add reshaping algorithm for elements
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "simif.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18 #ifdef SPIKE_SIMPLEV
19 #include "sv_insn_redirect.h"
20 #endif
21
22 #undef STATE
23 #define STATE state
24
25 processor_t::processor_t(const char* isa, simif_t* sim, uint32_t id,
26 bool halt_on_reset)
27 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
28 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
29 #ifdef SPIKE_SIMPLEV
30 , s(this)
31 #endif
32 {
33 parse_isa_string(isa);
34 register_base_instructions();
35
36 #ifdef SPIKE_SIMPLEV
37 mmu = new sv_mmu_t(sim, this);
38 #else
39 mmu = new mmu_t(sim, this);
40 #endif
41
42 disassembler = new disassembler_t(max_xlen);
43 if (ext)
44 for (auto disasm_insn : ext->get_disasms())
45 disassembler->add_insn(disasm_insn);
46
47 reset();
48 }
49
50 processor_t::~processor_t()
51 {
52 #ifdef RISCV_ENABLE_HISTOGRAM
53 if (histogram_enabled)
54 {
55 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
56 for (auto it : pc_histogram)
57 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
58 }
59 #endif
60
61 delete mmu;
62 delete disassembler;
63 }
64
65 static void bad_isa_string(const char* isa)
66 {
67 fprintf(stderr, "error: bad --isa option %s\n", isa);
68 abort();
69 }
70
71 void processor_t::parse_isa_string(const char* str)
72 {
73 std::string lowercase, tmp;
74 for (const char *r = str; *r; r++)
75 lowercase += std::tolower(*r);
76
77 const char* p = lowercase.c_str();
78 const char* all_subsets = "imafdqc";
79
80 max_xlen = 64;
81 state.misa = reg_t(2) << 62;
82
83 if (strncmp(p, "rv32", 4) == 0)
84 max_xlen = 32, state.misa = reg_t(1) << 30, p += 4;
85 else if (strncmp(p, "rv64", 4) == 0)
86 p += 4;
87 else if (strncmp(p, "rv", 2) == 0)
88 p += 2;
89
90 if (!*p) {
91 p = "imafdc";
92 } else if (*p == 'g') { // treat "G" as "IMAFD"
93 tmp = std::string("imafd") + (p+1);
94 p = &tmp[0];
95 } else if (*p != 'i') {
96 bad_isa_string(str);
97 }
98
99 isa_string = "rv" + std::to_string(max_xlen) + p;
100 state.misa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
101 state.misa |= 1L << ('u' - 'a'); // advertise support for user mode
102
103 while (*p) {
104 state.misa |= 1L << (*p - 'a');
105
106 if (auto next = strchr(all_subsets, *p)) {
107 all_subsets = next + 1;
108 p++;
109 } else if (*p == 'x') {
110 const char* ext = p+1, *end = ext;
111 while (islower(*end))
112 end++;
113 register_extension(find_extension(std::string(ext, end - ext).c_str())());
114 p = end;
115 } else {
116 bad_isa_string(str);
117 }
118 }
119
120 if (supports_extension('D') && !supports_extension('F'))
121 bad_isa_string(str);
122
123 if (supports_extension('Q') && !supports_extension('D'))
124 bad_isa_string(str);
125
126 if (supports_extension('Q') && max_xlen < 64)
127 bad_isa_string(str);
128
129 max_isa = state.misa;
130 }
131
132 void state_t::reset(reg_t max_isa)
133 {
134 memset(this, 0, sizeof(*this));
135 misa = max_isa;
136 prv = PRV_M;
137 pc = DEFAULT_RSTVEC;
138 tselect = 0;
139 for (unsigned int i = 0; i < num_triggers; i++)
140 mcontrol[i].type = 2;
141 }
142
143 void sv_shape_t::setup_map()
144 {
145 int order[3] = {};
146 int lims[3] = {xsz, ysz, zsz};
147 int idxs[3] = {0,0,0};
148
149 switch (permute) {
150 case SV_SHAPE_PERM_XYZ: order[0] = 0; order[1] = 1; order[2] = 2; break;
151 case SV_SHAPE_PERM_XZY: order[0] = 0; order[1] = 2; order[2] = 1; break;
152 case SV_SHAPE_PERM_YXZ: order[0] = 1; order[1] = 0; order[2] = 2; break;
153 case SV_SHAPE_PERM_YZX: order[0] = 1; order[1] = 2; order[2] = 0; break;
154 case SV_SHAPE_PERM_ZXY: order[0] = 2; order[1] = 0; order[2] = 1; break;
155 case SV_SHAPE_PERM_ZYX: order[0] = 2; order[1] = 1; order[2] = 0; break;
156 }
157 for (int i = 0; i < 128; i++)
158 {
159 uint8_t new_idx = idxs[0] + idxs[1] * xsz + idxs[2] * xsz * ysz;
160 map[i] = new_idx;
