add reshape data structures and get_shape function
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "simif.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18 #ifdef SPIKE_SIMPLEV
19 #include "sv_insn_redirect.h"
20 #endif
21
22 #undef STATE
23 #define STATE state
24
25 processor_t::processor_t(const char* isa, simif_t* sim, uint32_t id,
26 bool halt_on_reset)
27 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
28 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
29 #ifdef SPIKE_SIMPLEV
30 , s(this)
31 #endif
32 {
33 parse_isa_string(isa);
34 register_base_instructions();
35
36 #ifdef SPIKE_SIMPLEV
37 mmu = new sv_mmu_t(sim, this);
38 #else
39 mmu = new mmu_t(sim, this);
40 #endif
41
42 disassembler = new disassembler_t(max_xlen);
43 if (ext)
44 for (auto disasm_insn : ext->get_disasms())
45 disassembler->add_insn(disasm_insn);
46
47 reset();
48 }
49
50 processor_t::~processor_t()
51 {
52 #ifdef RISCV_ENABLE_HISTOGRAM
53 if (histogram_enabled)
54 {
55 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
56 for (auto it : pc_histogram)
57 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
58 }
59 #endif
60
61 delete mmu;
62 delete disassembler;
63 }
64
65 static void bad_isa_string(const char* isa)
66 {
67 fprintf(stderr, "error: bad --isa option %s\n", isa);
68 abort();
69 }
70
71 void processor_t::parse_isa_string(const char* str)
72 {
73 std::string lowercase, tmp;
74 for (const char *r = str; *r; r++)
75 lowercase += std::tolower(*r);
76
77 const char* p = lowercase.c_str();
78 const char* all_subsets = "imafdqc";
79
80 max_xlen = 64;
81 state.misa = reg_t(2) << 62;
82
83 if (strncmp(p, "rv32", 4) == 0)
84 max_xlen = 32, state.misa = reg_t(1) << 30, p += 4;
85 else if (strncmp(p, "rv64", 4) == 0)
86 p += 4;
87 else if (strncmp(p, "rv", 2) == 0)
88 p += 2;
89
90 if (!*p) {
91 p = "imafdc";
92 } else if (*p == 'g') { // treat "G" as "IMAFD"
93 tmp = std::string("imafd") + (p+1);
94 p = &tmp[0];
95 } else if (*p != 'i') {
96 bad_isa_string(str);
97 }
98
99 isa_string = "rv" + std::to_string(max_xlen) + p;
100 state.misa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
101 state.misa |= 1L << ('u' - 'a'); // advertise support for user mode
102
103 while (*p) {
104 state.misa |= 1L << (*p - 'a');
105
106 if (auto next = strchr(all_subsets, *p)) {
107 all_subsets = next + 1;
108 p++;
109 } else if (*p == 'x') {
110 const char* ext = p+1, *end = ext;
111 while (islower(*end))
112 end++;
113 register_extension(find_extension(std::string(ext, end - ext).c_str())());
114 p = end;
115 } else {
116 bad_isa_string(str);
117 }
118 }
119
120 if (supports_extension('D') && !supports_extension('F'))
121 bad_isa_string(str);
122
123 if (supports_extension('Q') && !supports_extension('D'))
124 bad_isa_string(str);
125
126 if (supports_extension('Q') && max_xlen < 64)
127 bad_isa_string(str);
128
129 max_isa = state.misa;
130 }
131
132 void state_t::reset(reg_t max_isa)
133 {
134 memset(this, 0, sizeof(*this));
135 misa = max_isa;
136 prv = PRV_M;
137 pc = DEFAULT_RSTVEC;
138 tselect = 0;
139 for (unsigned int i = 0; i < num_triggers; i++)
140 mcontrol[i].type = 2;
141 }
142
143 int state_t::sv_csr_sz()
144 {
145 if (prv == PRV_M)
146 return SV_MCSR_SZ;
147 if (prv == PRV_S)
148 return SV_SCSR_SZ;
149 return SV_UCSR_SZ;
150 }
151 sv_csr_t &state_t::sv()
152 {
153 if (prv == PRV_M)
154 return get_msv();
155 if (prv == PRV_S)
156 return get_ssv();
157 return get_usv();
158 }
159
160 sv_shape_t* state_t::get_shape(reg_t reg)
161 {
162 if (prv == PRV_M || prv == PRV_S || reg == 0) {
163 return NULL;
164 }
165 for (int i = 0; i < 3; i++) {
166 if (remap[i].regidx == reg) {
167 return &shape[i];
168 }
169 }
170 return NULL;
171 }
172
173 void processor_t::set_debug(bool value)
174 {
175 debug = value;
176 if (ext)
177 ext->set_debug(value);
178 }
179
180 void processor_t::set_histogram(bool value)
181 {
182 histogram_enabled = value;
183 #ifndef RISCV_ENABLE_HISTOGRAM
184 if (value) {
185 fprintf(stderr, "PC Histogram support has not been properly enabled;");
186 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
187 }
188 #endif
189 }
190
191 void processor_t::reset()
192 {
193 state.reset(max_isa);
194 state.dcsr.halt = halt_on_reset;
195 halt_on_reset = false;
196 set_csr(CSR_MSTATUS, state.mstatus);
197
198 if (ext)
199 ext->reset(); // reset the extension
200
201 if (sim)
202 sim->proc_reset(id);
203 }
204
205 // Count number of contiguous 0 bits starting from the LSB.
