split out n_hat as separate property
[soc.git] / src / soc / fu / div / experiment / goldschmidt_div_sqrt.py
1 # SPDX-License-Identifier: LGPL-3-or-later
2 # Copyright 2022 Jacob Lifshay programmerjake@gmail.com
3
4 # Funded by NLnet Assure Programme 2021-02-052, https://nlnet.nl/assure part
5 # of Horizon 2020 EU Programme 957073.
6
7 from dataclasses import dataclass, field
8 import math
9 import enum
10 from fractions import Fraction
11 from types import FunctionType
12
13 try:
14 from functools import cached_property
15 except ImportError:
16 from cached_property import cached_property
17
18 # fix broken IDE type detection for cached_property
19 from typing import TYPE_CHECKING
20 if TYPE_CHECKING:
21 from functools import cached_property
22
23
24 _NOT_FOUND = object()
25
26
27 def cache_on_self(func):
28 """like `functools.cached_property`, except for methods. unlike
29 `lru_cache` the cache is per-class instance rather than a global cache
30 per-method."""
31
32 assert isinstance(func, FunctionType), \
33 "non-plain methods are not supported"
34
35 cache_name = func.__name__ + "__cache"
36
37 def wrapper(self, *args, **kwargs):
38 # specifically access through `__dict__` to bypass frozen=True
39 cache = self.__dict__.get(cache_name, _NOT_FOUND)
40 if cache is _NOT_FOUND:
41 self.__dict__[cache_name] = cache = {}
42 key = (args, *kwargs.items())
43 retval = cache.get(key, _NOT_FOUND)
44 if retval is _NOT_FOUND:
45 retval = func(self, *args, **kwargs)
46 cache[key] = retval
47 return retval
48
49 wrapper.__doc__ = func.__doc__
50 return wrapper
51
52
53 @enum.unique
54 class RoundDir(enum.Enum):
55 DOWN = enum.auto()
56 UP = enum.auto()
57 NEAREST_TIES_UP = enum.auto()
58 ERROR_IF_INEXACT = enum.auto()
59
60
61 @dataclass(frozen=True)
62 class FixedPoint:
63 bits: int
64 frac_wid: int
65
66 def __post_init__(self):
67 assert isinstance(self.bits, int)
68 assert isinstance(self.frac_wid, int) and self.frac_wid >= 0
69
70 @staticmethod
71 def cast(value):
72 """convert `value` to a fixed-point number with enough fractional
73 bits to preserve its value."""
74 if isinstance(value, FixedPoint):
75 return value
76 if isinstance(value, int):
77 return FixedPoint(value, 0)
78 if isinstance(value, str):
79 value = value.strip()
80 neg = value.startswith("-")
81 if neg or value.startswith("+"):
82 value = value[1:]
83 if value.startswith(("0x", "0X")) and "." in value:
84 value = value[2:]
85 got_dot = False
86 bits = 0
87 frac_wid = 0
88 for digit in value:
89 if digit == "_":
90 continue
91 if got_dot:
92 if digit == ".":
93 raise ValueError("too many `.` in string")
94 frac_wid += 4
95 if digit == ".":
96 got_dot = True
97 continue
98 if not digit.isalnum():
99 raise ValueError("invalid hexadecimal digit")
100 bits <<= 4
101 bits |= int("0x" + digit, base=16)
102 else:
103 bits = int(value, base=0)
104 frac_wid = 0
105 if neg:
106 bits = -bits
107 return FixedPoint(bits, frac_wid)
108
109 if isinstance(value, float):
110 n, d = value.as_integer_ratio()
111 log2_d = d.bit_length() - 1
112 assert d == 1 << log2_d, ("d isn't a power of 2 -- won't ever "
113 "fail with float being IEEE 754")
114 return FixedPoint(n, log2_d)
115 raise TypeError("can't convert type to FixedPoint")
116
117 @staticmethod
118 def with_frac_wid(value, frac_wid, round_dir=RoundDir.ERROR_IF_INEXACT):
119 """convert `value` to the nearest fixed-point number with `frac_wid`
120 fractional bits, rounding according to `round_dir`."""
