add comment
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "simif.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18 #ifdef SPIKE_SIMPLEV
19 #include "sv_insn_redirect.h"
20 #endif
21
22 #undef STATE
23 #define STATE state
24
25 processor_t::processor_t(const char* isa, simif_t* sim, uint32_t id,
26 bool halt_on_reset)
27 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
28 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
29 #ifdef SPIKE_SIMPLEV
30 , s(this)
31 #endif
32 {
33 parse_isa_string(isa);
34 register_base_instructions();
35
36 #ifdef SPIKE_SIMPLEV
37 mmu = new sv_mmu_t(sim, this);
38 #else
39 mmu = new mmu_t(sim, this);
40 #endif
41
42 disassembler = new disassembler_t(max_xlen);
43 if (ext)
44 for (auto disasm_insn : ext->get_disasms())
45 disassembler->add_insn(disasm_insn);
46
47 reset();
48 }
49
50 processor_t::~processor_t()
51 {
52 #ifdef RISCV_ENABLE_HISTOGRAM
53 if (histogram_enabled)
54 {
55 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
56 for (auto it : pc_histogram)
57 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
58 }
59 #endif
60
61 delete mmu;
62 delete disassembler;
63 }
64
65 static void bad_isa_string(const char* isa)
66 {
67 fprintf(stderr, "error: bad --isa option %s\n", isa);
68 abort();
69 }
70
71 void processor_t::parse_isa_string(const char* str)
72 {
73 std::string lowercase, tmp;
74 for (const char *r = str; *r; r++)
75 lowercase += std::tolower(*r);
76
77 const char* p = lowercase.c_str();
78 const char* all_subsets = "imafdqc";
79
80 max_xlen = 64;
81 state.misa = reg_t(2) << 62;
82
83 if (strncmp(p, "rv32", 4) == 0)
84 max_xlen = 32, state.misa = reg_t(1) << 30, p += 4;
85 else if (strncmp(p, "rv64", 4) == 0)
86 p += 4;
87 else if (strncmp(p, "rv", 2) == 0)
88 p += 2;
89
90 if (!*p) {
91 p = "imafdc";
92 } else if (*p == 'g') { // treat "G" as "IMAFD"
93 tmp = std::string("imafd") + (p+1);
94 p = &tmp[0];
95 } else if (*p != 'i') {
96 bad_isa_string(str);
97 }
98
99 isa_string = "rv" + std::to_string(max_xlen) + p;
100 state.misa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
101 state.misa |= 1L << ('u' - 'a'); // advertise support for user mode
102
103 while (*p) {
104 state.misa |= 1L << (*p - 'a');
105
106 if (auto next = strchr(all_subsets, *p)) {
107 all_subsets = next + 1;
108 p++;
109 } else if (*p == 'x') {
110 const char* ext = p+1, *end = ext;
111 while (islower(*end))
112 end++;
113 register_extension(find_extension(std::string(ext, end - ext).c_str())());
114 p = end;
115 } else {
116 bad_isa_string(str);
117 }
118 }
119
120 if (supports_extension('D') && !supports_extension('F'))
121 bad_isa_string(str);
122
123 if (supports_extension('Q') && !supports_extension('D'))
124 bad_isa_string(str);
125
126 if (supports_extension('Q') && max_xlen < 64)
127 bad_isa_string(str);
128
129 max_isa = state.misa;
130 }
131
132 void state_t::reset(reg_t max_isa)
133 {
134 memset(this, 0, sizeof(*this));
135 misa = max_isa;
136 prv = PRV_M;
137 pc = DEFAULT_RSTVEC;
138 tselect = 0;
139 for (unsigned int i = 0; i < num_triggers; i++)
140 mcontrol[i].type = 2;
141 #ifdef SPIKE_SIMPLEV
142 // set SV CSR banks to default (full) sizes
143 msv.state_size = 1;
144 ssv.state_size = 1;
145 usv.state_size = 3;
146 // VL and MVL all 0
147 msv.vl = msv.mvl = 0;
148 ssv.vl = ssv.mvl = 0;
149 usv.vl = usv.mvl = 0;
150 // SUBVL all 1, including in xesvstate
151 msv.subvl = 1;
152 ssv.subvl = 1;
153 usv.subvl = 1;
154 mesvstate = sesvstate = 0;
155 #endif
156 }
157
158 void sv_shape_t::setup_map()
159 {
160 int order[3] = {};
161 int lims[3] = {xsz, ysz, zsz};
162 int idxs[3] = {0,0,0};
163
164 switch (permute) {
165 case SV_SHAPE_PERM_XYZ: order[0] = 0; order[1] = 1; order[2] = 2; break;
166 case SV_SHAPE_PERM_XZY: order[0] = 0; order[1] = 2; order[2] = 1; break;
167 case SV_SHAPE_PERM_YXZ: order[0] = 1; order[1] = 0; order[2] = 2; break;
168 case SV_SHAPE_PERM_YZX: order[0] = 1; order[1] = 2; order[2] = 0; break;
169 case SV_SHAPE_PERM_ZXY: order[0] = 2; order[1] = 0; order[2] = 1; break;
170 case SV_SHAPE_PERM_ZYX: order[0] = 2; order[1] = 1; order[2] = 0; break;
171 default: throw trap_illegal_instruction(0);
172 }