206 static int ctz(reg_t val)
207 {
208 int res = 0;
209 if (val)
210 while ((val & 1) == 0)
211 val >>= 1, res++;
212 return res;
213 }
214
215 void processor_t::take_interrupt(reg_t pending_interrupts)
216 {
217 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
218 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
219 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
220
221 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
222 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
223 // M-ints have highest priority; consider S-ints only if no M-ints pending
224 if (enabled_interrupts == 0)
225 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
226
227 if (state.dcsr.cause == 0 && enabled_interrupts) {
228 // nonstandard interrupts have highest priority
229 if (enabled_interrupts >> IRQ_M_EXT)
230 enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT;
231 // external interrupts have next-highest priority
232 else if (enabled_interrupts & (MIP_MEIP | MIP_SEIP))
233 enabled_interrupts = enabled_interrupts & (MIP_MEIP | MIP_SEIP);
234 // software interrupts have next-highest priority
235 else if (enabled_interrupts & (MIP_MSIP | MIP_SSIP))
236 enabled_interrupts = enabled_interrupts & (MIP_MSIP | MIP_SSIP);
237 // timer interrupts have next-highest priority
238 else if (enabled_interrupts & (MIP_MTIP | MIP_STIP))
239 enabled_interrupts = enabled_interrupts & (MIP_MTIP | MIP_STIP);
240 else
241 abort();
242
243 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
244 }
245 }
246
247 static int xlen_to_uxl(int xlen)
248 {
249 if (xlen == 32)
250 return 1;
251 if (xlen == 64)
252 return 2;
253 abort();
254 }
255
256 reg_t processor_t::legalize_privilege(reg_t prv)
257 {
258 assert(prv <= PRV_M);
259
260 if (!supports_extension('U'))
261 return PRV_M;
262
263 if (prv == PRV_H || !supports_extension('S'))
264 return PRV_U;
265
266 return prv;
267 }
268
269 void processor_t::set_privilege(reg_t prv)
270 {
271 mmu->flush_tlb();
272 state.prv = legalize_privilege(prv);
273 }
274
275 void processor_t::enter_debug_mode(uint8_t cause)
276 {
277 state.dcsr.cause = cause;
278 state.dcsr.prv = state.prv;
279 set_privilege(PRV_M);
280 state.dpc = state.pc;
281 state.pc = DEBUG_ROM_ENTRY;
282 }
283
284 void processor_t::take_trap(trap_t& t, reg_t epc)
285 {
286 if (debug) {
287 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
288 id, t.name(), epc);
289 if (t.has_tval())
290 fprintf(stderr, "core %3d: tval 0x%016" PRIx64 "\n", id,
291 t.get_tval());
292 }
293
294 if (state.dcsr.cause) {
295 if (t.cause() == CAUSE_BREAKPOINT) {
296 state.pc = DEBUG_ROM_ENTRY;
297 } else {
298 state.pc = DEBUG_ROM_TVEC;
299 }
300 return;
301 }
302
303 if (t.cause() == CAUSE_BREAKPOINT && (
304 (state.prv == PRV_M && state.dcsr.ebreakm) ||
305 (state.prv == PRV_S && state.dcsr.ebreaks) ||
306 (state.prv == PRV_U && state.dcsr.ebreaku))) {
307 enter_debug_mode(DCSR_CAUSE_SWBP);
308 return;
309 }
310
311 // by default, trap to M-mode, unless delegated to S-mode
312 reg_t bit = t.cause();
313 reg_t deleg = state.medeleg;
314 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
