7a5df901b315c7a5b1642c45415520cdcb659ef3
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, simif_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdqc";
65
66 max_xlen = 64;
67 state.misa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, state.misa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = "imafdc";
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 state.misa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 state.misa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 state.misa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 if (supports_extension('Q') && !supports_extension('D'))
110 bad_isa_string(str);
111
112 if (supports_extension('Q') && max_xlen < 64)
113 bad_isa_string(str);
114
115 max_isa = state.misa;
116 }
117
118 void state_t::reset(reg_t max_isa)
119 {
120 memset(this, 0, sizeof(*this));
121 misa = max_isa;
122 prv = PRV_M;
123 pc = DEFAULT_RSTVEC;
124 load_reservation = -1;
125 tselect = 0;
126 for (unsigned int i = 0; i < num_triggers; i++)
127 mcontrol[i].type = 2;
128 }
129
130 void processor_t::set_debug(bool value)
131 {
132 debug = value;
133 if (ext)
134 ext->set_debug(value);
135 }
136
137 void processor_t::set_histogram(bool value)
138 {
139 histogram_enabled = value;
140 #ifndef RISCV_ENABLE_HISTOGRAM
141 if (value) {
142 fprintf(stderr, "PC Histogram support has not been properly enabled;");
143 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
144 }
145 #endif
146 }
147
148 void processor_t::reset()
149 {
150 state.reset(max_isa);
151 state.dcsr.halt = halt_on_reset;
152 halt_on_reset = false;
153 set_csr(CSR_MSTATUS, state.mstatus);
154
155 if (ext)
156 ext->reset(); // reset the extension
157
158 if (sim)
159 sim->proc_reset(id);
160 }
161
162 // Count number of contiguous 0 bits starting from the LSB.
163 static int ctz(reg_t val)
164 {
165 int res = 0;
166 if (val)
167 while ((val & 1) == 0)
168 val >>= 1, res++;
169 return res;
170 }
171
172 void processor_t::take_interrupt(reg_t pending_interrupts)
173 {
174 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
175 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
176 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
177
178 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
179 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
180 // M-ints have highest priority; consider S-ints only if no M-ints pending
181 if (enabled_interrupts == 0)
182 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
183
184 if (state.dcsr.cause == 0 && enabled_interrupts) {
185 // nonstandard interrupts have highest priority
186 if (enabled_interrupts >> IRQ_M_EXT)
187 enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT;
188 // external interrupts have next-highest priority
189 else if (enabled_interrupts & (MIP_MEIP | MIP_SEIP))
190 enabled_interrupts = enabled_interrupts & (MIP_MEIP | MIP_SEIP);
191 // software interrupts have next-highest priority
192 else if (enabled_interrupts & (MIP_MSIP | MIP_SSIP))
193 enabled_interrupts = enabled_interrupts & (MIP_MSIP | MIP_SSIP);
194 // timer interrupts have next-highest priority
195 else if (enabled_interrupts & (MIP_MTIP | MIP_STIP))
196 enabled_interrupts = enabled_interrupts & (MIP_MTIP | MIP_STIP);
197 else
198 abort();
199
200 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
201 }
202 }
203
204 static int xlen_to_uxl(int xlen)
205 {
206 if (xlen == 32)
207 return 1;
208 if (xlen == 64)
209 return 2;
210 abort();
211 }
212
213 reg_t processor_t::legalize_privilege(reg_t prv)
214 {
215 assert(prv <= PRV_M);
216
217 if (!supports_extension('U'))
218 return PRV_M;
219
220 if (prv == PRV_H || !supports_extension('S'))
221 return PRV_U;
222
223 return prv;
224 }
225
226 void processor_t::set_privilege(reg_t prv)
227 {
228 mmu->flush_tlb();
229 state.prv = legalize_privilege(prv);
230 }
231
232 void processor_t::enter_debug_mode(uint8_t cause)
233 {
234 state.dcsr.cause = cause;
235 state.dcsr.prv = state.prv;
236 set_privilege(PRV_M);
237 state.dpc = state.pc;