121 assert isinstance(frac_wid, int) and frac_wid >= 0
122 assert isinstance(round_dir, RoundDir)
123 if isinstance(value, Fraction):
124 numerator = value.numerator
125 denominator = value.denominator
126 else:
127 value = FixedPoint.cast(value)
128 numerator = value.bits
129 denominator = 1 << value.frac_wid
130 if denominator < 0:
131 numerator = -numerator
132 denominator = -denominator
133 bits, remainder = divmod(numerator << frac_wid, denominator)
134 if round_dir == RoundDir.DOWN:
135 pass
136 elif round_dir == RoundDir.UP:
137 if remainder != 0:
138 bits += 1
139 elif round_dir == RoundDir.NEAREST_TIES_UP:
140 if remainder * 2 >= denominator:
141 bits += 1
142 elif round_dir == RoundDir.ERROR_IF_INEXACT:
143 if remainder != 0:
144 raise ValueError("inexact conversion")
145 else:
146 assert False, "unimplemented round_dir"
147 return FixedPoint(bits, frac_wid)
148
149 def to_frac_wid(self, frac_wid, round_dir=RoundDir.ERROR_IF_INEXACT):
150 """convert to the nearest fixed-point number with `frac_wid`
151 fractional bits, rounding according to `round_dir`."""
152 return FixedPoint.with_frac_wid(self, frac_wid, round_dir)
153
154 def __float__(self):
155 # use truediv to get correct result even when bits
156 # and frac_wid are huge
157 return float(self.bits / (1 << self.frac_wid))
158
159 def as_fraction(self):
160 return Fraction(self.bits, 1 << self.frac_wid)
161
162 def cmp(self, rhs):
163 """compare self with rhs, returning a positive integer if self is
164 greater than rhs, zero if self is equal to rhs, and a negative integer
165 if self is less than rhs."""
166 rhs = FixedPoint.cast(rhs)
167 common_frac_wid = max(self.frac_wid, rhs.frac_wid)
168 lhs = self.to_frac_wid(common_frac_wid)
169 rhs = rhs.to_frac_wid(common_frac_wid)
170 return lhs.bits - rhs.bits
171
172 def __eq__(self, rhs):
173 return self.cmp(rhs) == 0
174
175 def __ne__(self, rhs):
176 return self.cmp(rhs) != 0
177
178 def __gt__(self, rhs):
179 return self.cmp(rhs) > 0
180
181 def __lt__(self, rhs):
182 return self.cmp(rhs) < 0
183
184 def __ge__(self, rhs):
185 return self.cmp(rhs) >= 0
186
187 def __le__(self, rhs):
188 return self.cmp(rhs) <= 0
189
190 def fract(self):
191 """return the fractional part of `self`.
192 that is `self - math.floor(self)`.
193 """
194 fract_mask = (1 << self.frac_wid) - 1
195 return FixedPoint(self.bits & fract_mask, self.frac_wid)
196
197 def __str__(self):
198 if self < 0:
199 return "-" + str(-self)
200 digit_bits = 4
201 frac_digit_count = (self.frac_wid + digit_bits - 1) // digit_bits
202 fract = self.fract().to_frac_wid(frac_digit_count * digit_bits)
203 frac_str = hex(fract.bits)[2:].zfill(frac_digit_count)
204 return hex(math.floor(self)) + "." + frac_str
205
206 def __repr__(self):
207 return f"FixedPoint.with_frac_wid({str(self)!r}, {self.frac_wid})"
208
209 def __add__(self, rhs):
210 rhs = FixedPoint.cast(rhs)
211 common_frac_wid = max(self.frac_wid, rhs.frac_wid)
212 lhs = self.to_frac_wid(common_frac_wid)
213 rhs = rhs.to_frac_wid(common_frac_wid)
214 return FixedPoint(lhs.bits + rhs.bits, common_frac_wid)
215
216 def __radd__(self, lhs):
217 # symmetric
218 return self.__add__(lhs)
219
220 def __neg__(self):
221 return FixedPoint(-self.bits, self.frac_wid)
222
223 def __sub__(self, rhs):
224 rhs = FixedPoint.cast(rhs)
225 common_frac_wid = max(self.frac_wid, rhs.frac_wid)
226 lhs = self.to_frac_wid(common_frac_wid)
227 rhs = rhs.to_frac_wid(common_frac_wid)
228 return FixedPoint(lhs.bits - rhs.bits, common_frac_wid)
229
230 def __rsub__(self, lhs):
231 # a - b == -(b - a)
232 return -self.__sub__(lhs)
233
234 def __mul__(self, rhs):
235 rhs = FixedPoint.cast(rhs)
236 return FixedPoint(self.bits * rhs.bits, self.frac_wid + rhs.frac_wid)
237
238 def __rmul__(self, lhs):
239 # symmetric
240 return self.__mul__(lhs)
241
242 def __floor__(self):
243 return self.bits >> self.frac_wid
244
245
246 @dataclass
247 class GoldschmidtDivState:
248 orig_n: int
249 """original numerator"""
250
251 orig_d: int
252 """original denominator"""
253
254 n: FixedPoint
255 """numerator -- N_prime[i] in the paper's algorithm 2"""
256
257 d: FixedPoint
258 """denominator -- D_prime[i] in the paper's algorithm 2"""
259
260 f: "FixedPoint | None" = None
261 """current factor -- F_prime[i] in the paper's algorithm 2"""
262
263 quotient: "int | None" = None
264 """final quotient"""
265
266 remainder: "int | None" = None
267 """final remainder"""
268
269 n_shift: "int | None" = None
270 """amount the numerator needs to be left-shifted at the end of the
271 algorithm.
