5aa92136897208858ddf85e7815421f510dd67bb
[riscv-isa-sim.git] / riscv / sim.cc
1 // See LICENSE for license details.
2
3 #include "sim.h"
4 #include "mmu.h"
5 #include "remote_bitbang.h"
6 #include <map>
7 #include <iostream>
8 #include <sstream>
9 #include <climits>
10 #include <cstdlib>
11 #include <cassert>
12 #include <signal.h>
13 #include <unistd.h>
14 #include <sys/wait.h>
15 #include <sys/types.h>
16
17 volatile bool ctrlc_pressed = false;
18 static void handle_signal(int sig)
19 {
20 if (ctrlc_pressed)
21 exit(-1);
22 ctrlc_pressed = true;
23 signal(sig, &handle_signal);
24 }
25
26 sim_t::sim_t(const char* isa, size_t nprocs, bool halted, reg_t start_pc,
27 std::vector<std::pair<reg_t, mem_t*>> mems,
28 const std::vector<std::string>& args)
29 : htif_t(args), debug_module(this), mems(mems), procs(std::max(nprocs, size_t(1))),
30 start_pc(start_pc),
31 current_step(0), current_proc(0), debug(false), remote_bitbang(NULL)
32 {
33 signal(SIGINT, &handle_signal);
34
35 for (auto& x : mems)
36 bus.add_device(x.first, x.second);
37
38 debug_module.add_device(&bus);
39
40 debug_mmu = new mmu_t(this, NULL);
41
42 for (size_t i = 0; i < procs.size(); i++) {
43 procs[i] = new processor_t(isa, this, i, halted);
44 }
45
46 clint.reset(new clint_t(procs));
47 bus.add_device(CLINT_BASE, clint.get());
48 }
49
50 sim_t::~sim_t()
51 {
52 for (size_t i = 0; i < procs.size(); i++)
53 delete procs[i];
54 delete debug_mmu;
55 }
56
57 void sim_thread_main(void* arg)
58 {
59 ((sim_t*)arg)->main();
60 }
61
62 void sim_t::main()
63 {
64 if (!debug && log)
65 set_procs_debug(true);
66
67 while (!done())
68 {
69 if (debug || ctrlc_pressed)
70 interactive();
71 else
72 step(INTERLEAVE);
73 if (remote_bitbang) {
74 remote_bitbang->tick();
75 }
76 }
77 }
78
79 int sim_t::run()
80 {
81 host = context_t::current();
82 target.init(sim_thread_main, this);
83 return htif_t::run();
84 }
85
86 void sim_t::step(size_t n)
87 {
88 for (size_t i = 0, steps = 0; i < n; i += steps)
89 {
90 steps = std::min(n - i, INTERLEAVE - current_step);
91 procs[current_proc]->step(steps);
92
93 current_step += steps;
94 if (current_step == INTERLEAVE)
95 {
96 current_step = 0;
97 procs[current_proc]->yield_load_reservation();
98 if (++current_proc == procs.size()) {
99 current_proc = 0;
100 clint->increment(INTERLEAVE / INSNS_PER_RTC_TICK);
101 }
102
103 host->switch_to();
104 }
105 }
106 }
107
108 void sim_t::set_debug(bool value)
109 {
110 debug = value;
111 }
112
113 void sim_t::set_log(bool value)
114 {
115 log = value;
116 }
117
118 void sim_t::set_histogram(bool value)
119 {
120 histogram_enabled = value;
121 for (size_t i = 0; i < procs.size(); i++) {
122 procs[i]->set_histogram(histogram_enabled);
123 }
124 }
125
126 void sim_t::set_procs_debug(bool value)
127 {
128 for (size_t i=0; i< procs.size(); i++)