161 for (int j = 0; j < 3; j++)
162 {
163 idxs[order[j]] = idxs[order[j]] + 1;
164 if (idxs[order[j]] != lims[order[j]]) {
165 break;
166 }
167 idxs[order[i]] = 0;
168 }
169 }
170 }
171
172 int state_t::sv_csr_sz()
173 {
174 if (prv == PRV_M)
175 return SV_MCSR_SZ;
176 if (prv == PRV_S)
177 return SV_SCSR_SZ;
178 return SV_UCSR_SZ;
179 }
180 sv_csr_t &state_t::sv()
181 {
182 if (prv == PRV_M)
183 return get_msv();
184 if (prv == PRV_S)
185 return get_ssv();
186 return get_usv();
187 }
188
189 sv_shape_t* state_t::get_shape(reg_t reg)
190 {
191 if (prv == PRV_M || prv == PRV_S || reg == 0) {
192 return NULL;
193 }
194 for (int i = 0; i < 3; i++) {
195 if (remap[i].regidx == reg) {
196 return &shape[i];
197 }
198 }
199 return NULL;
200 }
201
202 void processor_t::set_debug(bool value)
203 {
204 debug = value;
205 if (ext)
206 ext->set_debug(value);
207 }
208
209 void processor_t::set_histogram(bool value)
210 {
211 histogram_enabled = value;
212 #ifndef RISCV_ENABLE_HISTOGRAM
213 if (value) {
214 fprintf(stderr, "PC Histogram support has not been properly enabled;");
215 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
216 }
217 #endif
218 }
219
220 void processor_t::reset()
221 {
222 state.reset(max_isa);
223 state.dcsr.halt = halt_on_reset;
224 halt_on_reset = false;
225 set_csr(CSR_MSTATUS, state.mstatus);
226
227 if (ext)
228 ext->reset(); // reset the extension
229
230 if (sim)
231 sim->proc_reset(id);
232 }
233
234 // Count number of contiguous 0 bits starting from the LSB.
235 static int ctz(reg_t val)
236 {
237 int res = 0;
238 if (val)
239 while ((val & 1) == 0)
240 val >>= 1, res++;
241 return res;
242 }
243
244 void processor_t::take_interrupt(reg_t pending_interrupts)
245 {
246 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
247 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
248 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
249
250 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
251 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
252 // M-ints have highest priority; consider S-ints only if no M-ints pending
253 if (enabled_interrupts == 0)
254 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
255
256 if (state.dcsr.cause == 0 && enabled_interrupts) {
257 // nonstandard interrupts have highest priority
258 if (enabled_interrupts >> IRQ_M_EXT)
259 enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT;
260 // external interrupts have next-highest priority
261 else if (enabled_interrupts & (MIP_MEIP | MIP_SEIP))
262 enabled_interrupts = enabled_interrupts & (MIP_MEIP | MIP_SEIP);
263 // software interrupts have next-highest priority
264 else if (enabled_interrupts & (MIP_MSIP | MIP_SSIP))
265 enabled_interrupts = enabled_interrupts & (MIP_MSIP | MIP_SSIP);
266 // timer interrupts have next-highest priority
267 else if (enabled_interrupts & (MIP_MTIP | MIP_STIP))
268 enabled_interrupts = enabled_interrupts & (MIP_MTIP | MIP_STIP);
269 else
270 abort();
271
272 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
273 }
274 }
275
276 static int xlen_to_uxl(int xlen)
277 {
278 if (xlen == 32)
279 return 1;
280 if (xlen == 64)
281 return 2;
282 abort();
283 }
284
285 reg_t processor_t::legalize_privilege(reg_t prv)
286 {
287 assert(prv <= PRV_M);
288
289 if (!supports_extension('U'))
290 return PRV_M;
291
292 if (prv == PRV_H || !supports_extension('S'))
293 return PRV_U;
294
295 return prv;
296 }
297
298 void processor_t::set_privilege(reg_t prv)
299 {
300 mmu->flush_tlb();
301 state.prv = legalize_privilege(prv);
302 }
303
304 void processor_t::enter_debug_mode(uint8_t cause)
305 {
306 state.dcsr.cause = cause;
307 state.dcsr.prv = state.prv;
308 set_privilege(PRV_M);
309 state.dpc = state.pc;
310 state.pc = DEBUG_ROM_ENTRY;
311 }
312
313 void processor_t::take_trap(trap_t& t, reg_t epc)
314 {
315 if (debug) {
316 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