272 """
273
274
275 class ParamsNotAccurateEnough(Exception):
276 """raised when the parameters aren't accurate enough to have goldschmidt
277 division work."""
278
279
280 def _assert_accuracy(condition, msg="not accurate enough"):
281 if condition:
282 return
283 raise ParamsNotAccurateEnough(msg)
284
285
286 @dataclass(frozen=True, unsafe_hash=True)
287 class GoldschmidtDivParams:
288 """parameters for a Goldschmidt division algorithm.
289 Use `GoldschmidtDivParams.get` to find a efficient set of parameters.
290 """
291
292 io_width: int
293 """bit-width of the input divisor and the result.
294 the input numerator is `2 * io_width`-bits wide.
295 """
296
297 extra_precision: int
298 """number of bits of additional precision used inside the algorithm."""
299
300 table_addr_bits: int
301 """the number of address bits used in the lookup-table."""
302
303 table_data_bits: int
304 """the number of data bits used in the lookup-table."""
305
306 iter_count: int
307 """the total number of iterations of the division algorithm's loop"""
308
309 # tuple to be immutable, default so repr() works for debugging even when
310 # __post_init__ hasn't finished running yet
311 table: "tuple[FixedPoint, ...]" = field(init=False, default=NotImplemented)
312 """the lookup-table"""
313
314 ops: "tuple[GoldschmidtDivOp, ...]" = field(init=False,
315 default=NotImplemented)
316 """the operations needed to perform the goldschmidt division algorithm."""
317
318 def _shrink_bound(self, bound, round_dir):
319 """prevent fractions from having huge numerators/denominators by
320 rounding to a `FixedPoint` and converting back to a `Fraction`.
321
322 This is intended only for values used to compute bounds, and not for
323 values that end up in the hardware.
324 """
325 assert isinstance(bound, (Fraction, int))
326 assert round_dir is RoundDir.DOWN or round_dir is RoundDir.UP, \
327 "you shouldn't use that round_dir on bounds"
328 frac_wid = self.io_width * 4 + 100 # should be enough precision
329 fixed = FixedPoint.with_frac_wid(bound, frac_wid, round_dir)
330 return fixed.as_fraction()
331
332 def _shrink_min(self, min_bound):
333 """prevent fractions used as minimum bounds from having huge
334 numerators/denominators by rounding down to a `FixedPoint` and
335 converting back to a `Fraction`.
336
337 This is intended only for values used to compute bounds, and not for
338 values that end up in the hardware.
339 """
340 return self._shrink_bound(min_bound, RoundDir.DOWN)
341
342 def _shrink_max(self, max_bound):
343 """prevent fractions used as maximum bounds from having huge
344 numerators/denominators by rounding up to a `FixedPoint` and
345 converting back to a `Fraction`.
346
347 This is intended only for values used to compute bounds, and not for
348 values that end up in the hardware.
349 """
350 return self._shrink_bound(max_bound, RoundDir.UP)
351
352 @property
353 def table_addr_count(self):
354 """number of distinct addresses in the lookup-table."""
355 # used while computing self.table, so can't just do len(self.table)
356 return 1 << self.table_addr_bits
357
358 def table_input_exact_range(self, addr):
359 """return the range of inputs as `Fraction`s used for the table entry
360 with address `addr`."""