315 if (interrupt)
316 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
317 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
318 // handle the trap in S-mode
319 state.pc = state.stvec;
320 state.scause = t.cause();
321 state.sepc = epc;
322 state.stval = t.get_tval();
323
324 reg_t s = state.mstatus;
325 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
326 s = set_field(s, MSTATUS_SPP, state.prv);
327 s = set_field(s, MSTATUS_SIE, 0);
328 set_csr(CSR_MSTATUS, s);
329 set_privilege(PRV_S);
330 } else {
331 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
332 state.pc = (state.mtvec & ~(reg_t)1) + vector;
333 state.mepc = epc;
334 state.mcause = t.cause();
335 state.mtval = t.get_tval();
336
337 reg_t s = state.mstatus;
338 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
339 s = set_field(s, MSTATUS_MPP, state.prv);
340 s = set_field(s, MSTATUS_MIE, 0);
341 set_csr(CSR_MSTATUS, s);
342 set_privilege(PRV_M);
343 }
344 }
345
346 void processor_t::disasm(insn_t insn)
347 {
348 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
349 if (last_pc != state.pc || last_bits != bits) {
350 if (executions != 1) {
351 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
352 }
353
354 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
355 id, state.pc, bits, disassembler->disassemble(insn).c_str());
356 last_pc = state.pc;
357 last_bits = bits;
358 executions = 1;
359 } else {
360 executions++;
361 }
362 }
363
364 int processor_t::paddr_bits()
365 {
366 assert(xlen == max_xlen);
367 return max_xlen == 64 ? 50 : 34;
368 }
369
370 void processor_t::set_csr(int which, reg_t val)
371 {
372 val = _zext_xlen(val);
373 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP
374 | ((ext != NULL) << IRQ_COP);
375 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
376 fprintf(stderr, "set CSR %x %lx\n", which, val);
377 switch (which)
378 {
379 #ifdef SPIKE_SIMPLEV
380 case CSR_USVMVL:
381 state.sv().mvl = std::min(val, (uint64_t)64); // limited to XLEN width
382 // TODO XXX throw exception if val == 0
383 fprintf(stderr, "set MVL %lx\n", state.sv().mvl);
384 break;
385 case CSR_USVSTATE:
386 // bits 0-5: mvl - 6-11: vl - 12-17: srcoffs - 18-23: destoffs
387 set_csr(CSR_USVMVL, get_field(val, 0x1f )+1);
388 set_csr(CSR_USVVL , get_field(val, 0x1f<<6)+1);
389 state.sv().srcoffs = std::min(get_field(val, 0x1f<<12), state.sv().vl-1);
390 state.sv().destoffs = std::min(get_field(val, 0x1f<<18), state.sv().vl-1);
391 break;
392 case CSR_USVVL:
393 state.sv().vl = std::min(state.sv().mvl, val);
394 // TODO XXX throw exception if val == 0
395 fprintf(stderr, "set VL %lx\n", state.sv().vl);
396 break;
397 case CSR_SVREGCFG0:
398 case CSR_SVREGCFG1:
399 case CSR_SVREGCFG2:
400 case CSR_SVREGCFG3:
401 case CSR_SVREGCFG4:
402 case CSR_SVREGCFG5:
403 case CSR_SVREGCFG6:
404 case CSR_SVREGCFG7:
405 {
406 uint64_t v = (uint64_t)val;
407 // identify which (pair) of SV config CAM registers are being set
408 int tbidx = (which - CSR_SVREGCFG0) * 2;
409 fprintf(stderr, "set REGCFG %d %lx\n", tbidx, v);
410 // lower 16 bits go into even, upper into odd...