317 id, t.name(), epc);
318 if (t.has_tval())
319 fprintf(stderr, "core %3d: tval 0x%016" PRIx64 "\n", id,
320 t.get_tval());
321 }
322
323 if (state.dcsr.cause) {
324 if (t.cause() == CAUSE_BREAKPOINT) {
325 state.pc = DEBUG_ROM_ENTRY;
326 } else {
327 state.pc = DEBUG_ROM_TVEC;
328 }
329 return;
330 }
331
332 if (t.cause() == CAUSE_BREAKPOINT && (
333 (state.prv == PRV_M && state.dcsr.ebreakm) ||
334 (state.prv == PRV_S && state.dcsr.ebreaks) ||
335 (state.prv == PRV_U && state.dcsr.ebreaku))) {
336 enter_debug_mode(DCSR_CAUSE_SWBP);
337 return;
338 }
339
340 // by default, trap to M-mode, unless delegated to S-mode
341 reg_t bit = t.cause();
342 reg_t deleg = state.medeleg;
343 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
344 if (interrupt)
345 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
346 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
347 // handle the trap in S-mode
348 state.pc = state.stvec;
349 state.scause = t.cause();
350 state.sepc = epc;
351 state.stval = t.get_tval();
352
353 reg_t s = state.mstatus;
354 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
355 s = set_field(s, MSTATUS_SPP, state.prv);
356 s = set_field(s, MSTATUS_SIE, 0);
357 set_csr(CSR_MSTATUS, s);
358 set_privilege(PRV_S);
359 } else {
360 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
361 state.pc = (state.mtvec & ~(reg_t)1) + vector;
362 state.mepc = epc;
363 state.mcause = t.cause();
364 state.mtval = t.get_tval();
365
366 reg_t s = state.mstatus;
367 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
368 s = set_field(s, MSTATUS_MPP, state.prv);
369 s = set_field(s, MSTATUS_MIE, 0);
370 set_csr(CSR_MSTATUS, s);
371 set_privilege(PRV_M);
372 }
373 }
374
375 void processor_t::disasm(insn_t insn)
376 {
377 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
378 if (last_pc != state.pc || last_bits != bits) {
379 if (executions != 1) {
380 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
381 }
382
383 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
384 id, state.pc, bits, disassembler->disassemble(insn).c_str());
385 last_pc = state.pc;
386 last_bits = bits;
387 executions = 1;
388 } else {
389 executions++;
390 }
391 }
392
393 int processor_t::paddr_bits()
394 {
395 assert(xlen == max_xlen);
396 return max_xlen == 64 ? 50 : 34;
397 }
398
399 void processor_t::set_csr(int which, reg_t val)
400 {
401 val = _zext_xlen(val);
402 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP
403 | ((ext != NULL) << IRQ_COP);
404 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
405 fprintf(stderr, "set CSR %x %lx\n", which, val);
406 switch (which)
407 {
408 #ifdef SPIKE_SIMPLEV
409 case CSR_USVMVL:
410 state.sv().mvl = std::min(val, (uint64_t)64); // limited to XLEN width
411 // TODO XXX throw exception if val == 0
412 fprintf(stderr, "set MVL %lx\n", state.sv().mvl);
413 break;
414 case CSR_USVSTATE:
415 // bits 0-5: mvl - 6-11: vl - 12-17: srcoffs - 18-23: destoffs
416 set_csr(CSR_USVMVL, get_field(val, 0x1f )+1);
417 set_csr(CSR_USVVL , get_field(val, 0x1f<<6)+1);
418 state.sv().srcoffs = std::min(get_field(val, 0x1f<<12), state.sv().vl-1);
419 state.sv().destoffs = std::min(get_field(val, 0x1f<<18), state.sv().vl-1);
420 break;
421 case CSR_USVVL:
422 state.sv().vl = std::min(state.sv().mvl, val);
423 // TODO XXX throw exception if val == 0
424 fprintf(stderr, "set VL %lx\n", state.sv().vl);
425 break;
426 case CSR_SVREGCFG0:
427 case CSR_SVREGCFG1:
428 case CSR_SVREGCFG2:
429 case CSR_SVREGCFG3:
430 case CSR_SVREGCFG4:
431 case CSR_SVREGCFG5:
432 case CSR_SVREGCFG6:
433 case CSR_SVREGCFG7:
434 {
435 uint64_t v = (uint64_t)val;
436 // identify which (pair) of SV config CAM registers are being set
437 int tbidx = (which - CSR_SVREGCFG0) * 2;
438 fprintf(stderr, "set REGCFG %d %lx\n", tbidx, v);
439 // lower 16 bits go into even, upper into odd...