173 for (int i = 0; i < 128; i++)
174 {
175 uint8_t new_idx = idxs[0] + idxs[1] * xsz + idxs[2] * xsz * ysz;
176 map[i] = new_idx;
177 for (int j = 0; j < 3; j++)
178 {
179 idxs[order[j]] = idxs[order[j]] + 1;
180 if (idxs[order[j]] != lims[order[j]]) {
181 break;
182 }
183 idxs[order[j]] = 0;
184 }
185 }
186 }
187
188 int state_t::sv_csr_sz()
189 {
190 if (prv == PRV_M)
191 return SV_MCSR_SZ;
192 if (prv == PRV_S)
193 return SV_SCSR_SZ;
194 return SV_UCSR_SZ;
195 }
196 sv_csr_t &state_t::sv()
197 {
198 if (prv == PRV_M)
199 return get_msv();
200 if (prv == PRV_S)
201 return get_ssv();
202 return get_usv();
203 }
204
205 sv_shape_t* state_t::get_shape(reg_t reg, bool pred)
206 {
207 if (prv == PRV_M || prv == PRV_S || reg == 0) {
208 return NULL;
209 }
210 for (int i = 0; i < 3; i++) {
211 if (remap[i].regidx == reg && remap[i].pred == pred) {
212 return &shape[i];
213 }
214 }
215 return NULL;
216 }
217
218 void processor_t::set_debug(bool value)
219 {
220 debug = value;
221 if (ext)
222 ext->set_debug(value);
223 }
224
225 void processor_t::set_histogram(bool value)
226 {
227 histogram_enabled = value;
228 #ifndef RISCV_ENABLE_HISTOGRAM
229 if (value) {
230 fprintf(stderr, "PC Histogram support has not been properly enabled;");
231 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
232 }
233 #endif
234 }
235
236 void processor_t::reset()
237 {
238 state.reset(max_isa);
239 state.dcsr.halt = halt_on_reset;
240 halt_on_reset = false;
241 set_csr(CSR_MSTATUS, state.mstatus);
242
243 if (ext)
244 ext->reset(); // reset the extension
245
246 if (sim)
247 sim->proc_reset(id);
248 }
249
250 // Count number of contiguous 0 bits starting from the LSB.
251 static int ctz(reg_t val)
252 {
253 int res = 0;
254 if (val)
255 while ((val & 1) == 0)
256 val >>= 1, res++;
257 return res;
258 }
259
260 void processor_t::take_interrupt(reg_t pending_interrupts)
261 {
262 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
263 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
264 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
265
266 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
267 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
268 // M-ints have highest priority; consider S-ints only if no M-ints pending
269 if (enabled_interrupts == 0)
270 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
271
272 if (state.dcsr.cause == 0 && enabled_interrupts) {
273 // nonstandard interrupts have highest priority
274 if (enabled_interrupts >> IRQ_M_EXT)
275 enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT;
276 // external interrupts have next-highest priority
277 else if (enabled_interrupts & (MIP_MEIP | MIP_SEIP))
278 enabled_interrupts = enabled_interrupts & (MIP_MEIP | MIP_SEIP);
279 // software interrupts have next-highest priority
280 else if (enabled_interrupts & (MIP_MSIP | MIP_SSIP))
281 enabled_interrupts = enabled_interrupts & (MIP_MSIP | MIP_SSIP);
282 // timer interrupts have next-highest priority
283 else if (enabled_interrupts & (MIP_MTIP | MIP_STIP))
284 enabled_interrupts = enabled_interrupts & (MIP_MTIP | MIP_STIP);
285 else
286 abort();
287
288 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
289 }
290 }
291
292 static int xlen_to_uxl(int xlen)
293 {
294 if (xlen == 32)
295 return 1;
296 if (xlen == 64)
297 return 2;
298 abort();
299 }
300
301 reg_t processor_t::legalize_privilege(reg_t prv)
302 {
303 assert(prv <= PRV_M);
304
305 if (!supports_extension('U'))
306 return PRV_M;
307
308 if (prv == PRV_H || !supports_extension('S'))
309 return PRV_U;
310
311 return prv;
312 }
313
314 void processor_t::set_privilege(reg_t prv)
315 {
316 mmu->flush_tlb();
317 state.prv = legalize_privilege(prv);
318 }
319
320 void processor_t::enter_debug_mode(uint8_t cause)
321 {
322 state.dcsr.cause = cause;
323 state.dcsr.prv = state.prv;
324 set_privilege(PRV_M);
325 state.dpc = state.pc;
326 state.pc = DEBUG_ROM_ENTRY;
327 }
328
329 void processor_t::take_trap(trap_t& t, reg_t epc)
330 {
331 if (debug) {
332 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
333 id, t.name(), epc);
334 if (t.has_tval())
335 fprintf(stderr, "core %3d: tval 0x%016" PRIx64 "\n", id,