129 procs[i]->set_debug(value);
130 }
131
132 bool sim_t::mmio_load(reg_t addr, size_t len, uint8_t* bytes)
133 {
134 if (addr + len < addr)
135 return false;
136 return bus.load(addr, len, bytes);
137 }
138
139 bool sim_t::mmio_store(reg_t addr, size_t len, const uint8_t* bytes)
140 {
141 if (addr + len < addr)
142 return false;
143 return bus.store(addr, len, bytes);
144 }
145
146 static std::string dts_compile(const std::string& dts)
147 {
148 // Convert the DTS to DTB
149 int dts_pipe[2];
150 pid_t dts_pid;
151
152 if (pipe(dts_pipe) != 0 || (dts_pid = fork()) < 0) {
153 std::cerr << "Failed to fork dts child: " << strerror(errno) << std::endl;
154 exit(1);
155 }
156
157 // Child process to output dts
158 if (dts_pid == 0) {
159 close(dts_pipe[0]);
160 int step, len = dts.length();
161 const char *buf = dts.c_str();
162 for (int done = 0; done < len; done += step) {
163 step = write(dts_pipe[1], buf+done, len-done);
164 if (step == -1) {
165 std::cerr << "Failed to write dts: " << strerror(errno) << std::endl;
166 exit(1);
167 }
168 }
169 close(dts_pipe[1]);
170 exit(0);
171 }
172
173 pid_t dtb_pid;
174 int dtb_pipe[2];
175 if (pipe(dtb_pipe) != 0 || (dtb_pid = fork()) < 0) {
176 std::cerr << "Failed to fork dtb child: " << strerror(errno) << std::endl;
177 exit(1);
178 }
179
180 // Child process to output dtb
181 if (dtb_pid == 0) {
182 dup2(dts_pipe[0], 0);
183 dup2(dtb_pipe[1], 1);
184 close(dts_pipe[0]);
185 close(dts_pipe[1]);
186 close(dtb_pipe[0]);
187 close(dtb_pipe[1]);
188 execl(DTC, DTC, "-O", "dtb", 0);
189 std::cerr << "Failed to run " DTC ": " << strerror(errno) << std::endl;
190 exit(1);
191 }
192
193 close(dts_pipe[1]);
194 close(dts_pipe[0]);
195 close(dtb_pipe[1]);
196
197 // Read-out dtb
198 std::stringstream dtb;
199
200 int got;
201 char buf[4096];
202 while ((got = read(dtb_pipe[0], buf, sizeof(buf))) > 0) {
203 dtb.write(buf, got);
204 }
205 if (got == -1) {
206 std::cerr << "Failed to read dtb: " << strerror(errno) << std::endl;
207 exit(1);
208 }
209 close(dtb_pipe[0]);
210
211 // Reap children
212 int status;
213 waitpid(dts_pid, &status, 0);
214 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
215 std::cerr << "Child dts process failed" << std::endl;
216 exit(1);
217 }
218 waitpid(dtb_pid, &status, 0);
219 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
220 std::cerr << "Child dtb process failed" << std::endl;
221 exit(1);
222 }
223
224 return dtb.str();
225 }
226
227 void sim_t::make_dtb()
228 {
229 const int reset_vec_size = 8;
230
231 start_pc = start_pc == reg_t(-1) ? get_entry_point() : start_pc;
232
233 uint32_t reset_vec[reset_vec_size] = {
234 0x297, // auipc t0,0x0
235 0x28593 + (reset_vec_size * 4 << 20), // addi a1, t0, &dtb
236 0xf1402573, // csrr a0, mhartid
237 get_core(0)->xlen == 32 ?