411 state.sv().sv_csrs[tbidx].u = get_field(v, 0xffffUL);
412 state.sv().sv_csrs[tbidx+1].u = get_field(v, 0xffffUL<<16);
413 int clroffset = 2;
414 if (xlen == 64)
415 {
416 state.sv().sv_csrs[tbidx+2].u = get_field(v, 0xffffUL<<32);
417 state.sv().sv_csrs[tbidx+3].u = get_field(v, 0xffffUL<<48);
418 clroffset = 4;
419 }
420 // clear out all CSRs above the one(s) being set: this ensures that
421 // when it comes to context-switching, it's clear what needs to be saved
422 for (int i = tbidx+clroffset; i < 16; i++)
423 {
424 fprintf(stderr, "clr REGCFG %d\n", i);
425 state.sv().sv_csrs[i].u = 0;
426 }
427 // okaaay and now "unpack" the CAM to make it easier to use. this
428 // approach is not designed to be efficient right now. optimise later
429 // first clear the old tables
430 memset(state.sv().sv_int_tb, 0, sizeof(state.sv().sv_int_tb));
431 memset(state.sv().sv_fp_tb, 0, sizeof(state.sv().sv_fp_tb));
432 // now walk the CAM and unpack it
433 for (int i = 0; i < state.sv_csr_sz(); i++)
434 {
435 union sv_reg_csr_entry *c = &state.sv().sv_csrs[i];
436 uint64_t idx = c->b.regkey;
437 sv_reg_entry *r;
438 if (c->u == 0)
439 {
440 break;
441 }
442 // XXX damn. this basically duplicates sv_insn_t::get_regentry.
443 if (c->b.type == 1)
444 {
445 r = &state.sv().sv_int_tb[idx];
446 }
447 else
448 {
449 r = &state.sv().sv_fp_tb[idx];
450 }
451 r->elwidth = c->b.elwidth;
452 r->regidx = c->b.regidx;
453 r->isvec = c->b.isvec;
454 r->active = true;
455 fprintf(stderr, "setting REGCFG type:%d isvec:%d %d %d\n",
456 c->b.type, r->isvec, (int)idx, (int)r->regidx);
457 }
458 break;
459 }
460 case CSR_SVPREDCFG0:
461 case CSR_SVPREDCFG1:
462 case CSR_SVPREDCFG2:
463 case CSR_SVPREDCFG3:
464 case CSR_SVPREDCFG4:
465 case CSR_SVPREDCFG5:
466 case CSR_SVPREDCFG6:
467 case CSR_SVPREDCFG7:
468 {
469 // comments removed as it's near-identical to the regs version
470 // TODO: macro-ify
471 uint64_t v = (uint64_t)val;
472 int tbidx = (which - CSR_SVPREDCFG0) * 2;
473 fprintf(stderr, "set PREDCFG %d %lx\n", tbidx, v);
474 state.sv().sv_pred_csrs[tbidx].u = get_field(v, 0xffff);
475 state.sv().sv_pred_csrs[tbidx+1].u = get_field(v, 0xffff0000);
476 int clroffset = 2;
477 if (xlen == 64)
478 {
479 state.sv().sv_pred_csrs[tbidx+2].u = get_field(v, 0xffffUL<<32);
480 state.sv().sv_pred_csrs[tbidx+3].u = get_field(v, 0xffffUL<<48);
481 clroffset = 4;
482 }
483 for (int i = tbidx+clroffset; i < 16; i++)
484 {
485 state.sv().sv_pred_csrs[i].u = 0;
486 }
487 memset(state.sv().sv_pred_int_tb, 0, sizeof(state.sv().sv_pred_int_tb));
488 memset(state.sv().sv_pred_fp_tb, 0, sizeof(state.sv().sv_pred_fp_tb));
489 for (int i = 0; i < state.sv_csr_sz(); i++)
490 {
491 union sv_pred_csr_entry *c = &state.sv().sv_pred_csrs[i];
492 uint64_t idx = c->b.regkey;
493 if (c->u == 0)
494 {
495 break;
496 }
497 sv_pred_entry *r;
498 // XXX damn. this basically duplicates sv_insn_t::get_predentry.
