468 if (val < state.num_triggers) {
469 state.tselect = val;
470 }
471 break;
472 case CSR_TDATA1:
473 {
474 mcontrol_t *mc = &state.mcontrol[state.tselect];
475 if (mc->dmode && !state.dcsr.cause) {
476 break;
477 }
478 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
479 mc->select = get_field(val, MCONTROL_SELECT);
480 mc->timing = get_field(val, MCONTROL_TIMING);
481 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
482 mc->chain = get_field(val, MCONTROL_CHAIN);
483 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
484 mc->m = get_field(val, MCONTROL_M);
485 mc->h = get_field(val, MCONTROL_H);
486 mc->s = get_field(val, MCONTROL_S);
487 mc->u = get_field(val, MCONTROL_U);
488 mc->execute = get_field(val, MCONTROL_EXECUTE);
489 mc->store = get_field(val, MCONTROL_STORE);
490 mc->load = get_field(val, MCONTROL_LOAD);
491 // Assume we're here because of csrw.
492 if (mc->execute)
493 mc->timing = 0;
494 trigger_updated();
495 }
496 break;
497 case CSR_TDATA2:
498 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
499 break;
500 }
501 if (state.tselect < state.num_triggers) {
502 state.tdata2[state.tselect] = val;
503 }
504 break;
505 case CSR_DCSR:
506 state.dcsr.prv = get_field(val, DCSR_PRV);
507 state.dcsr.step = get_field(val, DCSR_STEP);
508 // TODO: ndreset and fullreset
509 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
510 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
511 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
512 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
513 state.dcsr.halt = get_field(val, DCSR_HALT);
514 break;
515 case CSR_DPC:
516 state.dpc = val & ~(reg_t)1;
517 break;
518 case CSR_DSCRATCH:
519 state.dscratch = val;
520 break;
521 }
522 }
523
524 reg_t processor_t::get_csr(int which)
525 {
526 uint32_t ctr_en = -1;
527 if (state.prv < PRV_M)
528 ctr_en &= state.mcounteren;
529 if (state.prv < PRV_S)
530 ctr_en &= state.scounteren;
531 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
532
533 if (ctr_ok) {
534 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
535 return 0;
536 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
537 return 0;
538 }
539 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
540 return 0;
541 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
542 return 0;
543 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
544 return 0;
545
546 switch (which)
547 {
548 case CSR_FFLAGS:
549 require_fp;
550 if (!supports_extension('F'))
551 break;
552 return state.fflags;
553 case CSR_FRM:
554 require_fp;
555 if (!supports_extension('F'))
556 break;
557 return state.frm;
558 case CSR_FCSR:
559 require_fp;
560 if (!supports_extension('F'))
561 break;
562 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
563 case CSR_INSTRET:
564 case CSR_CYCLE:
565 if (ctr_ok)
566 return state.minstret;
567 break;
568 case CSR_MINSTRET:
569 case CSR_MCYCLE:
570 return state.minstret;
571 case CSR_INSTRETH:
572 case CSR_CYCLEH:
573 if (ctr_ok && xlen == 32)
574 return state.minstret >> 32;
575 break;
576 case CSR_MINSTRETH:
577 case CSR_MCYCLEH:
578 if (xlen == 32)
579 return state.minstret >> 32;
580 break;
581 case CSR_SCOUNTEREN: return state.scounteren;
582 case CSR_MCOUNTEREN: return state.mcounteren;
583 case CSR_SSTATUS: {
584 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
585 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_UXL;
586 reg_t sstatus = state.mstatus & mask;
587 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
588 (sstatus & SSTATUS_XS) == SSTATUS_XS)
589 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
590 return sstatus;
591 }
592 case CSR_SIP: return state.mip & state.mideleg;
593 case CSR_SIE: return state.mie & state.mideleg;
594 case CSR_SEPC: return state.sepc;
595 case CSR_STVAL: return state.stval;
596 case CSR_STVEC: return state.stvec;
597 case CSR_SCAUSE:
598 if (max_xlen > xlen)
599 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
600 return state.scause;
601 case CSR_SATP:
602 if (get_field(state.mstatus, MSTATUS_TVM))
603 require_privilege(PRV_M);
604 return state.satp;
605 case CSR_SSCRATCH: return state.sscratch;
606 case CSR_MSTATUS: return state.mstatus;
607 case CSR_MIP: return state.mip;
608 case CSR_MIE: return state.mie;
609 case CSR_MEPC: return state.mepc;
610 case CSR_MSCRATCH: return state.mscratch;
611 case CSR_MCAUSE: return state.mcause;
612 case CSR_MTVAL: return state.mtval;
613 case CSR_MISA: return state.misa;
614 case CSR_MARCHID: return 0;
615 case CSR_MIMPID: return 0;
616 case CSR_MVENDORID: return 0;
617 case CSR_MHARTID: return id;
618 case CSR_MTVEC: return state.mtvec;
619 case CSR_MEDELEG: return state.medeleg;
620 case CSR_MIDELEG: return state.mideleg;
621 case CSR_TSELECT: return state.tselect;
622 case CSR_TDATA1:
623 if (state.tselect < state.num_triggers) {
624 reg_t v = 0;
625 mcontrol_t *mc = &state.mcontrol[state.tselect];
626 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