336 t.get_tval());
337 }
338
339 if (state.dcsr.cause) {
340 if (t.cause() == CAUSE_BREAKPOINT) {
341 state.pc = DEBUG_ROM_ENTRY;
342 } else {
343 state.pc = DEBUG_ROM_TVEC;
344 }
345 return;
346 }
347
348 if (t.cause() == CAUSE_BREAKPOINT && (
349 (state.prv == PRV_M && state.dcsr.ebreakm) ||
350 (state.prv == PRV_S && state.dcsr.ebreaks) ||
351 (state.prv == PRV_U && state.dcsr.ebreaku))) {
352 enter_debug_mode(DCSR_CAUSE_SWBP);
353 return;
354 }
355
356 // by default, trap to M-mode, unless delegated to S-mode
357 reg_t bit = t.cause();
358 reg_t deleg = state.medeleg;
359 reg_t svstate = get_csr(CSR_SV_STATE);
360 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
361 if (interrupt)
362 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
363 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
364 // handle the trap in S-mode
365 state.pc = state.stvec;
366 state.scause = t.cause();
367 state.sepc = epc;
368 state.sesvstate = svstate;
369 state.stval = t.get_tval();
370
371 reg_t s = state.mstatus;
372 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
373 s = set_field(s, MSTATUS_SPP, state.prv);
374 s = set_field(s, MSTATUS_SIE, 0);
375 set_csr(CSR_MSTATUS, s);
376 set_privilege(PRV_S);
377 } else {
378 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
379 state.pc = (state.mtvec & ~(reg_t)1) + vector;
380 state.mepc = epc;
381 state.mesvstate = svstate;
382 state.mcause = t.cause();
383 state.mtval = t.get_tval();
384
385 reg_t s = state.mstatus;
386 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
387 s = set_field(s, MSTATUS_MPP, state.prv);
388 s = set_field(s, MSTATUS_MIE, 0);
389 set_csr(CSR_MSTATUS, s);
390 set_privilege(PRV_M);
391 }
392 }
393
394 void processor_t::disasm(insn_t insn)
395 {
396 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
397 if (last_pc != state.pc || last_bits != bits) {
398 if (executions != 1) {
399 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
400 }
401
402 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
403 id, state.pc, bits, disassembler->disassemble(insn).c_str());
404 last_pc = state.pc;
405 last_bits = bits;
406 executions = 1;
407 } else {
408 executions++;
409 }
410 }
411
412 int processor_t::paddr_bits()
413 {
414 assert(xlen == max_xlen);
415 return max_xlen == 64 ? 50 : 34;
416 }
417
418 void state_t::get_csr_start_end(int &start, int &end)
419 {
420 start = sv().state_bank * 4;
421 end = start + (1 << (sv().state_size+1));
422 start = std::min(sv_csr_sz(), start);
423 end = std::min(sv_csr_sz(), end);
424 fprintf(stderr, "sv state csr start/end: %d %d\n", start, end);
425 }
426
427 void state_t::sv_csr_reg_unpack()
428 {
429 // okaaay and now "unpack" the CAM to make it easier to use. this
430 // approach is not designed to be efficient right now. optimise later
431 // first clear the old tables
432 memset(sv().sv_int_tb, 0, sizeof(sv().sv_int_tb));
433 memset(sv().sv_fp_tb, 0, sizeof(sv().sv_fp_tb));
434 // now walk the CAM and unpack it
435 int start = 0;
436 int end = 0;
437 get_csr_start_end(start, end);
438 for (int i = start; i < end; i++)
439 {
440 union sv_reg_csr_entry *c = &sv().sv_csrs[i];
441 uint64_t idx = c->b.regkey;
442 sv_reg_entry *r;
443 if (c->u == 0)
444 {
445 break;
446 }
447 // XXX damn. this basically duplicates sv_insn_t::get_regentry.
448 if (c->b.type == 1)
449 {
450 r = &sv().sv_int_tb[idx];
451 }
452 else
453 {
454 r = &sv().sv_fp_tb[idx];
455 }
456 r->elwidth = c->b.elwidth;
457 r->regidx = c->b.regidx;
458 r->isvec = c->b.isvec;
459 r->active = true;
460 fprintf(stderr, "setting REGCFG type:%d isvec:%d %d %d\n",
461 c->b.type, r->isvec, (int)idx, (int)r->regidx);
462 }
463 }
464
465 void state_t::sv_csr_pred_unpack()
466 {
467 memset(sv().sv_pred_int_tb, 0, sizeof(sv().sv_pred_int_tb));
468 memset(sv().sv_pred_fp_tb, 0, sizeof(sv().sv_pred_fp_tb));
469 int start = 0;
470 int end = 0;
471 get_csr_start_end(start, end);
472 for (int i = start; i < end; i++)
473 {
474 union sv_pred_csr_entry *c = &sv().sv_pred_csrs[i];
475 uint64_t idx = c->b.regkey;
476 if (c->u == 0)
477 {
478 break;
479 }
480 sv_pred_entry *r;
481 // XXX damn. this basically duplicates sv_insn_t::get_predentry.