499 if (c->b.type == 1)
500 {
501 r = &state.sv().sv_pred_int_tb[idx];
502 }
503 else
504 {
505 r = &state.sv().sv_pred_fp_tb[idx];
506 }
507 r->regidx = c->b.regidx;
508 r->zero = c->b.zero;
509 r->inv = c->b.inv;
510 r->packed = c->b.packed;
511 r->active = true;
512 fprintf(stderr, "setting PREDCFG %d type:%d zero:%d %d %d\n",
513 i, c->b.type, r->zero, (int)idx, (int)r->regidx);
514 }
515 break;
516 }
517 #endif
518 case CSR_FFLAGS:
519 dirty_fp_state;
520 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
521 break;
522 case CSR_FRM:
523 dirty_fp_state;
524 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
525 break;
526 case CSR_FCSR:
527 dirty_fp_state;
528 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
529 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
530 break;
531 case CSR_MSTATUS: {
532 if ((val ^ state.mstatus) &
533 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
534 mmu->flush_tlb();
535
536 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
537 | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
538 | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
539 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
540 (ext ? MSTATUS_XS : 0);
541
542 reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP));
543 state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp);
544 if (supports_extension('S'))
545 mask |= MSTATUS_SPP;
546
547 state.mstatus = (state.mstatus & ~mask) | (val & mask);
548
549 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
550 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
551 if (max_xlen == 32)
552 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
553 else
554 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
555
556 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
557 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
558 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
559 // U-XLEN == S-XLEN == M-XLEN
560 xlen = max_xlen;
561 break;
562 }
563 case CSR_MIP: {
564 reg_t mask = MIP_SSIP | MIP_STIP;
565 state.mip = (state.mip & ~mask) | (val & mask);
566 break;
567 }
568 case CSR_MIE:
569 state.mie = (state.mie & ~all_ints) | (val & all_ints);
570 break;
571 case CSR_MIDELEG:
572 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
573 break;
574 case CSR_MEDELEG: {
575 reg_t mask =
576 (1 << CAUSE_MISALIGNED_FETCH) |
577 (1 << CAUSE_BREAKPOINT) |
578 (1 << CAUSE_USER_ECALL) |
579 (1 << CAUSE_FETCH_PAGE_FAULT) |
580 (1 << CAUSE_LOAD_PAGE_FAULT) |
581 (1 << CAUSE_STORE_PAGE_FAULT);
582 state.medeleg = (state.medeleg & ~mask) | (val & mask);
583 break;
584 }
585 case CSR_MINSTRET:
586 case CSR_MCYCLE:
587 if (xlen == 32)
588 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
589 else
590 state.minstret = val;
591 // The ISA mandates that if an instruction writes instret, the write
592 // takes precedence over the increment to instret. However, Spike
593 // unconditionally increments instret after executing an instruction.
594 // Correct for this artifact by decrementing instret here.
595 state.minstret--;
596 break;
597 case CSR_MINSTRETH:
598 case CSR_MCYCLEH:
599 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
600 state.minstret--; // See comment above.
601 break;
602 case CSR_SCOUNTEREN:
603 state.scounteren = val;
604 break;
605 case CSR_MCOUNTEREN:
606 state.mcounteren = val;
607 break;
608 case CSR_SSTATUS: {
609 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
610 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
611 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
612 }
613 case CSR_SIP: {
614 reg_t mask = MIP_SSIP & state.mideleg;
615 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
616 }
617 case CSR_SIE:
618 return set_csr(CSR_MIE,
619 (state.mie & ~state.mideleg) | (val & state.mideleg));
620 case CSR_SATP: {
621 mmu->flush_tlb();
622 if (max_xlen == 32)
623 state.satp = val & (SATP32_PPN | SATP32_MODE);
624 if (max_xlen == 64 && (get_field(val, SATP64_MODE) == SATP_MODE_OFF ||