440 state.sv().sv_csrs[tbidx].u = get_field(v, 0xffffUL);
441 state.sv().sv_csrs[tbidx+1].u = get_field(v, 0xffffUL<<16);
442 int clroffset = 2;
443 if (xlen == 64)
444 {
445 state.sv().sv_csrs[tbidx+2].u = get_field(v, 0xffffUL<<32);
446 state.sv().sv_csrs[tbidx+3].u = get_field(v, 0xffffUL<<48);
447 clroffset = 4;
448 }
449 // clear out all CSRs above the one(s) being set: this ensures that
450 // when it comes to context-switching, it's clear what needs to be saved
451 for (int i = tbidx+clroffset; i < 16; i++)
452 {
453 fprintf(stderr, "clr REGCFG %d\n", i);
454 state.sv().sv_csrs[i].u = 0;
455 }
456 // okaaay and now "unpack" the CAM to make it easier to use. this
457 // approach is not designed to be efficient right now. optimise later
458 // first clear the old tables
459 memset(state.sv().sv_int_tb, 0, sizeof(state.sv().sv_int_tb));
460 memset(state.sv().sv_fp_tb, 0, sizeof(state.sv().sv_fp_tb));
461 // now walk the CAM and unpack it
462 for (int i = 0; i < state.sv_csr_sz(); i++)
463 {
464 union sv_reg_csr_entry *c = &state.sv().sv_csrs[i];
465 uint64_t idx = c->b.regkey;
466 sv_reg_entry *r;
467 if (c->u == 0)
468 {
469 break;
470 }
471 // XXX damn. this basically duplicates sv_insn_t::get_regentry.
472 if (c->b.type == 1)
473 {
474 r = &state.sv().sv_int_tb[idx];
475 }
476 else
477 {
478 r = &state.sv().sv_fp_tb[idx];
479 }
480 r->elwidth = c->b.elwidth;
481 r->regidx = c->b.regidx;
482 r->isvec = c->b.isvec;
483 r->active = true;
484 fprintf(stderr, "setting REGCFG type:%d isvec:%d %d %d\n",
485 c->b.type, r->isvec, (int)idx, (int)r->regidx);
486 }
487 break;
488 }
489 case CSR_SVPREDCFG0:
490 case CSR_SVPREDCFG1:
491 case CSR_SVPREDCFG2:
492 case CSR_SVPREDCFG3:
493 case CSR_SVPREDCFG4:
494 case CSR_SVPREDCFG5:
495 case CSR_SVPREDCFG6:
496 case CSR_SVPREDCFG7:
497 {
498 // comments removed as it's near-identical to the regs version
499 // TODO: macro-ify
500 uint64_t v = (uint64_t)val;
501 int tbidx = (which - CSR_SVPREDCFG0) * 2;
502 fprintf(stderr, "set PREDCFG %d %lx\n", tbidx, v);
503 state.sv().sv_pred_csrs[tbidx].u = get_field(v, 0xffff);
504 state.sv().sv_pred_csrs[tbidx+1].u = get_field(v, 0xffff0000);
505 int clroffset = 2;
506 if (xlen == 64)
507 {
508 state.sv().sv_pred_csrs[tbidx+2].u = get_field(v, 0xffffUL<<32);
509 state.sv().sv_pred_csrs[tbidx+3].u = get_field(v, 0xffffUL<<48);
510 clroffset = 4;
511 }
512 for (int i = tbidx+clroffset; i < 16; i++)
513 {
514 state.sv().sv_pred_csrs[i].u = 0;
515 }
516 memset(state.sv().sv_pred_int_tb, 0, sizeof(state.sv().sv_pred_int_tb));
517 memset(state.sv().sv_pred_fp_tb, 0, sizeof(state.sv().sv_pred_fp_tb));
518 for (int i = 0; i < state.sv_csr_sz(); i++)
519 {
520 union sv_pred_csr_entry *c = &state.sv().sv_pred_csrs[i];
521 uint64_t idx = c->b.regkey;
522 if (c->u == 0)
523 {
524 break;
525 }
526 sv_pred_entry *r;
527 // XXX damn. this basically duplicates sv_insn_t::get_predentry.