361 assert isinstance(addr, int)
362 assert 0 <= addr < self.table_addr_count
363 _assert_accuracy(self.io_width >= self.table_addr_bits)
364 addr_shift = self.io_width - self.table_addr_bits
365 min_numerator = (1 << self.io_width) + (addr << addr_shift)
366 denominator = 1 << self.io_width
367 values_per_table_entry = 1 << addr_shift
368 max_numerator = min_numerator + values_per_table_entry - 1
369 min_input = Fraction(min_numerator, denominator)
370 max_input = Fraction(max_numerator, denominator)
371 min_input = self._shrink_min(min_input)
372 max_input = self._shrink_max(max_input)
373 assert 1 <= min_input <= max_input < 2
374 return min_input, max_input
375
376 def table_value_exact_range(self, addr):
377 """return the range of values as `Fraction`s used for the table entry
378 with address `addr`."""
379 min_input, max_input = self.table_input_exact_range(addr)
380 # division swaps min/max
381 min_value = 1 / max_input
382 max_value = 1 / min_input
383 min_value = self._shrink_min(min_value)
384 max_value = self._shrink_max(max_value)
385 assert 0.5 < min_value <= max_value <= 1
386 return min_value, max_value
387
388 def table_exact_value(self, index):
389 min_value, max_value = self.table_value_exact_range(index)
390 # we round down
391 return min_value
392
393 def __post_init__(self):
394 # called by the autogenerated __init__
395 assert self.io_width >= 1
396 assert self.extra_precision >= 0
397 assert self.table_addr_bits >= 1
398 assert self.table_data_bits >= 1
399 assert self.iter_count >= 1
400 table = []
401 for addr in range(1 << self.table_addr_bits):
402 table.append(FixedPoint.with_frac_wid(self.table_exact_value(addr),
403 self.table_data_bits,
404 RoundDir.DOWN))
405 # we have to use object.__setattr__ since frozen=True
406 object.__setattr__(self, "table", tuple(table))
407 object.__setattr__(self, "ops", tuple(self.__make_ops()))
408
409 @property
410 def expanded_width(self):
411 """the total number of bits of precision used inside the algorithm."""
412 return self.io_width + self.extra_precision
413
414 @cache_on_self
415 def max_neps(self, i):
416 """maximum value of `neps[i]`.
417 `neps[i]` is defined to be `n[i] * N_prime[i - 1] * F_prime[i - 1]`.
418 """
419 assert isinstance(i, int) and 0 <= i < self.iter_count
420 return Fraction(1, 1 << self.expanded_width)
421
422 @cache_on_self
423 def max_deps(self, i):
424 """maximum value of `deps[i]`.
425 `deps[i]` is defined to be `d[i] * D_prime[i - 1] * F_prime[i - 1]`.
426 """
427 assert isinstance(i, int) and 0 <= i < self.iter_count
428 return Fraction(1, 1 << self.expanded_width)
429
430 @cache_on_self
431 def max_feps(self, i):
432 """maximum value of `feps[i]`.
433 `feps[i]` is defined to be `f[i] * (2 - D_prime[i - 1])`.
434 """
435 assert isinstance(i, int) and 0 <= i < self.iter_count
436 # zero, because the computation of `F_prime[i]` in
437 # `GoldschmidtDivOp.MulDByF.run(...)` is exact.
438 return Fraction(0)
439
440 @cached_property
441 def e0_range(self):
442 """minimum and maximum values of `e[0]`
443 (the relative error in `F_prime[-1]`)
444 """
445 min_e0 = Fraction(0)
446 max_e0 = Fraction(0)
447 for addr in range(self.table_addr_count):
448 # `F_prime[-1] = (1 - e[0]) / B`
449 # => `e[0] = 1 - B * F_prime[-1]`
450 min_b, max_b = self.table_input_exact_range(addr)
451 f_prime_m1 = self.table[addr].as_fraction()
452 assert min_b >= 0 and f_prime_m1 >= 0, \
453 "only positive quadrant of interval multiplication implemented"
454 min_product = min_b * f_prime_m1
455 max_product = max_b * f_prime_m1
456 # negation swaps min/max
457 cur_min_e0 = 1 - max_product
458 cur_max_e0 = 1 - min_product
459 min_e0 = min(min_e0, cur_min_e0)
460 max_e0 = max(max_e0, cur_max_e0)
461 min_e0 = self._shrink_min(min_e0)
462 max_e0 = self._shrink_max(max_e0)
463 return min_e0, max_e0
464
465 @cached_property
466 def min_e0(self):
467 """minimum value of `e[0]` (the relative error in `F_prime[-1]`)
468 """
469 min_e0, max_e0 = self.e0_range
470 return min_e0
471
472 @cached_property
473 def max_e0(self):
474 """maximum value of `e[0]` (the relative error in `F_prime[-1]`)
475 """
476 min_e0, max_e0 = self.e0_range
477 return max_e0
478
479 @cached_property
480 def max_abs_e0(self):
481 """maximum value of `abs(e[0])`."""