238 state.pc = DEBUG_ROM_ENTRY;
239 }
240
241 void processor_t::take_trap(trap_t& t, reg_t epc)
242 {
243 if (debug) {
244 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
245 id, t.name(), epc);
246 if (t.has_tval())
247 fprintf(stderr, "core %3d: tval 0x%016" PRIx64 "\n", id,
248 t.get_tval());
249 }
250
251 if (state.dcsr.cause) {
252 if (t.cause() == CAUSE_BREAKPOINT) {
253 state.pc = DEBUG_ROM_ENTRY;
254 } else {
255 state.pc = DEBUG_ROM_TVEC;
256 }
257 return;
258 }
259
260 if (t.cause() == CAUSE_BREAKPOINT && (
261 (state.prv == PRV_M && state.dcsr.ebreakm) ||
262 (state.prv == PRV_S && state.dcsr.ebreaks) ||
263 (state.prv == PRV_U && state.dcsr.ebreaku))) {
264 enter_debug_mode(DCSR_CAUSE_SWBP);
265 return;
266 }
267
268 // by default, trap to M-mode, unless delegated to S-mode
269 reg_t bit = t.cause();
270 reg_t deleg = state.medeleg;
271 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
272 if (interrupt)
273 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
274 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
275 // handle the trap in S-mode
276 state.pc = state.stvec;
277 state.scause = t.cause();
278 state.sepc = epc;
279 state.stval = t.get_tval();
280
281 reg_t s = state.mstatus;
282 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
283 s = set_field(s, MSTATUS_SPP, state.prv);
284 s = set_field(s, MSTATUS_SIE, 0);
285 set_csr(CSR_MSTATUS, s);
286 set_privilege(PRV_S);
287 } else {
288 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
289 state.pc = (state.mtvec & ~(reg_t)1) + vector;
290 state.mepc = epc;
291 state.mcause = t.cause();
292 state.mtval = t.get_tval();
293
294 reg_t s = state.mstatus;
295 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
296 s = set_field(s, MSTATUS_MPP, state.prv);
297 s = set_field(s, MSTATUS_MIE, 0);
298 set_csr(CSR_MSTATUS, s);
299 set_privilege(PRV_M);
300 }
301
302 yield_load_reservation();
303 }
304
305 void processor_t::disasm(insn_t insn)
306 {
307 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
308 if (last_pc != state.pc || last_bits != bits) {
309 if (executions != 1) {
310 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
311 }
312
313 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
314 id, state.pc, bits, disassembler->disassemble(insn).c_str());
315 last_pc = state.pc;
316 last_bits = bits;
317 executions = 1;
318 } else {
319 executions++;
320 }
321 }
322
323 int processor_t::paddr_bits()
324 {
325 assert(xlen == max_xlen);
326 return max_xlen == 64 ? 50 : 34;
327 }
328
329 void processor_t::set_csr(int which, reg_t val)
330 {
331 val = zext_xlen(val);
332 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
333 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
334 switch (which)
335 {
336 case CSR_FFLAGS:
337 dirty_fp_state;
338 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
339 break;
340 case CSR_FRM:
341 dirty_fp_state;
342 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
343 break;
344 case CSR_FCSR:
345 dirty_fp_state;
346 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
347 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
348 break;
349 case CSR_MSTATUS: {
350 if ((val ^ state.mstatus) &
351 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
352 mmu->flush_tlb();
353
354 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
355 | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
356 | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
357 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
358 (ext ? MSTATUS_XS : 0);
359
360 reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP));
361 state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp);
362 if (supports_extension('S'))
363 mask |= MSTATUS_SPP;
364
365 state.mstatus = (state.mstatus & ~mask) | (val & mask);
366
367 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
368 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
369 if (max_xlen == 32)
370 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