627 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
628 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
629 v = set_field(v, MCONTROL_SELECT, mc->select);
630 v = set_field(v, MCONTROL_TIMING, mc->timing);
631 v = set_field(v, MCONTROL_ACTION, mc->action);
632 v = set_field(v, MCONTROL_CHAIN, mc->chain);
633 v = set_field(v, MCONTROL_MATCH, mc->match);
634 v = set_field(v, MCONTROL_M, mc->m);
635 v = set_field(v, MCONTROL_H, mc->h);
636 v = set_field(v, MCONTROL_S, mc->s);
637 v = set_field(v, MCONTROL_U, mc->u);
638 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
639 v = set_field(v, MCONTROL_STORE, mc->store);
640 v = set_field(v, MCONTROL_LOAD, mc->load);
641 return v;
642 } else {
643 return 0;
644 }
645 break;
646 case CSR_TDATA2:
647 if (state.tselect < state.num_triggers) {
648 return state.tdata2[state.tselect];
649 } else {
650 return 0;
651 }
652 break;
653 case CSR_TDATA3: return 0;
654 case CSR_DCSR:
655 {
656 uint32_t v = 0;
657 v = set_field(v, DCSR_XDEBUGVER, 1);
658 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
659 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
660 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
661 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
662 v = set_field(v, DCSR_STOPCYCLE, 0);
663 v = set_field(v, DCSR_STOPTIME, 0);
664 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
665 v = set_field(v, DCSR_STEP, state.dcsr.step);
666 v = set_field(v, DCSR_PRV, state.dcsr.prv);
667 return v;
668 }
669 case CSR_DPC:
670 return state.dpc;
671 case CSR_DSCRATCH:
672 return state.dscratch;
673 }
674 throw trap_illegal_instruction(0);
675 }
676
677 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
678 {
679 throw trap_illegal_instruction(0);
680 }
681
682 insn_func_t processor_t::decode_insn(insn_t insn)
683 {
684 // look up opcode in hash table
685 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
686 insn_desc_t desc = opcode_cache[idx];
687
688 if (unlikely(insn.bits() != desc.match)) {
689 // fall back to linear search
690 insn_desc_t* p = &instructions[0];
691 while ((insn.bits() & p->mask) != p->match)
692 p++;
693 desc = *p;
694
695 if (p->mask != 0 && p > &instructions[0]) {
696 if (p->match != (p-1)->match && p->match != (p+1)->match) {
697 // move to front of opcode list to reduce miss penalty
698 while (--p >= &instructions[0])
699 *(p+1) = *p;
700 instructions[0] = desc;
701 }
702 }
703
704 opcode_cache[idx] = desc;
705 opcode_cache[idx].match = insn.bits();
706 }
707
708 return xlen == 64 ? desc.rv64 : desc.rv32;
709 }
710
711 void processor_t::register_insn(insn_desc_t desc)
712 {
713 instructions.push_back(desc);
714 }
715
716 void processor_t::build_opcode_map()
717 {
718 struct cmp {
719 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
720 if (lhs.match == rhs.match)
721 return lhs.mask > rhs.mask;
722 return lhs.match > rhs.match;
723 }
724 };
725 std::sort(instructions.begin(), instructions.end(), cmp());
726
727 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
728 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
729 }
730
731 void processor_t::register_extension(extension_t* x)
732 {
733 for (auto insn : x->get_instructions())
734 register_insn(insn);
735 build_opcode_map();
736 for (auto disasm_insn : x->get_disasms())
737 disassembler->add_insn(disasm_insn);
738 if (ext != NULL)
739 throw std::logic_error("only one extension may be registered");
740 ext = x;
741 x->set_processor(this);
742 }
743
744 void processor_t::register_base_instructions()
745 {
746 #define DECLARE_INSN(name, match, mask) \
747 insn_bits_t name##_match = (match), name##_mask = (mask);
748 #include "encoding.h"
749 #undef DECLARE_INSN
750
751 #define DEFINE_INSN(name) \
752 REGISTER_INSN(this, name, name##_match, name##_mask)
753 #include "insn_list.h"
754 #undef DEFINE_INSN
755
756 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
757 build_opcode_map();
758 }
759
760 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
761 {
762 switch (addr)
763 {
764 case 0:
765 if (len <= 4) {
766 memset(bytes, 0, len);
767 bytes[0] = get_field(state.mip, MIP_MSIP);
768 return true;
769 }
770 break;
771 }
772
773 return false;
774 }
775
776 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
777 {
778 switch (addr)
779 {
780 case 0:
781 if (len <= 4) {
782 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
783 return true;
784 }
785 break;
786 }
787
788 return false;
789 }
790
791 void processor_t::trigger_updated()
792 {
793 mmu->flush_tlb();
794 mmu->check_triggers_fetch = false;
795 mmu->check_triggers_load = false;
796 mmu->check_triggers_store = false;
797
798 for (unsigned i = 0; i < state.num_triggers; i++) {
799 if (state.mcontrol[i].execute) {
800 mmu->check_triggers_fetch = true;
801 }
802 if (state.mcontrol[i].load) {
803 mmu->check_triggers_load = true;
804 }
805 if (state.mcontrol[i].store) {
806 mmu->check_triggers_store = true;
807 }
808 }
809 }