482 return max(abs(self.min_e0), abs(self.max_e0))
483
484 @cached_property
485 def min_abs_e0(self):
486 """minimum value of `abs(e[0])`."""
487 return Fraction(0)
488
489 @cache_on_self
490 def max_n(self, i):
491 """maximum value of `n[i]` (the relative error in `N_prime[i]`
492 relative to the previous iteration)
493 """
494 assert isinstance(i, int) and 0 <= i < self.iter_count
495 if i == 0:
496 # from Claim 10
497 # `n[0] = neps[0] / ((1 - e[0]) * (A / B))`
498 # `n[0] <= 2 * neps[0] / (1 - e[0])`
499
500 assert self.max_e0 < 1 and self.max_neps(0) >= 0, \
501 "only one quadrant of interval division implemented"
502 retval = 2 * self.max_neps(0) / (1 - self.max_e0)
503 elif i == 1:
504 # from Claim 10
505 # `n[1] <= neps[1] / ((1 - f[0]) * (1 - pi[0] - delta[0]))`
506 min_mpd = 1 - self.max_pi(0) - self.max_delta(0)
507 assert self.max_f(0) <= 1 and min_mpd >= 0, \
508 "only one quadrant of interval multiplication implemented"
509 prod = (1 - self.max_f(0)) * min_mpd
510 assert self.max_neps(1) >= 0 and prod > 0, \
511 "only one quadrant of interval division implemented"
512 retval = self.max_neps(1) / prod
513 else:
514 # from Claim 6
515 # `0 <= n[i] <= 2 * max_neps[i] / (1 - pi[i - 1] - delta[i - 1])`
516 min_mpd = 1 - self.max_pi(i - 1) - self.max_delta(i - 1)
517 assert self.max_neps(i) >= 0 and min_mpd > 0, \
518 "only one quadrant of interval division implemented"
519 retval = self.max_neps(i) / min_mpd
520
521 return self._shrink_max(retval)
522
523 @cache_on_self
524 def max_d(self, i):
525 """maximum value of `d[i]` (the relative error in `D_prime[i]`
526 relative to the previous iteration)
527 """
528 assert isinstance(i, int) and 0 <= i < self.iter_count
529 if i == 0:
530 # from Claim 10
531 # `d[0] = deps[0] / (1 - e[0])`
532
533 assert self.max_e0 < 1 and self.max_deps(0) >= 0, \
534 "only one quadrant of interval division implemented"
535 retval = self.max_deps(0) / (1 - self.max_e0)
536 elif i == 1:
537 # from Claim 10
538 # `d[1] <= deps[1] / ((1 - f[0]) * (1 - delta[0] ** 2))`
539 assert self.max_f(0) <= 1 and self.max_delta(0) <= 1, \
540 "only one quadrant of interval multiplication implemented"
541 divisor = (1 - self.max_f(0)) * (1 - self.max_delta(0) ** 2)
542 assert self.max_deps(1) >= 0 and divisor > 0, \
543 "only one quadrant of interval division implemented"
544 retval = self.max_deps(1) / divisor
545 else:
546 # from Claim 6
547 # `0 <= d[i] <= max_deps[i] / (1 - delta[i - 1])`
548 assert self.max_deps(i) >= 0 and self.max_delta(i - 1) < 1, \
549 "only one quadrant of interval division implemented"
550 retval = self.max_deps(i) / (1 - self.max_delta(i - 1))
551
552 return self._shrink_max(retval)
553
554 @cache_on_self
555 def max_f(self, i):
556 """maximum value of `f[i]` (the relative error in `F_prime[i]`
557 relative to the previous iteration)
558 """
559 assert isinstance(i, int) and 0 <= i < self.iter_count
560 if i == 0:
561 # from Claim 10
562 # `f[0] = feps[0] / (1 - delta[0])`
563
564 assert self.max_delta(0) < 1 and self.max_feps(0) >= 0, \
565 "only one quadrant of interval division implemented"
566 retval = self.max_feps(0) / (1 - self.max_delta(0))
567 elif i == 1:
568 # from Claim 10
569 # `f[1] = feps[1]`
570 retval = self.max_feps(1)
571 else:
572 # from Claim 6
573 # `f[i] <= max_feps[i]`
574 retval = self.max_feps(i)
575
576 return self._shrink_max(retval)
577
578 @cache_on_self
579 def max_delta(self, i):
580 """ maximum value of `delta[i]`.