371 else
372 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
373
374 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
375 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
376 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
377 // U-XLEN == S-XLEN == M-XLEN
378 xlen = max_xlen;
379 break;
380 }
381 case CSR_MIP: {
382 reg_t mask = MIP_SSIP | MIP_STIP;
383 state.mip = (state.mip & ~mask) | (val & mask);
384 break;
385 }
386 case CSR_MIE:
387 state.mie = (state.mie & ~all_ints) | (val & all_ints);
388 break;
389 case CSR_MIDELEG:
390 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
391 break;
392 case CSR_MEDELEG: {
393 reg_t mask =
394 (1 << CAUSE_MISALIGNED_FETCH) |
395 (1 << CAUSE_BREAKPOINT) |
396 (1 << CAUSE_USER_ECALL) |
397 (1 << CAUSE_FETCH_PAGE_FAULT) |
398 (1 << CAUSE_LOAD_PAGE_FAULT) |
399 (1 << CAUSE_STORE_PAGE_FAULT);
400 state.medeleg = (state.medeleg & ~mask) | (val & mask);
401 break;
402 }
403 case CSR_MINSTRET:
404 case CSR_MCYCLE:
405 if (xlen == 32)
406 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
407 else
408 state.minstret = val;
409 break;
410 case CSR_MINSTRETH:
411 case CSR_MCYCLEH:
412 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
413 break;
414 case CSR_SCOUNTEREN:
415 state.scounteren = val;
416 break;
417 case CSR_MCOUNTEREN:
418 state.mcounteren = val;
419 break;
420 case CSR_SSTATUS: {
421 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
422 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
423 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
424 }
425 case CSR_SIP: {
426 reg_t mask = MIP_SSIP & state.mideleg;
427 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
428 }
429 case CSR_SIE:
430 return set_csr(CSR_MIE,
431 (state.mie & ~state.mideleg) | (val & state.mideleg));
432 case CSR_SATP: {
433 mmu->flush_tlb();
434 if (max_xlen == 32)
435 state.satp = val & (SATP32_PPN | SATP32_MODE);
436 if (max_xlen == 64 && (get_field(val, SATP64_MODE) == SATP_MODE_OFF ||
437 get_field(val, SATP64_MODE) == SATP_MODE_SV39 ||
438 get_field(val, SATP64_MODE) == SATP_MODE_SV48))
439 state.satp = val & (SATP64_PPN | SATP64_MODE);
440 break;
441 }
442 case CSR_SEPC: state.sepc = val & ~(reg_t)1; break;
443 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
444 case CSR_SSCRATCH: state.sscratch = val; break;
445 case CSR_SCAUSE: state.scause = val; break;
446 case CSR_STVAL: state.stval = val; break;
447 case CSR_MEPC: state.mepc = val & ~(reg_t)1; break;
448 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
449 case CSR_MSCRATCH: state.mscratch = val; break;
450 case CSR_MCAUSE: state.mcause = val; break;
451 case CSR_MTVAL: state.mtval = val; break;
452 case CSR_MISA: {
453 if (!(val & (1L << ('F' - 'A'))))
454 val &= ~(1L << ('D' - 'A'));
455
456 // allow MAFDC bits in MISA to be modified
457 reg_t mask = 0;
458 mask |= 1L << ('M' - 'A');
459 mask |= 1L << ('A' - 'A');
460 mask |= 1L << ('F' - 'A');
461 mask |= 1L << ('D' - 'A');
462 mask |= 1L << ('C' - 'A');
463 mask &= max_isa;
464
465 state.misa = (val & mask) | (state.misa & ~mask);
466 break;
467 }
468 case CSR_TSELECT:
469 if (val < state.num_triggers) {
470 state.tselect = val;
471 }
472 break;
473 case CSR_TDATA1:
474 {
475 mcontrol_t *mc = &state.mcontrol[state.tselect];
476 if (mc->dmode && !state.dcsr.cause) {
477 break;
478 }
479 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
480 mc->select = get_field(val, MCONTROL_SELECT);
481 mc->timing = get_field(val, MCONTROL_TIMING);
482 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
483 mc->chain = get_field(val, MCONTROL_CHAIN);
484 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
485 mc->m = get_field(val, MCONTROL_M);
486 mc->h = get_field(val, MCONTROL_H);
487 mc->s = get_field(val, MCONTROL_S);
488 mc->u = get_field(val, MCONTROL_U);
489 mc->execute = get_field(val, MCONTROL_EXECUTE);
490 mc->store = get_field(val, MCONTROL_STORE);
491 mc->load = get_field(val, MCONTROL_LOAD);
492 // Assume we're here because of csrw.