482 if (c->b.type == 1)
483 {
484 r = &sv().sv_pred_int_tb[idx];
485 }
486 else
487 {
488 r = &sv().sv_pred_fp_tb[idx];
489 }
490 r->regidx = c->b.regidx;
491 r->zero = c->b.zero;
492 r->inv = c->b.inv;
493 r->ffirst = c->b.ffirst;
494 r->active = true;
495 fprintf(stderr, "setting PREDCFG %d type:%d zero:%d %d %d\n",
496 i, c->b.type, r->zero, (int)idx, (int)r->regidx);
497 }
498 }
499
500 reg_t processor_t::set_csr(int which, reg_t val, bool imm_mode)
501 {
502 reg_t old_val = get_csr(which);
503 val = _zext_xlen(val);
504 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP
505 | ((ext != NULL) << IRQ_COP);
506 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
507 fprintf(stderr, "set CSR %x %lx\n", which, val);
508 switch (which)
509 {
510 #ifdef SPIKE_SIMPLEV
511 case CSR_SV_MVL:
512 state.sv().mvl = std::min(val+1, (uint64_t)64); // limited to XLEN width
513 old_val = state.sv().mvl - 1;
514 // TODO XXX throw exception if val == 0
515 fprintf(stderr, "set MVL %lx\n", state.sv().mvl);
516 break;
517 case CSR_SV_STATE:
518 {
519 // bits 0-5: mvl - 6-11: vl - 12-17: srcoffs - 18-23: destoffs
520 set_csr(CSR_SV_MVL, get_field(val, SV_STATE_VL ));
521 set_csr(CSR_SV_VL , get_field(val, SV_STATE_MVL));
522 set_csr(CSR_SV_SUBVL , get_field(val, SV_STATE_SUBVL)+1);
523 // decode (and limit) src/dest VL offsets
524 reg_t srcoffs = get_field(val, SV_STATE_SRCOFFS);
525 reg_t destoffs = get_field(val, SV_STATE_DESTOFFS);
526 state.sv().srcoffs = std::min(srcoffs , state.sv().vl-1);
527 state.sv().destoffs = std::min(destoffs, state.sv().vl-1);
528 // decode (and limit) src/dest SUBVL offsets
529 reg_t subdestoffs = get_field(val, SV_STATE_DSVOFFS);
530 state.sv().dsvoffs = std::min(subdestoffs, state.sv().subvl-1);
531 //int state_bank = get_field(val, SV_STATE_BANK);
532 //int state_size = get_field(val, SV_STATE_SIZE);
533 //set_csr(CSR_USVCFG, state_bank | (state_size << 3));
534 break;
535 }
536 case CSR_SV_CFG:
537 {
538 int old_bank = state.sv().state_bank;
539 int old_size = state.sv().state_size;
540 state.sv().state_bank = get_field(val, SV_CFG_BANK);
541 state.sv().state_size = get_field(val, SV_CFG_SIZE);
542 if (old_bank != state.sv().state_bank ||
543 old_size != state.sv().state_size)
544 {
545 // if the bank or size is changed, the csrs that are enabled
546 // also changes. easiest thing in software: recalculate them all
547 state.sv_csr_pred_unpack();
548 state.sv_csr_reg_unpack();
549 }
550 break;
551 }
552 case CSR_SV_SUBVL:
553 state.sv().subvl = std::max(1, std::min(4, (int)val));
554 old_val = state.sv().subvl;
555 // TODO XXX throw exception if val attempted to be set == 0
556 fprintf(stderr, "set SUBVL %lx\n", state.sv().subvl);
557 break;
558 case CSR_SV_VL:
559 state.sv().vl = std::min(state.sv().mvl, val + 1);
560 old_val = state.sv().mvl - 1;
561 // TODO XXX throw exception if val == 0
562 fprintf(stderr, "set VL %lx\n", state.sv().vl);
563 break;
564 case CSR_SVREGTOP:
565 case CSR_SVREGBOT:
566 {
567 bool top = (which == CSR_SVREGTOP);
568 uint64_t v = (uint64_t)val;
569 fprintf(stderr, "set SVREG %d %lx\n", top, v);
570 int start = 0;
571 int end = 0;
572 state.get_csr_start_end(start, end);
573 uint64_t res_old = 0;
574 int num_entries = val & 0xf;
575 int max_xlen_entries = (xlen == 64) ? 4 : 2;
576 if (!imm_mode) {
577 num_entries = max_xlen_entries;
578 }
579 // read 2 16-bit entries for RV32, 4 16-bit entries for RV64
580 int popidx = 0;
581 for (int i = 0; i < num_entries; i++) {
582 uint64_t svcfg = 0;
583 if (!imm_mode) {
584 uint64_t mask = 0xffffUL << (i*16UL);
585 svcfg = get_field(v, mask);
586 fprintf(stderr, "SVREG mask %lx cfg %lx\n", mask, svcfg);
587 if (!svcfg && i > 0) {
588 break;
589 }
590 }
591 // see regpush on how this works.