581 `delta[i]` is defined in Definition 4 of paper.
582 """
583 assert isinstance(i, int) and 0 <= i < self.iter_count
584 if i == 0:
585 # `delta[0] = abs(e[0]) + 3 * d[0] / 2`
586 retval = self.max_abs_e0 + Fraction(3, 2) * self.max_d(0)
587 else:
588 # `delta[i] = delta[i - 1] ** 2 + f[i - 1]`
589 prev_max_delta = self.max_delta(i - 1)
590 assert prev_max_delta >= 0
591 retval = prev_max_delta ** 2 + self.max_f(i - 1)
592
593 # `delta[i]` has to be smaller than one otherwise errors would go off
594 # to infinity
595 _assert_accuracy(retval < 1)
596
597 return self._shrink_max(retval)
598
599 @cache_on_self
600 def max_pi(self, i):
601 """ maximum value of `pi[i]`.
602 `pi[i]` is defined right below Theorem 5 of paper.
603 """
604 assert isinstance(i, int) and 0 <= i < self.iter_count
605 # `pi[i] = 1 - (1 - n[i]) * prod`
606 # where `prod` is the product of,
607 # for `j` in `0 <= j < i`, `(1 - n[j]) / (1 + d[j])`
608 min_prod = Fraction(1)
609 for j in range(i):
610 max_n_j = self.max_n(j)
611 max_d_j = self.max_d(j)
612 assert max_n_j <= 1 and max_d_j > -1, \
613 "only one quadrant of interval division implemented"
614 min_prod *= (1 - max_n_j) / (1 + max_d_j)
615 max_n_i = self.max_n(i)
616 assert max_n_i <= 1 and min_prod >= 0, \
617 "only one quadrant of interval multiplication implemented"
618 retval = 1 - (1 - max_n_i) * min_prod
619 return self._shrink_max(retval)
620
621 @cached_property
622 def max_n_shift(self):
623 """ maximum value of `state.n_shift`.
624 """
625 # input numerator is `2*io_width`-bits
626 max_n = (1 << (self.io_width * 2)) - 1
627 max_n_shift = 0
628 # normalize so 1 <= n < 2
629 while max_n >= 2:
630 max_n >>= 1
631 max_n_shift += 1
632 return max_n_shift
633
634 @cached_property
635 def n_hat(self):
636 """ maximum value of, for all `i`, `max_n(i)` and `max_d(i)`
637 """
638 n_hat = Fraction(0)
639 for i in range(self.iter_count):
640 n_hat = max(n_hat, self.max_n(i), self.max_d(i))
641 return self._shrink_max(n_hat)
642
643 def __make_ops(self):
644 """ Goldschmidt division algorithm.
645
646 based on:
647 Even, G., Seidel, P. M., & Ferguson, W. E. (2003).
648 A Parametric Error Analysis of Goldschmidt's Division Algorithm.
649 https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.1238&rep=rep1&type=pdf
650
651 yields: GoldschmidtDivOp
652 the operations needed to perform the division.
653 """
654 # establish assumptions of the paper's error analysis (section 3.1):
655
656 # 1. normalize so A (numerator) and B (denominator) are in [1, 2)
657 yield GoldschmidtDivOp.Normalize
658
659 # 2. ensure all relative errors from directed rounding are <= 1 / 4.