493 if (mc->execute)
494 mc->timing = 0;
495 trigger_updated();
496 }
497 break;
498 case CSR_TDATA2:
499 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
500 break;
501 }
502 if (state.tselect < state.num_triggers) {
503 state.tdata2[state.tselect] = val;
504 }
505 break;
506 case CSR_DCSR:
507 state.dcsr.prv = get_field(val, DCSR_PRV);
508 state.dcsr.step = get_field(val, DCSR_STEP);
509 // TODO: ndreset and fullreset
510 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
511 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
512 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
513 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
514 state.dcsr.halt = get_field(val, DCSR_HALT);
515 break;
516 case CSR_DPC:
517 state.dpc = val & ~(reg_t)1;
518 break;
519 case CSR_DSCRATCH:
520 state.dscratch = val;
521 break;
522 }
523 }
524
525 reg_t processor_t::get_csr(int which)
526 {
527 uint32_t ctr_en = -1;
528 if (state.prv < PRV_M)
529 ctr_en &= state.mcounteren;
530 if (state.prv < PRV_S)
531 ctr_en &= state.scounteren;
532 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
533
534 if (ctr_ok) {
535 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
536 return 0;
537 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
538 return 0;
539 }
540 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
541 return 0;
542 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
543 return 0;
544 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
545 return 0;
546
547 switch (which)
548 {
549 case CSR_FFLAGS:
550 require_fp;
551 if (!supports_extension('F'))
552 break;
553 return state.fflags;
554 case CSR_FRM:
555 require_fp;
556 if (!supports_extension('F'))
557 break;
558 return state.frm;
559 case CSR_FCSR:
560 require_fp;
561 if (!supports_extension('F'))
562 break;
563 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
564 case CSR_INSTRET:
565 case CSR_CYCLE:
566 if (ctr_ok)
567 return state.minstret;
568 break;
569 case CSR_MINSTRET:
570 case CSR_MCYCLE:
571 return state.minstret;
572 case CSR_INSTRETH:
573 case CSR_CYCLEH:
574 if (ctr_ok && xlen == 32)
575 return state.minstret >> 32;
576 break;
577 case CSR_MINSTRETH:
578 case CSR_MCYCLEH:
579 if (xlen == 32)
580 return state.minstret >> 32;
581 break;
582 case CSR_SCOUNTEREN: return state.scounteren;
583 case CSR_MCOUNTEREN: return state.mcounteren;
584 case CSR_SSTATUS: {
585 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
586 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_UXL;
587 reg_t sstatus = state.mstatus & mask;
588 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
589 (sstatus & SSTATUS_XS) == SSTATUS_XS)
590 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
591 return sstatus;
592 }
593 case CSR_SIP: return state.mip & state.mideleg;
594 case CSR_SIE: return state.mie & state.mideleg;
595 case CSR_SEPC: return state.sepc;
596 case CSR_STVAL: return state.stval;
597 case CSR_STVEC: return state.stvec;
598 case CSR_SCAUSE:
599 if (max_xlen > xlen)
600 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
601 return state.scause;
602 case CSR_SATP:
603 if (get_field(state.mstatus, MSTATUS_TVM))
604 require_privilege(PRV_M);
605 return state.satp;
606 case CSR_SSCRATCH: return state.sscratch;
607 case CSR_MSTATUS: return state.mstatus;
608 case CSR_MIP: return state.mip;
609 case CSR_MIE: return state.mie;
610 case CSR_MEPC: return state.mepc;
611 case CSR_MSCRATCH: return state.mscratch;
612 case CSR_MCAUSE: return state.mcause;
613 case CSR_MTVAL: return state.mtval;
614 case CSR_MISA: return state.misa;
615 case CSR_MARCHID: return 0;
616 case CSR_MIMPID: return 0;
617 case CSR_MVENDORID: return 0;
618 case CSR_MHARTID: return id;
619 case CSR_MTVEC: return state.mtvec;
620 case CSR_MEDELEG: return state.medeleg;
621 case CSR_MIDELEG: return state.mideleg;
622 case CSR_TSELECT: return state.tselect;
623 case CSR_TDATA1:
624 if (state.tselect < state.num_triggers) {
625 reg_t v = 0;
626 mcontrol_t *mc = &state.mcontrol[state.tselect];
627 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
628 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
629 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
630 v = set_field(v, MCONTROL_SELECT, mc->select);
631 v = set_field(v, MCONTROL_TIMING, mc->timing);
632 v = set_field(v, MCONTROL_ACTION, mc->action);
633 v = set_field(v, MCONTROL_CHAIN, mc->chain);
634 v = set_field(v, MCONTROL_MATCH, mc->match);
635 v = set_field(v, MCONTROL_M, mc->m);
636 v = set_field(v, MCONTROL_H, mc->h);