592 uint64_t res = state.sv().regpush(svcfg, end, top);
593 if (res != 0) {
594 res_old |= res << (popidx * 16UL);
595 popidx += 1;
596 if (popidx == max_xlen_entries) {
597 break;
598 }
599 }
600 }
601 old_val = res_old;
602 state.sv_csr_reg_unpack();
603 break;
604 }
605 case CSR_SVPREDCFG0:
606 case CSR_SVPREDCFG1:
607 case CSR_SVPREDCFG2:
608 case CSR_SVPREDCFG3:
609 case CSR_SVPREDCFG4:
610 case CSR_SVPREDCFG5:
611 case CSR_SVPREDCFG6:
612 case CSR_SVPREDCFG7:
613 {
614 // comments removed as it's near-identical to the regs version
615 // TODO: macro-ify
616 uint64_t v = (uint64_t)val;
617 int tbidx = (which - CSR_SVPREDCFG0) * 2;
618 fprintf(stderr, "set PREDCFG %d %lx\n", tbidx, v);
619 state.sv().sv_pred_csrs[tbidx].u = get_field(v, 0xffff);
620 state.sv().sv_pred_csrs[tbidx+1].u = get_field(v, 0xffff0000);
621 int clroffset = 2;
622 if (xlen == 64)
623 {
624 state.sv().sv_pred_csrs[tbidx+2].u = get_field(v, 0xffffUL<<32);
625 state.sv().sv_pred_csrs[tbidx+3].u = get_field(v, 0xffffUL<<48);
626 clroffset = 4;
627 }
628 for (int i = tbidx+clroffset; i < 16; i++)
629 {
630 state.sv().sv_pred_csrs[i].u = 0;
631 }
632 state.sv_csr_pred_unpack();
633 break;
634 }
635 case CSR_UREMAP:
636 {
637 state.remap[0].regidx = get_field(val, SV_REMAP_REGIDX0);
638 state.remap[1].regidx = get_field(val, SV_REMAP_REGIDX1);
639 state.remap[2].regidx = get_field(val, SV_REMAP_REGIDX2);
640 state.remap[0].pred = get_field(val, SV_REMAP_PRED0);
641 state.remap[1].pred = get_field(val, SV_REMAP_PRED1);
642 state.remap[2].pred = get_field(val, SV_REMAP_PRED2);
643 state.remap[0].shape = get_field(val, SV_REMAP_SHAPE0);
644 state.remap[1].shape = get_field(val, SV_REMAP_SHAPE1);
645 state.remap[2].shape = get_field(val, SV_REMAP_SHAPE2);
646 break;
647 }
648 case CSR_USHAPE0:
649 case CSR_USHAPE1:
650 case CSR_USHAPE2:
651 {
652 int shapeidx = which - CSR_USHAPE0;
653 state.shape[shapeidx].xsz = get_field(val, SV_SHAPE_XDIM) + 1;
654 state.shape[shapeidx].ysz = get_field(val, SV_SHAPE_YDIM) + 1;
655 state.shape[shapeidx].zsz = get_field(val, SV_SHAPE_ZDIM) + 1;
656 state.shape[shapeidx].offs = (get_field(val, (1<<7 )) ? 0x1 : 0) |
657 (get_field(val, (1<<15)) ? 0x2 : 0) |
658 (get_field(val, (1<<23)) ? 0x4 : 0);
659 state.shape[shapeidx].permute = get_field(val, SV_SHAPE_PERM);
660 state.shape[shapeidx].setup_map();
661 fprintf(stderr, "sv shape %d x %d y %d z %d offs %d perm %d\n",
662 shapeidx,
663 state.shape[shapeidx].xsz,
664 state.shape[shapeidx].ysz,
665 state.shape[shapeidx].zsz,
666 state.shape[shapeidx].offs,
667 state.shape[shapeidx].permute);
668 break;
669 }
670 #endif
671 case CSR_FFLAGS:
672 dirty_fp_state;
673 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
674 break;
675 case CSR_FRM:
676 dirty_fp_state;
677 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
678 break;
679 case CSR_FCSR:
680 dirty_fp_state;
681 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
682 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
683 break;
684 case CSR_MSTATUS: {
685 if ((val ^ state.mstatus) &
686 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
687 mmu->flush_tlb();
688
689 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
690 | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
691 | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
692 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
693 (ext ? MSTATUS_XS : 0);
694
695 reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP));
696 state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp);
697 if (supports_extension('S'))
698 mask |= MSTATUS_SPP;
699
700 state.mstatus = (state.mstatus & ~mask) | (val & mask);
701
702 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
703 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
704 if (max_xlen == 32)
705 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
706 else
707 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
708
709 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
710 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
711 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
712 // U-XLEN == S-XLEN == M-XLEN
713 xlen = max_xlen;
714 break;
715 }
716 case CSR_MIP: {
717 reg_t mask = MIP_SSIP | MIP_STIP;
718 state.mip = (state.mip & ~mask) | (val & mask);
719 break;
720 }
721 case CSR_MIE:
722 state.mie = (state.mie & ~all_ints) | (val & all_ints);
723 break;
724 case CSR_MIDELEG:
725 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
726 break;
727 case CSR_MEDELEG: {
728 reg_t mask =
729 (1 << CAUSE_MISALIGNED_FETCH) |
730 (1 << CAUSE_BREAKPOINT) |
731 (1 << CAUSE_USER_ECALL) |
732 (1 << CAUSE_FETCH_PAGE_FAULT) |
733 (1 << CAUSE_LOAD_PAGE_FAULT) |
734 (1 << CAUSE_STORE_PAGE_FAULT);
735 state.medeleg = (state.medeleg & ~mask) | (val & mask);
736 break;
737 }
738 case CSR_MINSTRET:
739 case CSR_MCYCLE:
740 if (xlen == 32)
741 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
742 else
743 state.minstret = val;
744 // The ISA mandates that if an instruction writes instret, the write
745 // takes precedence over the increment to instret. However, Spike
746 // unconditionally increments instret after executing an instruction.
747 // Correct for this artifact by decrementing instret here.