625 get_field(val, SATP64_MODE) == SATP_MODE_SV39 ||
626 get_field(val, SATP64_MODE) == SATP_MODE_SV48))
627 state.satp = val & (SATP64_PPN | SATP64_MODE);
628 break;
629 }
630 case CSR_SEPC: state.sepc = val & ~(reg_t)1; break;
631 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
632 case CSR_SSCRATCH: state.sscratch = val; break;
633 case CSR_SCAUSE: state.scause = val; break;
634 case CSR_STVAL: state.stval = val; break;
635 case CSR_MEPC: state.mepc = val & ~(reg_t)1; break;
636 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
637 case CSR_MSCRATCH: state.mscratch = val; break;
638 case CSR_MCAUSE: state.mcause = val; break;
639 case CSR_MTVAL: state.mtval = val; break;
640 case CSR_MISA: {
641 // the write is ignored if increasing IALIGN would misalign the PC
642 if (!(val & (1L << ('C' - 'A'))) && (state.pc & 2))
643 break;
644
645 if (!(val & (1L << ('F' - 'A'))))
646 val &= ~(1L << ('D' - 'A'));
647
648 // allow MAFDC bits in MISA to be modified
649 reg_t mask = 0;
650 mask |= 1L << ('M' - 'A');
651 mask |= 1L << ('A' - 'A');
652 mask |= 1L << ('F' - 'A');
653 mask |= 1L << ('D' - 'A');
654 mask |= 1L << ('C' - 'A');
655 mask &= max_isa;
656
657 state.misa = (val & mask) | (state.misa & ~mask);
658 break;
659 }
660 case CSR_TSELECT:
661 if (val < state.num_triggers) {
662 state.tselect = val;
663 }
664 break;
665 case CSR_TDATA1:
666 {
667 mcontrol_t *mc = &state.mcontrol[state.tselect];
668 if (mc->dmode && !state.dcsr.cause) {
669 break;
670 }
671 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
672 mc->select = get_field(val, MCONTROL_SELECT);
673 mc->timing = get_field(val, MCONTROL_TIMING);
674 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
675 mc->chain = get_field(val, MCONTROL_CHAIN);
676 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
677 mc->m = get_field(val, MCONTROL_M);
678 mc->h = get_field(val, MCONTROL_H);
679 mc->s = get_field(val, MCONTROL_S);
680 mc->u = get_field(val, MCONTROL_U);
681 mc->execute = get_field(val, MCONTROL_EXECUTE);
682 mc->store = get_field(val, MCONTROL_STORE);
683 mc->load = get_field(val, MCONTROL_LOAD);
684 // Assume we're here because of csrw.
685 if (mc->execute)
686 mc->timing = 0;
687 trigger_updated();
688 }
689 break;
690 case CSR_TDATA2:
691 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
692 break;
693 }
694 if (state.tselect < state.num_triggers) {
695 state.tdata2[state.tselect] = val;
696 }
697 break;
698 case CSR_DCSR:
699 state.dcsr.prv = get_field(val, DCSR_PRV);
700 state.dcsr.step = get_field(val, DCSR_STEP);
701 // TODO: ndreset and fullreset
702 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
703 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
704 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
705 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
706 state.dcsr.halt = get_field(val, DCSR_HALT);
707 break;
708 case CSR_DPC:
709 state.dpc = val & ~(reg_t)1;
710 break;
711 case CSR_DSCRATCH:
712 state.dscratch = val;
713 break;
714 }
715 }
716
717 reg_t processor_t::get_csr(int which)
718 {
719 uint32_t ctr_en = -1;
720 if (state.prv < PRV_M)
721 ctr_en &= state.mcounteren;
722 if (state.prv < PRV_S)
723 ctr_en &= state.scounteren;
724 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
725
726 if (ctr_ok) {
727 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
728 return 0;
729 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
730 return 0;
731 }
732 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
733 return 0;
734 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
735 return 0;
736 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
737 return 0;
738
739 switch (which)
740 {
741 #ifdef SPIKE_SIMPLEV
742 case CSR_USVVL:
743 return state.sv().vl;
744 case CSR_USVSTATE:
745 return (state.sv().vl-1) | ((state.sv().mvl-1)<<6) |
746 (state.sv().srcoffs<<12) | (state.sv().destoffs<<18) ;
747 case CSR_USVMVL:
748 return state.sv().mvl;
749 case CSR_SVREGCFG0:
750 case CSR_SVREGCFG1:
751 case CSR_SVREGCFG2:
752 case CSR_SVREGCFG3:
753 case CSR_SVREGCFG4:
754 case CSR_SVREGCFG5:
755 case CSR_SVREGCFG6:
756 case CSR_SVREGCFG7:
757 return 0;// XXX TODO: return correct entry
758 case CSR_SVPREDCFG0:
759 case CSR_SVPREDCFG1:
760 case CSR_SVPREDCFG2:
761 case CSR_SVPREDCFG3:
762 case CSR_SVPREDCFG4:
763 case CSR_SVPREDCFG5:
764 case CSR_SVPREDCFG6:
765 case CSR_SVPREDCFG7:
766 return 0;// XXX TODO: return correct entry
767 #endif
768 case CSR_FFLAGS:
769 require_fp;
770 if (!supports_extension('F'))
771 break;
772 return state.fflags;
773 case CSR_FRM:
774 require_fp;
775 if (!supports_extension('F'))
776 break;
777 return state.frm;
778 case CSR_FCSR:
779 require_fp;
780 if (!supports_extension('F'))
781 break;
782 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
783 case CSR_INSTRET:
784 case CSR_CYCLE:
785 if (ctr_ok)
786 return state.minstret;
787 break;
788 case CSR_MINSTRET:
789 case CSR_MCYCLE:
790 return state.minstret;
791 case CSR_INSTRETH:
792 case CSR_CYCLEH:
793 if (ctr_ok && xlen == 32)
794 return state.minstret >> 32;
795 break;
796 case CSR_MINSTRETH:
797 case CSR_MCYCLEH:
798 if (xlen == 32)
799 return state.minstret >> 32;
800 break;
801 case CSR_SCOUNTEREN: return state.scounteren;
802 case CSR_MCOUNTEREN: return state.mcounteren;
803 case CSR_SSTATUS: {
804 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
805 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR | SSTATUS_UXL;
806 reg_t sstatus = state.mstatus & mask;
807 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
808 (sstatus & SSTATUS_XS) == SSTATUS_XS)
809 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
810 return sstatus;
811 }
812 case CSR_SIP: return state.mip & state.mideleg;
813 case CSR_SIE: return state.mie & state.mideleg;
814 case CSR_SEPC: return state.sepc & pc_alignment_mask();
815 case CSR_STVAL: return state.stval;
816 case CSR_STVEC: return state.stvec;
817 case CSR_SCAUSE:
818 if (max_xlen > xlen)
819 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
820 return state.scause;
821 case CSR_SATP:
822 if (get_field(state.mstatus, MSTATUS_TVM))
823 require_privilege(PRV_M);
824 return state.satp;
825 case CSR_SSCRATCH: return state.sscratch;
826 case CSR_MSTATUS: return state.mstatus;
827 case CSR_MIP: return state.mip;
828 case CSR_MIE: return state.mie;
829 case CSR_MEPC: return state.mepc & pc_alignment_mask();
830 case CSR_MSCRATCH: return state.mscratch;
831 case CSR_MCAUSE: return state.mcause;
832 case CSR_MTVAL: return state.mtval;
833 case CSR_MISA: return state.misa;
834 case CSR_MARCHID: return 0;
835 case CSR_MIMPID: return 0;
836 case CSR_MVENDORID: return 0;
837 case CSR_MHARTID: return id;
838 case CSR_MTVEC: return state.mtvec;
839 case CSR_MEDELEG: return state.medeleg;
840 case CSR_MIDELEG: return state.mideleg;
841 case CSR_TSELECT: return state.tselect;
842 case CSR_TDATA1:
843 if (state.tselect < state.num_triggers) {
844 reg_t v = 0;
845 mcontrol_t *mc = &state.mcontrol[state.tselect];
846 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
847 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
848 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
849 v = set_field(v, MCONTROL_SELECT, mc->select);
850 v = set_field(v, MCONTROL_TIMING, mc->timing);
851 v = set_field(v, MCONTROL_ACTION, mc->action);
852 v = set_field(v, MCONTROL_CHAIN, mc->chain);
853 v = set_field(v, MCONTROL_MATCH, mc->match);
854 v = set_field(v, MCONTROL_M, mc->m);
855 v = set_field(v, MCONTROL_H, mc->h);
856 v = set_field(v, MCONTROL_S, mc->s);
857 v = set_field(v, MCONTROL_U, mc->u);
858 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
859 v = set_field(v, MCONTROL_STORE, mc->store);
860 v = set_field(v, MCONTROL_LOAD, mc->load);
861 return v;
862 } else {
863 return 0;
864 }
865 break;
866 case CSR_TDATA2:
867 if (state.tselect < state.num_triggers) {
868 return state.tdata2[state.tselect];
869 } else {
870 return 0;
871 }
872 break;
873 case CSR_TDATA3: return 0;
874 case CSR_DCSR:
875 {
876 uint32_t v = 0;