528 if (c->b.type == 1)
529 {
530 r = &state.sv().sv_pred_int_tb[idx];
531 }
532 else
533 {
534 r = &state.sv().sv_pred_fp_tb[idx];
535 }
536 r->regidx = c->b.regidx;
537 r->zero = c->b.zero;
538 r->inv = c->b.inv;
539 r->packed = c->b.packed;
540 r->active = true;
541 fprintf(stderr, "setting PREDCFG %d type:%d zero:%d %d %d\n",
542 i, c->b.type, r->zero, (int)idx, (int)r->regidx);
543 }
544 break;
545 }
546 case CSR_UREMAP:
547 {
548 state.remap[0].regidx = get_field(val, SV_REMAP_REGIDX0);
549 state.remap[1].regidx = get_field(val, SV_REMAP_REGIDX1);
550 state.remap[2].regidx = get_field(val, SV_REMAP_REGIDX2);
551 state.remap[0].shape = get_field(val, SV_REMAP_SHAPE0);
552 state.remap[1].shape = get_field(val, SV_REMAP_SHAPE1);
553 state.remap[2].shape = get_field(val, SV_REMAP_SHAPE2);
554 break;
555 }
556 case CSR_USHAPE0:
557 case CSR_USHAPE1:
558 case CSR_USHAPE2:
559 {
560 int shapeidx = which - CSR_USHAPE0;
561 state.shape[shapeidx].xsz = get_field(val, SV_SHAPE_XDIM);
562 state.shape[shapeidx].ysz = get_field(val, SV_SHAPE_YDIM);
563 state.shape[shapeidx].zsz = get_field(val, SV_SHAPE_ZDIM);
564 state.shape[shapeidx].offs = (get_field(val, (1<<7 )) ? 0x1 : 0) |
565 (get_field(val, (1<<15)) ? 0x2 : 0) |
566 (get_field(val, (1<<23)) ? 0x4 : 0);
567 state.shape[shapeidx].permute = get_field(val, SV_SHAPE_PERM);
568 state.shape[shapeidx].setup_map();
569 break;
570 }
571 #endif
572 case CSR_FFLAGS:
573 dirty_fp_state;
574 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
575 break;
576 case CSR_FRM:
577 dirty_fp_state;
578 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
579 break;
580 case CSR_FCSR:
581 dirty_fp_state;
582 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
583 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
584 break;
585 case CSR_MSTATUS: {
586 if ((val ^ state.mstatus) &
587 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
588 mmu->flush_tlb();
589
590 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
591 | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
592 | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
593 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
594 (ext ? MSTATUS_XS : 0);
595
596 reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP));
597 state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp);
598 if (supports_extension('S'))
599 mask |= MSTATUS_SPP;
600
601 state.mstatus = (state.mstatus & ~mask) | (val & mask);
602
603 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
604 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
605 if (max_xlen == 32)
606 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
607 else
608 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
609
610 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
611 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
612 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
613 // U-XLEN == S-XLEN == M-XLEN
614 xlen = max_xlen;
615 break;
616 }
617 case CSR_MIP: {
618 reg_t mask = MIP_SSIP | MIP_STIP;
619 state.mip = (state.mip & ~mask) | (val & mask);
620 break;
621 }
622 case CSR_MIE:
623 state.mie = (state.mie & ~all_ints) | (val & all_ints);
624 break;
625 case CSR_MIDELEG:
626 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
627 break;
628 case CSR_MEDELEG: {
629 reg_t mask =
630 (1 << CAUSE_MISALIGNED_FETCH) |
631 (1 << CAUSE_BREAKPOINT) |
632 (1 << CAUSE_USER_ECALL) |
633 (1 << CAUSE_FETCH_PAGE_FAULT) |
634 (1 << CAUSE_LOAD_PAGE_FAULT) |
635 (1 << CAUSE_STORE_PAGE_FAULT);
636 state.medeleg = (state.medeleg & ~mask) | (val & mask);
637 break;
638 }
639 case CSR_MINSTRET:
640 case CSR_MCYCLE:
641 if (xlen == 32)
642 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
643 else
644 state.minstret = val;
645 // The ISA mandates that if an instruction writes instret, the write
646 // takes precedence over the increment to instret. However, Spike
647 // unconditionally increments instret after executing an instruction.
648 // Correct for this artifact by decrementing instret here.
649 state.minstret--;
650 break;
651 case CSR_MINSTRETH:
652 case CSR_MCYCLEH:
653 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
654 state.minstret--; // See comment above.