748 state.minstret--;
749 break;
750 case CSR_MINSTRETH:
751 case CSR_MCYCLEH:
752 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
753 state.minstret--; // See comment above.
754 break;
755 case CSR_SCOUNTEREN:
756 state.scounteren = val;
757 break;
758 case CSR_MCOUNTEREN:
759 state.mcounteren = val;
760 break;
761 case CSR_SSTATUS: {
762 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
763 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
764 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
765 }
766 case CSR_SIP: {
767 reg_t mask = MIP_SSIP & state.mideleg;
768 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
769 }
770 case CSR_SIE:
771 return set_csr(CSR_MIE,
772 (state.mie & ~state.mideleg) | (val & state.mideleg));
773 case CSR_SATP: {
774 mmu->flush_tlb();
775 if (max_xlen == 32)
776 state.satp = val & (SATP32_PPN | SATP32_MODE);
777 if (max_xlen == 64 && (get_field(val, SATP64_MODE) == SATP_MODE_OFF ||
778 get_field(val, SATP64_MODE) == SATP_MODE_SV39 ||
779 get_field(val, SATP64_MODE) == SATP_MODE_SV48))
780 state.satp = val & (SATP64_PPN | SATP64_MODE);
781 break;
782 }
783 case CSR_SEPC: state.sepc = val & ~(reg_t)1; break;
784 case CSR_SESVSTATE: state.sesvstate = val; break;
785 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
786 case CSR_SSCRATCH: state.sscratch = val; break;
787 case CSR_SCAUSE: state.scause = val; break;
788 case CSR_STVAL: state.stval = val; break;
789 case CSR_MEPC: state.mepc = val & ~(reg_t)1; break;
790 case CSR_MESVSTATE: state.mesvstate = val; break;
791 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
792 case CSR_MSCRATCH: state.mscratch = val; break;
793 case CSR_MCAUSE: state.mcause = val; break;
794 case CSR_MTVAL: state.mtval = val; break;
795 case CSR_MISA: {
796 // the write is ignored if increasing IALIGN would misalign the PC
797 if (!(val & (1L << ('C' - 'A'))) && (state.pc & 2))
798 break;
799
800 if (!(val & (1L << ('F' - 'A'))))
801 val &= ~(1L << ('D' - 'A'));
802
803 // allow MAFDC bits in MISA to be modified
804 reg_t mask = 0;
805 mask |= 1L << ('M' - 'A');
806 mask |= 1L << ('A' - 'A');
807 mask |= 1L << ('F' - 'A');
808 mask |= 1L << ('D' - 'A');
809 mask |= 1L << ('C' - 'A');
810 mask &= max_isa;
811
812 state.misa = (val & mask) | (state.misa & ~mask);
813 break;
814 }
815 case CSR_TSELECT:
816 if (val < state.num_triggers) {
817 state.tselect = val;
818 }
819 break;
820 case CSR_TDATA1:
821 {
822 mcontrol_t *mc = &state.mcontrol[state.tselect];
823 if (mc->dmode && !state.dcsr.cause) {
824 break;
825 }
826 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
827 mc->select = get_field(val, MCONTROL_SELECT);
828 mc->timing = get_field(val, MCONTROL_TIMING);
829 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
830 mc->chain = get_field(val, MCONTROL_CHAIN);
831 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
832 mc->m = get_field(val, MCONTROL_M);
833 mc->h = get_field(val, MCONTROL_H);
834 mc->s = get_field(val, MCONTROL_S);
835 mc->u = get_field(val, MCONTROL_U);
836 mc->execute = get_field(val, MCONTROL_EXECUTE);
837 mc->store = get_field(val, MCONTROL_STORE);
838 mc->load = get_field(val, MCONTROL_LOAD);
839 // Assume we're here because of csrw.