660 # the assumption is met by multipliers with > 4-bits precision
661 _assert_accuracy(self.expanded_width > 4)
662
663 # 3. require `abs(e[0]) + 3 * d[0] / 2 + f[0] < 1 / 2`.
664 _assert_accuracy(self.max_abs_e0 + 3 * self.max_d(0) / 2
665 + self.max_f(0) < Fraction(1, 2))
666
667 # 4. the initial approximation F'[-1] of 1/B is in [1/2, 1].
668 # (B is the denominator)
669
670 for addr in range(self.table_addr_count):
671 f_prime_m1 = self.table[addr]
672 _assert_accuracy(0.5 <= f_prime_m1 <= 1)
673
674 yield GoldschmidtDivOp.FEqTableLookup
675
676 # we use Setting I (section 4.1 of the paper):
677 # Require `n[i] <= n_hat` and `d[i] <= n_hat` and `f[i] = 0`:
678 # the conditions on n_hat are satisfied by construction.
679 for i in range(self.iter_count):
680 _assert_accuracy(self.max_f(i) == 0)
681 yield GoldschmidtDivOp.MulNByF
682 if i != self.iter_count - 1:
683 yield GoldschmidtDivOp.MulDByF
684 yield GoldschmidtDivOp.FEq2MinusD
685
686 # relative approximation error `p(N_prime[i])`:
687 # `p(N_prime[i]) = (A / B - N_prime[i]) / (A / B)`
688 # `0 <= p(N_prime[i])`
689 # `p(N_prime[i]) <= (2 * i) * n_hat \`
690 # ` + (abs(e[0]) + 3 * n_hat / 2) ** (2 ** i)`
691 i = self.iter_count - 1 # last used `i`
692 # compute power manually to prevent huge intermediate values
693 power = self._shrink_max(self.max_abs_e0 + 3 * self.n_hat / 2)
694 for _ in range(i):
695 power = self._shrink_max(power * power)
696
697 max_rel_error = (2 * i) * self.n_hat + power
698
699 min_a_over_b = Fraction(1, 2)
700 max_a_over_b = Fraction(2)
701 max_allowed_abs_error = max_a_over_b / (1 << self.max_n_shift)
702 max_allowed_rel_error = max_allowed_abs_error / min_a_over_b
703
704 _assert_accuracy(max_rel_error < max_allowed_rel_error,
705 f"not accurate enough: max_rel_error={max_rel_error}"
706 f" max_allowed_rel_error={max_allowed_rel_error}")
707
708 yield GoldschmidtDivOp.CalcResult
709
710 def default_cost_fn(self):
711 """ calculate the estimated cost on an arbitrary scale of implementing
712 goldschmidt division with the specified parameters. larger cost
713 values mean worse parameters.
714
715 This is the default cost function for `GoldschmidtDivParams.get`.
716
717 returns: float
718 """
719 rom_cells = self.table_data_bits << self.table_addr_bits
720 cost = float(rom_cells)
721 for op in self.ops:
722 if op == GoldschmidtDivOp.MulNByF \
723 or op == GoldschmidtDivOp.MulDByF:
724 mul_cost = self.expanded_width ** 2
725 mul_cost *= self.expanded_width.bit_length()
726 cost += mul_cost
727 cost += 1e6 * self.iter_count
728 return cost
729
730 @staticmethod
731 def get(io_width):
732 """ find efficient parameters for a goldschmidt division algorithm
733 with `params.io_width == io_width`.