637 v = set_field(v, MCONTROL_S, mc->s);
638 v = set_field(v, MCONTROL_U, mc->u);
639 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
640 v = set_field(v, MCONTROL_STORE, mc->store);
641 v = set_field(v, MCONTROL_LOAD, mc->load);
642 return v;
643 } else {
644 return 0;
645 }
646 break;
647 case CSR_TDATA2:
648 if (state.tselect < state.num_triggers) {
649 return state.tdata2[state.tselect];
650 } else {
651 return 0;
652 }
653 break;
654 case CSR_TDATA3: return 0;
655 case CSR_DCSR:
656 {
657 uint32_t v = 0;
658 v = set_field(v, DCSR_XDEBUGVER, 1);
659 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
660 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
661 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
662 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
663 v = set_field(v, DCSR_STOPCYCLE, 0);
664 v = set_field(v, DCSR_STOPTIME, 0);
665 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
666 v = set_field(v, DCSR_STEP, state.dcsr.step);
667 v = set_field(v, DCSR_PRV, state.dcsr.prv);
668 return v;
669 }
670 case CSR_DPC:
671 return state.dpc;
672 case CSR_DSCRATCH:
673 return state.dscratch;
674 }
675 throw trap_illegal_instruction(0);
676 }
677
678 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
679 {
680 throw trap_illegal_instruction(0);
681 }
682
683 insn_func_t processor_t::decode_insn(insn_t insn)
684 {
685 // look up opcode in hash table
686 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
687 insn_desc_t desc = opcode_cache[idx];
688
689 if (unlikely(insn.bits() != desc.match)) {
690 // fall back to linear search
691 insn_desc_t* p = &instructions[0];
692 while ((insn.bits() & p->mask) != p->match)
693 p++;
694 desc = *p;
695
696 if (p->mask != 0 && p > &instructions[0]) {
697 if (p->match != (p-1)->match && p->match != (p+1)->match) {
698 // move to front of opcode list to reduce miss penalty
699 while (--p >= &instructions[0])
700 *(p+1) = *p;
701 instructions[0] = desc;
702 }
703 }
704
705 opcode_cache[idx] = desc;
706 opcode_cache[idx].match = insn.bits();
707 }
708
709 return xlen == 64 ? desc.rv64 : desc.rv32;
710 }
711
712 void processor_t::register_insn(insn_desc_t desc)
713 {
714 instructions.push_back(desc);
715 }
716
717 void processor_t::build_opcode_map()
718 {
719 struct cmp {
720 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
721 if (lhs.match == rhs.match)
722 return lhs.mask > rhs.mask;
723 return lhs.match > rhs.match;
724 }
725 };
726 std::sort(instructions.begin(), instructions.end(), cmp());
727
728 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
729 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
730 }
731
732 void processor_t::register_extension(extension_t* x)
733 {
734 for (auto insn : x->get_instructions())
735 register_insn(insn);
736 build_opcode_map();
737 for (auto disasm_insn : x->get_disasms())
738 disassembler->add_insn(disasm_insn);
739 if (ext != NULL)
740 throw std::logic_error("only one extension may be registered");
741 ext = x;
742 x->set_processor(this);
743 }
744
745 void processor_t::register_base_instructions()
746 {
747 #define DECLARE_INSN(name, match, mask) \
748 insn_bits_t name##_match = (match), name##_mask = (mask);
749 #include "encoding.h"
750 #undef DECLARE_INSN
751
752 #define DEFINE_INSN(name) \
753 REGISTER_INSN(this, name, name##_match, name##_mask)
754 #include "insn_list.h"
755 #undef DEFINE_INSN
756
757 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
758 build_opcode_map();
759 }
760
761 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
762 {
763 switch (addr)
764 {
765 case 0:
766 if (len <= 4) {
767 memset(bytes, 0, len);
768 bytes[0] = get_field(state.mip, MIP_MSIP);
769 return true;
770 }
771 break;
772 }
773
774 return false;
775 }
776
777 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
778 {
779 switch (addr)
780 {
781 case 0:
782 if (len <= 4) {
783 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
784 return true;
785 }
786 break;
787 }
788
789 return false;
790 }
791
792 void processor_t::trigger_updated()
793 {
794 mmu->flush_tlb();
795 mmu->check_triggers_fetch = false;
796 mmu->check_triggers_load = false;
797 mmu->check_triggers_store = false;
798
799 for (unsigned i = 0; i < state.num_triggers; i++) {
800 if (state.mcontrol[i].execute) {
801 mmu->check_triggers_fetch = true;
802 }
803 if (state.mcontrol[i].load) {
804 mmu->check_triggers_load = true;
805 }
806 if (state.mcontrol[i].store) {
807 mmu->check_triggers_store = true;
808 }
809 }
810 }