655 break;
656 case CSR_SCOUNTEREN:
657 state.scounteren = val;
658 break;
659 case CSR_MCOUNTEREN:
660 state.mcounteren = val;
661 break;
662 case CSR_SSTATUS: {
663 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
664 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
665 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
666 }
667 case CSR_SIP: {
668 reg_t mask = MIP_SSIP & state.mideleg;
669 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
670 }
671 case CSR_SIE:
672 return set_csr(CSR_MIE,
673 (state.mie & ~state.mideleg) | (val & state.mideleg));
674 case CSR_SATP: {
675 mmu->flush_tlb();
676 if (max_xlen == 32)
677 state.satp = val & (SATP32_PPN | SATP32_MODE);
678 if (max_xlen == 64 && (get_field(val, SATP64_MODE) == SATP_MODE_OFF ||
679 get_field(val, SATP64_MODE) == SATP_MODE_SV39 ||
680 get_field(val, SATP64_MODE) == SATP_MODE_SV48))
681 state.satp = val & (SATP64_PPN | SATP64_MODE);
682 break;
683 }
684 case CSR_SEPC: state.sepc = val & ~(reg_t)1; break;
685 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
686 case CSR_SSCRATCH: state.sscratch = val; break;
687 case CSR_SCAUSE: state.scause = val; break;
688 case CSR_STVAL: state.stval = val; break;
689 case CSR_MEPC: state.mepc = val & ~(reg_t)1; break;
690 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
691 case CSR_MSCRATCH: state.mscratch = val; break;
692 case CSR_MCAUSE: state.mcause = val; break;
693 case CSR_MTVAL: state.mtval = val; break;
694 case CSR_MISA: {
695 // the write is ignored if increasing IALIGN would misalign the PC
696 if (!(val & (1L << ('C' - 'A'))) && (state.pc & 2))
697 break;
698
699 if (!(val & (1L << ('F' - 'A'))))
700 val &= ~(1L << ('D' - 'A'));
701
702 // allow MAFDC bits in MISA to be modified
703 reg_t mask = 0;
704 mask |= 1L << ('M' - 'A');
705 mask |= 1L << ('A' - 'A');
706 mask |= 1L << ('F' - 'A');
707 mask |= 1L << ('D' - 'A');
708 mask |= 1L << ('C' - 'A');
709 mask &= max_isa;
710
711 state.misa = (val & mask) | (state.misa & ~mask);
712 break;
713 }
714 case CSR_TSELECT:
715 if (val < state.num_triggers) {
716 state.tselect = val;
717 }
718 break;
719 case CSR_TDATA1:
720 {
721 mcontrol_t *mc = &state.mcontrol[state.tselect];
722 if (mc->dmode && !state.dcsr.cause) {
723 break;
724 }
725 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
726 mc->select = get_field(val, MCONTROL_SELECT);
727 mc->timing = get_field(val, MCONTROL_TIMING);
728 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
729 mc->chain = get_field(val, MCONTROL_CHAIN);
730 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
731 mc->m = get_field(val, MCONTROL_M);
732 mc->h = get_field(val, MCONTROL_H);
733 mc->s = get_field(val, MCONTROL_S);
734 mc->u = get_field(val, MCONTROL_U);
735 mc->execute = get_field(val, MCONTROL_EXECUTE);
736 mc->store = get_field(val, MCONTROL_STORE);
737 mc->load = get_field(val, MCONTROL_LOAD);
738 // Assume we're here because of csrw.
739 if (mc->execute)
740 mc->timing = 0;
741 trigger_updated();
742 }
743 break;
744 case CSR_TDATA2:
745 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
746 break;
747 }
748 if (state.tselect < state.num_triggers) {
749 state.tdata2[state.tselect] = val;
750 }
751 break;
752 case CSR_DCSR:
753 state.dcsr.prv = get_field(val, DCSR_PRV);
754 state.dcsr.step = get_field(val, DCSR_STEP);
755 // TODO: ndreset and fullreset
756 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
757 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
758 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
759 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
760 state.dcsr.halt = get_field(val, DCSR_HALT);
761 break;
762 case CSR_DPC:
763 state.dpc = val & ~(reg_t)1;
764 break;
765 case CSR_DSCRATCH:
766 state.dscratch = val;
767 break;
768 }
769 }
770
771 reg_t processor_t::get_csr(int which)
772 {
773 uint32_t ctr_en = -1;
774 if (state.prv < PRV_M)
775 ctr_en &= state.mcounteren;
776 if (state.prv < PRV_S)
777 ctr_en &= state.scounteren;
778 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
779
780 if (ctr_ok) {
781 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
782 return 0;
783 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
784 return 0;
785 }
786 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
787 return 0;
788 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
789 return 0;