840 if (mc->execute)
841 mc->timing = 0;
842 trigger_updated();
843 }
844 break;
845 case CSR_TDATA2:
846 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
847 break;
848 }
849 if (state.tselect < state.num_triggers) {
850 state.tdata2[state.tselect] = val;
851 }
852 break;
853 case CSR_DCSR:
854 state.dcsr.prv = get_field(val, DCSR_PRV);
855 state.dcsr.step = get_field(val, DCSR_STEP);
856 // TODO: ndreset and fullreset
857 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
858 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
859 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
860 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
861 state.dcsr.halt = get_field(val, DCSR_HALT);
862 break;
863 case CSR_DPC:
864 state.dpc = val & ~(reg_t)1;
865 break;
866 case CSR_DSCRATCH:
867 state.dscratch = val;
868 break;
869 }
870 return old_val;
871 }
872
873 reg_t processor_t::get_csr(int which)
874 {
875 uint32_t ctr_en = -1;
876 if (state.prv < PRV_M)
877 ctr_en &= state.mcounteren;
878 if (state.prv < PRV_S)
879 ctr_en &= state.scounteren;
880 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
881
882 if (ctr_ok) {
883 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
884 return 0;
885 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
886 return 0;
887 }
888 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
889 return 0;
890 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
891 return 0;
892 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
893 return 0;
894
895 switch (which)
896 {
897 #ifdef SPIKE_SIMPLEV
898 case CSR_SV_VL:
899 return state.sv().vl;
900 case CSR_SV_CFG:
901 return (state.sv().state_bank) | (state.sv().state_size<<3);
902 case CSR_SV_STATE:
903 fprintf(stderr, "get CSR_SV_STATE vl %ld mvl %ld subvl %ld\n",
904 state.sv().vl,
905 state.sv().mvl,
906 state.sv().subvl);
907 return ((std::max((int)state.sv().vl, 1))-1) |
908 ((std::max((int)state.sv().mvl, 1)-1)<<6) |
909 (state.sv().srcoffs<<12) |
910 (state.sv().destoffs<<18) |
911 ((std::max((int)state.sv().subvl, 1)-1)<<24) |
912 (state.sv().dsvoffs<<26);
913 case CSR_SV_MVL:
914 return state.sv().mvl;
915 case CSR_SV_SUBVL:
916 return state.sv().subvl;
917 case CSR_SVREGTOP:
918 case CSR_SVREGBOT:
919 return 0;// XXX TODO: return correct entry
920 case CSR_SVPREDCFG0:
921 case CSR_SVPREDCFG1:
922 case CSR_SVPREDCFG2:
923 case CSR_SVPREDCFG3:
924 case CSR_SVPREDCFG4:
925 case CSR_SVPREDCFG5:
926 case CSR_SVPREDCFG6:
927 case CSR_SVPREDCFG7:
928 return 0;// XXX TODO: return correct entry
929 case CSR_UREMAP:
930 return 0;// XXX TODO: return correct entry
931 case CSR_USHAPE0:
932 case CSR_USHAPE1:
933 case CSR_USHAPE2:
934 return 0;// XXX TODO: return correct entry
935 #endif
936 case CSR_FFLAGS:
937 require_fp;
938 if (!supports_extension('F'))
939 break;
940 return state.fflags;
941 case CSR_FRM:
942 require_fp;
943 if (!supports_extension('F'))
944 break;
945 return state.frm;
946 case CSR_FCSR:
947 require_fp;
948 if (!supports_extension('F'))
949 break;
950 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
951 case CSR_INSTRET:
952 case CSR_CYCLE:
953 if (ctr_ok)
954 return state.minstret;
955 break;
956 case CSR_MINSTRET:
957 case CSR_MCYCLE:
958 return state.minstret;
959 case CSR_INSTRETH:
960 case CSR_CYCLEH:
961 if (ctr_ok && xlen == 32)
962 return state.minstret >> 32;
963 break;
964 case CSR_MINSTRETH:
965 case CSR_MCYCLEH:
966 if (xlen == 32)
967 return state.minstret >> 32;
968 break;
969 case CSR_SCOUNTEREN: return state.scounteren;
970 case CSR_MCOUNTEREN: return state.mcounteren;
971 case CSR_SSTATUS: {
972 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
973 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR | SSTATUS_UXL;
974 reg_t sstatus = state.mstatus & mask;
975 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
976 (sstatus & SSTATUS_XS) == SSTATUS_XS)
977 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
978 return sstatus;
979 }
980 case CSR_SIP: return state.mip & state.mideleg;
981 case CSR_SIE: return state.mie & state.mideleg;
982 case CSR_SEPC: return state.sepc & pc_alignment_mask();
983 case CSR_SESVSTATE: return state.sesvstate;
984 case CSR_STVAL: return state.stval;
985 case CSR_STVEC: return state.stvec;
986 case CSR_SCAUSE:
987 if (max_xlen > xlen)
988 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
989 return state.scause;
990 case CSR_SATP:
991 if (get_field(state.mstatus, MSTATUS_TVM))
992 require_privilege(PRV_M);
993 return state.satp;
994 case CSR_SSCRATCH: return state.sscratch;
995 case CSR_MSTATUS: return state.mstatus;
996 case CSR_MIP: return state.mip;
997 case CSR_MIE: return state.mie;
998 case CSR_MEPC: return state.mepc & pc_alignment_mask();
999 case CSR_MESVSTATE: return state.mesvstate;
1000 case CSR_MSCRATCH: return state.mscratch;
1001 case CSR_MCAUSE: return state.mcause;
1002 case CSR_MTVAL: return state.mtval;
1003 case CSR_MISA: return state.misa;
1004 case CSR_MARCHID: return 0;
1005 case CSR_MIMPID: return 0;
1006 case CSR_MVENDORID: return 0;
1007 case CSR_MHARTID: return id;
1008 case CSR_MTVEC: return state.mtvec;
1009 case CSR_MEDELEG: return state.medeleg;
1010 case CSR_MIDELEG: return state.mideleg;
1011 case CSR_TSELECT: return state.tselect;
1012 case CSR_TDATA1:
1013 if (state.tselect < state.num_triggers) {