238 0x0182a283u : // lw t0,24(t0)
239 0x0182b283u, // ld t0,24(t0)
240 0x28067, // jr t0
241 0,
242 (uint32_t) (start_pc & 0xffffffff),
243 (uint32_t) (start_pc >> 32)
244 };
245
246 std::vector<char> rom((char*)reset_vec, (char*)reset_vec + sizeof(reset_vec));
247
248 std::stringstream s;
249 s << std::dec <<
250 "/dts-v1/;\n"
251 "\n"
252 "/ {\n"
253 " #address-cells = <2>;\n"
254 " #size-cells = <2>;\n"
255 " compatible = \"ucbbar,spike-bare-dev\";\n"
256 " model = \"ucbbar,spike-bare\";\n"
257 " cpus {\n"
258 " #address-cells = <1>;\n"
259 " #size-cells = <0>;\n"
260 " timebase-frequency = <" << (CPU_HZ/INSNS_PER_RTC_TICK) << ">;\n";
261 for (size_t i = 0; i < procs.size(); i++) {
262 s << " CPU" << i << ": cpu@" << i << " {\n"
263 " device_type = \"cpu\";\n"
264 " reg = <" << i << ">;\n"
265 " status = \"okay\";\n"
266 " compatible = \"riscv\";\n"
267 " riscv,isa = \"" << procs[i]->isa_string << "\";\n"
268 " mmu-type = \"riscv," << (procs[i]->max_xlen <= 32 ? "sv32" : "sv48") << "\";\n"
269 " clock-frequency = <" << CPU_HZ << ">;\n"
270 " CPU" << i << "_intc: interrupt-controller {\n"
271 " #interrupt-cells = <1>;\n"
272 " interrupt-controller;\n"
273 " compatible = \"riscv,cpu-intc\";\n"
274 " };\n"
275 " };\n";
276 }
277 s << " };\n";
278 for (auto& m : mems) {
279 s << std::hex <<
280 " memory@" << m.first << " {\n"
281 " device_type = \"memory\";\n"
282 " reg = <0x" << (m.first >> 32) << " 0x" << (m.first & (uint32_t)-1) <<
283 " 0x" << (m.second->size() >> 32) << " 0x" << (m.second->size() & (uint32_t)-1) << ">;\n"
284 " };\n";
285 }
286 s << " soc {\n"
287 " #address-cells = <2>;\n"
288 " #size-cells = <2>;\n"
289 " compatible = \"ucbbar,spike-bare-soc\", \"simple-bus\";\n"
290 " ranges;\n"
291 " clint@" << CLINT_BASE << " {\n"
292 " compatible = \"riscv,clint0\";\n"
293 " interrupts-extended = <" << std::dec;
294 for (size_t i = 0; i < procs.size(); i++)
295 s << "&CPU" << i << "_intc 3 &CPU" << i << "_intc 7 ";
296 reg_t clintbs = CLINT_BASE;
297 reg_t clintsz = CLINT_SIZE;
298 s << std::hex << ">;\n"
299 " reg = <0x" << (clintbs >> 32) << " 0x" << (clintbs & (uint32_t)-1) <<
300 " 0x" << (clintsz >> 32) << " 0x" << (clintsz & (uint32_t)-1) << ">;\n"
301 " };\n"
302 " };\n"
303 " htif {\n"
304 " compatible = \"ucb,htif0\";\n"
305 " };\n"
306 "};\n";
307
308 dts = s.str();
309 std::string dtb = dts_compile(dts);
310
311 rom.insert(rom.end(), dtb.begin(), dtb.end());
312 const int align = 0x1000;
313 rom.resize((rom.size() + align - 1) / align * align);
314
315 boot_rom.reset(new rom_device_t(rom));
316 bus.add_device(DEFAULT_RSTVEC, boot_rom.get());
317 }
318
319 char* sim_t::addr_to_mem(reg_t addr) {
320 auto desc = bus.find_device(addr);
321 if (auto mem = dynamic_cast<mem_t*>(desc.second))
322 if (addr - desc.first < mem->size())
323 return mem->contents() + (addr - desc.first);
324 return NULL;
325 }
326
327 // htif
328
329 void sim_t::reset()
330 {
331 make_dtb();
332 }
333
334 void sim_t::idle()
335 {
336 target.switch_to();
337 }
338
339 void sim_t::read_chunk(addr_t taddr, size_t len, void* dst)
340 {
341 assert(len == 8);
342 auto data = debug_mmu->load_uint64(taddr);
343 memcpy(dst, &data, sizeof data);
344 }
345
346 void sim_t::write_chunk(addr_t taddr, size_t len, const void* src)
347 {
348 assert(len == 8);
349 uint64_t data;
350 memcpy(&data, src, sizeof data);
351 debug_mmu->store_uint64(taddr, data);
352 }