877 v = set_field(v, DCSR_XDEBUGVER, 1);
878 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
879 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
880 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
881 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
882 v = set_field(v, DCSR_STOPCYCLE, 0);
883 v = set_field(v, DCSR_STOPTIME, 0);
884 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
885 v = set_field(v, DCSR_STEP, state.dcsr.step);
886 v = set_field(v, DCSR_PRV, state.dcsr.prv);
887 return v;
888 }
889 case CSR_DPC:
890 return state.dpc & pc_alignment_mask();
891 case CSR_DSCRATCH:
892 return state.dscratch;
893 }
894 throw trap_illegal_instruction(0);
895 }
896
897 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
898 {
899 throw trap_illegal_instruction(0);
900 }
901
902 insn_func_t processor_t::decode_insn(insn_t insn)
903 {
904 // look up opcode in hash table
905 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
906 insn_desc_t desc = opcode_cache[idx];
907
908 if (unlikely(insn.bits() != desc.match)) {
909 // fall back to linear search
910 insn_desc_t* p = &instructions[0];
911 while ((insn.bits() & p->mask) != p->match)
912 p++;
913 desc = *p;
914
915 if (p->mask != 0 && p > &instructions[0]) {
916 if (p->match != (p-1)->match && p->match != (p+1)->match) {
917 // move to front of opcode list to reduce miss penalty
918 while (--p >= &instructions[0])
919 *(p+1) = *p;
920 instructions[0] = desc;
921 }
922 }
923
924 opcode_cache[idx] = desc;
925 opcode_cache[idx].match = insn.bits();
926 }
927
928 return xlen == 64 ? desc.rv64 : desc.rv32;
929 }
930
931 void processor_t::register_insn(insn_desc_t desc)
932 {
933 instructions.push_back(desc);
934 }
935
936 void processor_t::build_opcode_map()
937 {
938 struct cmp {
939 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
940 if (lhs.match == rhs.match)
941 return lhs.mask > rhs.mask;
942 return lhs.match > rhs.match;
943 }
944 };
945 std::sort(instructions.begin(), instructions.end(), cmp());
946
947 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
948 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
949 }
950
951 void processor_t::register_extension(extension_t* x)
952 {
953 for (auto insn : x->get_instructions())
954 register_insn(insn);
955 build_opcode_map();
956 for (auto disasm_insn : x->get_disasms())
957 disassembler->add_insn(disasm_insn);
958 if (ext != NULL)
959 throw std::logic_error("only one extension may be registered");
960 ext = x;
961 x->set_processor(this);
962 }
963
964 void processor_t::register_base_instructions()
965 {
966 #define DECLARE_INSN(name, match, mask) \
967 insn_bits_t name##_match = (match), name##_mask = (mask);
968 #include "encoding.h"
969 #undef DECLARE_INSN
970
971 #define DEFINE_INSN(name) \
972 REGISTER_INSN(this, name, name##_match, name##_mask)
973 #include "insn_list.h"
974 #undef DEFINE_INSN
975
976 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
977 build_opcode_map();
978 }
979
980 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
981 {
982 switch (addr)
983 {
984 case 0:
985 if (len <= 4) {
986 memset(bytes, 0, len);
987 bytes[0] = get_field(state.mip, MIP_MSIP);
988 return true;
989 }
990 break;
991 }
992
993 return false;
994 }
995
996 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
997 {
998 switch (addr)
999 {
1000 case 0:
1001 if (len <= 4) {
1002 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
1003 return true;
1004 }
1005 break;
1006 }
1007
1008 return false;
1009 }
1010
1011 void processor_t::trigger_updated()
1012 {
1013 mmu->flush_tlb();
1014 mmu->check_triggers_fetch = false;
1015 mmu->check_triggers_load = false;
1016 mmu->check_triggers_store = false;
1017
1018 for (unsigned i = 0; i < state.num_triggers; i++) {
1019 if (state.mcontrol[i].execute) {
1020 mmu->check_triggers_fetch = true;
1021 }
1022 if (state.mcontrol[i].load) {
1023 mmu->check_triggers_load = true;
1024 }
1025 if (state.mcontrol[i].store) {
1026 mmu->check_triggers_store = true;
1027 }
1028 }
1029 }
1030