1014 reg_t v = 0;
1015 mcontrol_t *mc = &state.mcontrol[state.tselect];
1016 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
1017 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
1018 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
1019 v = set_field(v, MCONTROL_SELECT, mc->select);
1020 v = set_field(v, MCONTROL_TIMING, mc->timing);
1021 v = set_field(v, MCONTROL_ACTION, mc->action);
1022 v = set_field(v, MCONTROL_CHAIN, mc->chain);
1023 v = set_field(v, MCONTROL_MATCH, mc->match);
1024 v = set_field(v, MCONTROL_M, mc->m);
1025 v = set_field(v, MCONTROL_H, mc->h);
1026 v = set_field(v, MCONTROL_S, mc->s);
1027 v = set_field(v, MCONTROL_U, mc->u);
1028 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
1029 v = set_field(v, MCONTROL_STORE, mc->store);
1030 v = set_field(v, MCONTROL_LOAD, mc->load);
1031 return v;
1032 } else {
1033 return 0;
1034 }
1035 break;
1036 case CSR_TDATA2:
1037 if (state.tselect < state.num_triggers) {
1038 return state.tdata2[state.tselect];
1039 } else {
1040 return 0;
1041 }
1042 break;
1043 case CSR_TDATA3: return 0;
1044 case CSR_DCSR:
1045 {
1046 uint32_t v = 0;
1047 v = set_field(v, DCSR_XDEBUGVER, 1);
1048 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
1049 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
1050 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
1051 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
1052 v = set_field(v, DCSR_STOPCYCLE, 0);
1053 v = set_field(v, DCSR_STOPTIME, 0);
1054 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
1055 v = set_field(v, DCSR_STEP, state.dcsr.step);
1056 v = set_field(v, DCSR_PRV, state.dcsr.prv);
1057 return v;
1058 }
1059 case CSR_DPC:
1060 return state.dpc & pc_alignment_mask();
1061 case CSR_DSCRATCH:
1062 return state.dscratch;
1063 }
1064 throw trap_illegal_instruction(0);
1065 }
1066
1067 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
1068 {
1069 throw trap_illegal_instruction(0);
1070 }
1071
1072 insn_func_t processor_t::decode_insn(insn_t insn)
1073 {
1074 // look up opcode in hash table
1075 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
1076 insn_desc_t desc = opcode_cache[idx];
1077
1078 if (unlikely(insn.bits() != desc.match)) {
1079 // fall back to linear search
1080 insn_desc_t* p = &instructions[0];
1081 while ((insn.bits() & p->mask) != p->match)
1082 p++;
1083 desc = *p;
1084
1085 if (p->mask != 0 && p > &instructions[0]) {
1086 if (p->match != (p-1)->match && p->match != (p+1)->match) {
1087 // move to front of opcode list to reduce miss penalty
1088 while (--p >= &instructions[0])
1089 *(p+1) = *p;
1090 instructions[0] = desc;
1091 }
1092 }
1093
1094 opcode_cache[idx] = desc;
1095 opcode_cache[idx].match = insn.bits();
1096 }
1097
1098 return xlen == 64 ? desc.rv64 : desc.rv32;
1099 }
1100
1101 void processor_t::register_insn(insn_desc_t desc)
1102 {
1103 instructions.push_back(desc);
1104 }
1105
1106 void processor_t::build_opcode_map()
1107 {
1108 struct cmp {
1109 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
1110 if (lhs.match == rhs.match)
1111 return lhs.mask > rhs.mask;
1112 return lhs.match > rhs.match;
1113 }
1114 };
1115 std::sort(instructions.begin(), instructions.end(), cmp());
1116
1117 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
1118 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
1119 }
1120
1121 void processor_t::register_extension(extension_t* x)
1122 {
1123 for (auto insn : x->get_instructions())
1124 register_insn(insn);
1125 build_opcode_map();
1126 for (auto disasm_insn : x->get_disasms())
1127 disassembler->add_insn(disasm_insn);
1128 if (ext != NULL)
1129 throw std::logic_error("only one extension may be registered");
1130 ext = x;
1131 x->set_processor(this);
1132 }
1133
1134 void processor_t::register_base_instructions()
1135 {
1136 #define DECLARE_INSN(name, match, mask) \
1137 insn_bits_t name##_match = (match), name##_mask = (mask);
1138 #include "encoding.h"
1139 #undef DECLARE_INSN
1140
1141 #define DEFINE_INSN(name) \
1142 REGISTER_INSN(this, name, name##_match, name##_mask)
1143 #include "insn_list.h"
1144 #undef DEFINE_INSN
1145
1146 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
1147 build_opcode_map();
1148 }
1149
1150 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
1151 {
1152 switch (addr)
1153 {
1154 case 0:
1155 if (len <= 4) {
1156 memset(bytes, 0, len);
1157 bytes[0] = get_field(state.mip, MIP_MSIP);
1158 return true;
1159 }
1160 break;
1161 }
1162
1163 return false;
1164 }
1165
1166 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
1167 {
1168 switch (addr)
1169 {
1170 case 0:
1171 if (len <= 4) {
1172 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
1173 return true;
1174 }
1175 break;
1176 }
1177
1178 return false;
1179 }
1180
1181 void processor_t::trigger_updated()
1182 {
1183 mmu->flush_tlb();
1184 mmu->check_triggers_fetch = false;
1185 mmu->check_triggers_load = false;
1186 mmu->check_triggers_store = false;
1187
1188 for (unsigned i = 0; i < state.num_triggers; i++) {
1189 if (state.mcontrol[i].execute) {
1190 mmu->check_triggers_fetch = true;
1191 }
1192 if (state.mcontrol[i].load) {
1193 mmu->check_triggers_load = true;
1194 }
1195 if (state.mcontrol[i].store) {
1196 mmu->check_triggers_store = true;
1197 }
1198 }
1199 }
1200