790 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
791 return 0;
792
793 switch (which)
794 {
795 #ifdef SPIKE_SIMPLEV
796 case CSR_USVVL:
797 return state.sv().vl;
798 case CSR_USVSTATE:
799 return (state.sv().vl-1) | ((state.sv().mvl-1)<<6) |
800 (state.sv().srcoffs<<12) | (state.sv().destoffs<<18) ;
801 case CSR_USVMVL:
802 return state.sv().mvl;
803 case CSR_SVREGCFG0:
804 case CSR_SVREGCFG1:
805 case CSR_SVREGCFG2:
806 case CSR_SVREGCFG3:
807 case CSR_SVREGCFG4:
808 case CSR_SVREGCFG5:
809 case CSR_SVREGCFG6:
810 case CSR_SVREGCFG7:
811 return 0;// XXX TODO: return correct entry
812 case CSR_SVPREDCFG0:
813 case CSR_SVPREDCFG1:
814 case CSR_SVPREDCFG2:
815 case CSR_SVPREDCFG3:
816 case CSR_SVPREDCFG4:
817 case CSR_SVPREDCFG5:
818 case CSR_SVPREDCFG6:
819 case CSR_SVPREDCFG7:
820 return 0;// XXX TODO: return correct entry
821 case CSR_UREMAP:
822 return 0;// XXX TODO: return correct entry
823 case CSR_USHAPE0:
824 case CSR_USHAPE1:
825 case CSR_USHAPE2:
826 return 0;// XXX TODO: return correct entry
827 #endif
828 case CSR_FFLAGS:
829 require_fp;
830 if (!supports_extension('F'))
831 break;
832 return state.fflags;
833 case CSR_FRM:
834 require_fp;
835 if (!supports_extension('F'))
836 break;
837 return state.frm;
838 case CSR_FCSR:
839 require_fp;
840 if (!supports_extension('F'))
841 break;
842 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
843 case CSR_INSTRET:
844 case CSR_CYCLE:
845 if (ctr_ok)
846 return state.minstret;
847 break;
848 case CSR_MINSTRET:
849 case CSR_MCYCLE:
850 return state.minstret;
851 case CSR_INSTRETH:
852 case CSR_CYCLEH:
853 if (ctr_ok && xlen == 32)
854 return state.minstret >> 32;
855 break;
856 case CSR_MINSTRETH:
857 case CSR_MCYCLEH:
858 if (xlen == 32)
859 return state.minstret >> 32;
860 break;
861 case CSR_SCOUNTEREN: return state.scounteren;
862 case CSR_MCOUNTEREN: return state.mcounteren;
863 case CSR_SSTATUS: {
864 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
865 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR | SSTATUS_UXL;
866 reg_t sstatus = state.mstatus & mask;
867 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
868 (sstatus & SSTATUS_XS) == SSTATUS_XS)
869 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
870 return sstatus;
871 }
872 case CSR_SIP: return state.mip & state.mideleg;
873 case CSR_SIE: return state.mie & state.mideleg;
874 case CSR_SEPC: return state.sepc & pc_alignment_mask();
875 case CSR_STVAL: return state.stval;
876 case CSR_STVEC: return state.stvec;
877 case CSR_SCAUSE:
878 if (max_xlen > xlen)
879 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
880 return state.scause;
881 case CSR_SATP:
882 if (get_field(state.mstatus, MSTATUS_TVM))
883 require_privilege(PRV_M);
884 return state.satp;
885 case CSR_SSCRATCH: return state.sscratch;
886 case CSR_MSTATUS: return state.mstatus;
887 case CSR_MIP: return state.mip;
888 case CSR_MIE: return state.mie;
889 case CSR_MEPC: return state.mepc & pc_alignment_mask();
890 case CSR_MSCRATCH: return state.mscratch;
891 case CSR_MCAUSE: return state.mcause;
892 case CSR_MTVAL: return state.mtval;
893 case CSR_MISA: return state.misa;
894 case CSR_MARCHID: return 0;
895 case CSR_MIMPID: return 0;
896 case CSR_MVENDORID: return 0;
897 case CSR_MHARTID: return id;
898 case CSR_MTVEC: return state.mtvec;
899 case CSR_MEDELEG: return state.medeleg;
900 case CSR_MIDELEG: return state.mideleg;
901 case CSR_TSELECT: return state.tselect;
902 case CSR_TDATA1:
903 if (state.tselect < state.num_triggers) {
904 reg_t v = 0;
905 mcontrol_t *mc = &state.mcontrol[state.tselect];
906 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
907 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
908 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
909 v = set_field(v, MCONTROL_SELECT, mc->select);
910 v = set_field(v, MCONTROL_TIMING, mc->timing);
911 v = set_field(v, MCONTROL_ACTION, mc->action);
912 v = set_field(v, MCONTROL_CHAIN, mc->chain);
913 v = set_field(v, MCONTROL_MATCH, mc->match);
914 v = set_field(v, MCONTROL_M, mc->m);
915 v = set_field(v, MCONTROL_H, mc->h);
916 v = set_field(v, MCONTROL_S, mc->s);
917 v = set_field(v, MCONTROL_U, mc->u);
918 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
919 v = set_field(v, MCONTROL_STORE, mc->store);
920 v = set_field(v, MCONTROL_LOAD, mc->load);
921 return v;
922 } else {