734 """
735 assert isinstance(io_width, int) and io_width >= 1
736 last_params = None
737 last_error = None
738 for extra_precision in range(io_width * 2 + 4):
739 for table_addr_bits in range(1, 7 + 1):
740 table_data_bits = io_width + extra_precision
741 for iter_count in range(1, 2 * io_width.bit_length()):
742 try:
743 return GoldschmidtDivParams(
744 io_width=io_width,
745 extra_precision=extra_precision,
746 table_addr_bits=table_addr_bits,
747 table_data_bits=table_data_bits,
748 iter_count=iter_count)
749 except ParamsNotAccurateEnough as e:
750 last_params = (f"GoldschmidtDivParams("
751 f"io_width={io_width!r}, "
752 f"extra_precision={extra_precision!r}, "
753 f"table_addr_bits={table_addr_bits!r}, "
754 f"table_data_bits={table_data_bits!r}, "
755 f"iter_count={iter_count!r})")
756 last_error = e
757 raise ValueError(f"can't find working parameters for a goldschmidt "
758 f"division algorithm: last params: {last_params}"
759 ) from last_error
760
761
762 @enum.unique
763 class GoldschmidtDivOp(enum.Enum):
764 Normalize = "n, d, n_shift = normalize(n, d)"
765 FEqTableLookup = "f = table_lookup(d)"
766 MulNByF = "n *= f"
767 MulDByF = "d *= f"
768 FEq2MinusD = "f = 2 - d"
769 CalcResult = "result = unnormalize_and_round(n)"
770
771 def run(self, params, state):
772 assert isinstance(params, GoldschmidtDivParams)
773 assert isinstance(state, GoldschmidtDivState)
774 expanded_width = params.expanded_width
775 table_addr_bits = params.table_addr_bits
776 if self == GoldschmidtDivOp.Normalize:
777 # normalize so 1 <= d < 2
778 # can easily be done with count-leading-zeros and left shift
779 while state.d < 1:
780 state.n = (state.n * 2).to_frac_wid(expanded_width)
781 state.d = (state.d * 2).to_frac_wid(expanded_width)
782
783 state.n_shift = 0
784 # normalize so 1 <= n < 2
785 while state.n >= 2:
786 state.n = (state.n * 0.5).to_frac_wid(expanded_width)
787 state.n_shift += 1
788 elif self == GoldschmidtDivOp.FEqTableLookup:
789 # compute initial f by table lookup
790 d_m_1 = state.d - 1
791 d_m_1 = d_m_1.to_frac_wid(table_addr_bits, RoundDir.DOWN)
792 assert 0 <= d_m_1.bits < (1 << params.table_addr_bits)
793 state.f = params.table[d_m_1.bits]
794 elif self == GoldschmidtDivOp.MulNByF:
795 assert state.f is not None
796 n = state.n * state.f
797 state.n = n.to_frac_wid(expanded_width, round_dir=RoundDir.DOWN)
798 elif self == GoldschmidtDivOp.MulDByF:
799 assert state.f is not None
800 d = state.d * state.f
801 state.d = d.to_frac_wid(expanded_width, round_dir=RoundDir.UP)
802 elif self == GoldschmidtDivOp.FEq2MinusD:
803 state.f = (2 - state.d).to_frac_wid(expanded_width)
804 elif self == GoldschmidtDivOp.CalcResult:
805 assert state.n_shift is not None
806 # scale to correct value
807 n = state.n * (1 << state.n_shift)
808
809 state.quotient = math.floor(n)
810 state.remainder = state.orig_n - state.quotient * state.orig_d
811 if state.remainder >= state.orig_d:
812 state.quotient += 1
813 state.remainder -= state.orig_d
814 else:
815 assert False, f"unimplemented GoldschmidtDivOp: {self}"
816
817
818 def goldschmidt_div(n, d, params):
819 """ Goldschmidt division algorithm.
820
821 based on:
822 Even, G., Seidel, P. M., & Ferguson, W. E. (2003).
823 A Parametric Error Analysis of Goldschmidt's Division Algorithm.
824 https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.1238&rep=rep1&type=pdf
825
826 arguments:
827 n: int
828 numerator. a `2*width`-bit unsigned integer.
829 must be less than `d << width`, otherwise the quotient wouldn't
830 fit in `width` bits.
831 d: int
832 denominator. a `width`-bit unsigned integer. must not be zero.
833 width: int
834 the bit-width of the inputs/outputs. must be a positive integer.
835
836 returns: tuple[int, int]
837 the quotient and remainder. a tuple of two `width`-bit unsigned
838 integers.
839 """
840 assert isinstance(params, GoldschmidtDivParams)
841 assert isinstance(d, int) and 0 < d < (1 << params.io_width)
842 assert isinstance(n, int) and 0 <= n < (d << params.io_width)
843
844 # this whole algorithm is done with fixed-point arithmetic where values
845 # have `width` fractional bits
846
847 state = GoldschmidtDivState(
848 orig_n=n,
849 orig_d=d,
850 n=FixedPoint(n, params.io_width),
851 d=FixedPoint(d, params.io_width),
852 )
853
854 for op in params.ops:
855 op.run(params, state)
856
857 assert state.quotient is not None
858 assert state.remainder is not None
859
860 return state.quotient, state.remainder