923 return 0;
924 }
925 break;
926 case CSR_TDATA2:
927 if (state.tselect < state.num_triggers) {
928 return state.tdata2[state.tselect];
929 } else {
930 return 0;
931 }
932 break;
933 case CSR_TDATA3: return 0;
934 case CSR_DCSR:
935 {
936 uint32_t v = 0;
937 v = set_field(v, DCSR_XDEBUGVER, 1);
938 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
939 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
940 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
941 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
942 v = set_field(v, DCSR_STOPCYCLE, 0);
943 v = set_field(v, DCSR_STOPTIME, 0);
944 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
945 v = set_field(v, DCSR_STEP, state.dcsr.step);
946 v = set_field(v, DCSR_PRV, state.dcsr.prv);
947 return v;
948 }
949 case CSR_DPC:
950 return state.dpc & pc_alignment_mask();
951 case CSR_DSCRATCH:
952 return state.dscratch;
953 }
954 throw trap_illegal_instruction(0);
955 }
956
957 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
958 {
959 throw trap_illegal_instruction(0);
960 }
961
962 insn_func_t processor_t::decode_insn(insn_t insn)
963 {
964 // look up opcode in hash table
965 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
966 insn_desc_t desc = opcode_cache[idx];
967
968 if (unlikely(insn.bits() != desc.match)) {
969 // fall back to linear search
970 insn_desc_t* p = &instructions[0];
971 while ((insn.bits() & p->mask) != p->match)
972 p++;
973 desc = *p;
974
975 if (p->mask != 0 && p > &instructions[0]) {
976 if (p->match != (p-1)->match && p->match != (p+1)->match) {
977 // move to front of opcode list to reduce miss penalty
978 while (--p >= &instructions[0])
979 *(p+1) = *p;
980 instructions[0] = desc;
981 }
982 }
983
984 opcode_cache[idx] = desc;
985 opcode_cache[idx].match = insn.bits();
986 }
987
988 return xlen == 64 ? desc.rv64 : desc.rv32;
989 }
990
991 void processor_t::register_insn(insn_desc_t desc)
992 {
993 instructions.push_back(desc);
994 }
995
996 void processor_t::build_opcode_map()
997 {
998 struct cmp {
999 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
1000 if (lhs.match == rhs.match)
1001 return lhs.mask > rhs.mask;
1002 return lhs.match > rhs.match;
1003 }
1004 };
1005 std::sort(instructions.begin(), instructions.end(), cmp());
1006
1007 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
1008 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
1009 }
1010
1011 void processor_t::register_extension(extension_t* x)
1012 {
1013 for (auto insn : x->get_instructions())
1014 register_insn(insn);
1015 build_opcode_map();
1016 for (auto disasm_insn : x->get_disasms())
1017 disassembler->add_insn(disasm_insn);
1018 if (ext != NULL)
1019 throw std::logic_error("only one extension may be registered");
1020 ext = x;
1021 x->set_processor(this);
1022 }
1023
1024 void processor_t::register_base_instructions()
1025 {
1026 #define DECLARE_INSN(name, match, mask) \
1027 insn_bits_t name##_match = (match), name##_mask = (mask);
1028 #include "encoding.h"
1029 #undef DECLARE_INSN
1030
1031 #define DEFINE_INSN(name) \
1032 REGISTER_INSN(this, name, name##_match, name##_mask)
1033 #include "insn_list.h"
1034 #undef DEFINE_INSN
1035
1036 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
1037 build_opcode_map();
1038 }
1039
1040 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
1041 {
1042 switch (addr)
1043 {
1044 case 0:
1045 if (len <= 4) {
1046 memset(bytes, 0, len);
1047 bytes[0] = get_field(state.mip, MIP_MSIP);
1048 return true;
1049 }
1050 break;
1051 }
1052
1053 return false;
1054 }
1055
1056 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
1057 {
1058 switch (addr)
1059 {
1060 case 0:
1061 if (len <= 4) {
1062 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
1063 return true;
1064 }
1065 break;
1066 }
1067
1068 return false;
1069 }
1070
1071 void processor_t::trigger_updated()
1072 {
1073 mmu->flush_tlb();
1074 mmu->check_triggers_fetch = false;
1075 mmu->check_triggers_load = false;
1076 mmu->check_triggers_store = false;
1077
1078 for (unsigned i = 0; i < state.num_triggers; i++) {
1079 if (state.mcontrol[i].execute) {
1080 mmu->check_triggers_fetch = true;
1081 }
1082 if (state.mcontrol[i].load) {
1083 mmu->check_triggers_load = true;
1084 }
1085 if (state.mcontrol[i].store) {
1086 mmu->check_triggers_store = true;
1087 }
1088 }
1089 }
1090