Merge pull request #165 from riscv/small_progbuf
[riscv-isa-sim.git] / riscv / debug_defines.h
1 #define DTM_IDCODE 0x01
2 /*
3 * Identifies the release version of this part.
4 */
5 #define DTM_IDCODE_VERSION_OFFSET 28
6 #define DTM_IDCODE_VERSION_LENGTH 4
7 #define DTM_IDCODE_VERSION (0xfU << DTM_IDCODE_VERSION_OFFSET)
8 /*
9 * Identifies the designer's part number of this part.
10 */
11 #define DTM_IDCODE_PARTNUMBER_OFFSET 12
12 #define DTM_IDCODE_PARTNUMBER_LENGTH 16
13 #define DTM_IDCODE_PARTNUMBER (0xffffU << DTM_IDCODE_PARTNUMBER_OFFSET)
14 /*
15 * Identifies the designer/manufacturer of this part. Bits 6:0 must be
16 * bits 6:0 of the designer/manufacturer's Identification Code as
17 * assigned by JEDEC Standard JEP106. Bits 10:7 contain the modulo-16
18 * count of the number of continuation characters (0x7f) in that same
19 * Identification Code.
20 */
21 #define DTM_IDCODE_MANUFID_OFFSET 1
22 #define DTM_IDCODE_MANUFID_LENGTH 11
23 #define DTM_IDCODE_MANUFID (0x7ffU << DTM_IDCODE_MANUFID_OFFSET)
24 #define DTM_IDCODE_1_OFFSET 0
25 #define DTM_IDCODE_1_LENGTH 1
26 #define DTM_IDCODE_1 (0x1U << DTM_IDCODE_1_OFFSET)
27 #define DTM_DTMCS 0x10
28 /*
29 * Writing 1 to this bit does a hard reset of the DTM,
30 * causing the DTM to forget about any outstanding DMI transactions.
31 * In general this should only be used when the Debugger has
32 * reason to expect that the outstanding DMI transaction will never
33 * complete (e.g. a reset condition caused an inflight DMI transaction to
34 * be cancelled).
35 */
36 #define DTM_DTMCS_DMIHARDRESET_OFFSET 17
37 #define DTM_DTMCS_DMIHARDRESET_LENGTH 1
38 #define DTM_DTMCS_DMIHARDRESET (0x1U << DTM_DTMCS_DMIHARDRESET_OFFSET)
39 /*
40 * Writing 1 to this bit clears the sticky error state
41 * and allows the DTM to retry or complete the previous
42 * transaction.
43 */
44 #define DTM_DTMCS_DMIRESET_OFFSET 16
45 #define DTM_DTMCS_DMIRESET_LENGTH 1
46 #define DTM_DTMCS_DMIRESET (0x1U << DTM_DTMCS_DMIRESET_OFFSET)
47 /*
48 * This is a hint to the debugger of the minimum number of
49 * cycles a debugger should spend in
50 * Run-Test/Idle after every DMI scan to avoid a `busy'
51 * return code (\Fdmistat of 3). A debugger must still
52 * check \Fdmistat when necessary.
53 *
54 * 0: It is not necessary to enter Run-Test/Idle at all.
55 *
56 * 1: Enter Run-Test/Idle and leave it immediately.
57 *
58 * 2: Enter Run-Test/Idle and stay there for 1 cycle before leaving.
59 *
60 * And so on.
61 */
62 #define DTM_DTMCS_IDLE_OFFSET 12
63 #define DTM_DTMCS_IDLE_LENGTH 3
64 #define DTM_DTMCS_IDLE (0x7U << DTM_DTMCS_IDLE_OFFSET)
65 /*
66 * 0: No error.
67 *
68 * 1: Reserved. Interpret the same as 2.
69 *
70 * 2: An operation failed (resulted in \Fop of 2).
71 *
72 * 3: An operation was attempted while a DMI access was still in
73 * progress (resulted in \Fop of 3).
74 */
75 #define DTM_DTMCS_DMISTAT_OFFSET 10
76 #define DTM_DTMCS_DMISTAT_LENGTH 2
77 #define DTM_DTMCS_DMISTAT (0x3U << DTM_DTMCS_DMISTAT_OFFSET)
78 /*
79 * The size of \Faddress in \Rdmi.
80 */
81 #define DTM_DTMCS_ABITS_OFFSET 4
82 #define DTM_DTMCS_ABITS_LENGTH 6
83 #define DTM_DTMCS_ABITS (0x3fU << DTM_DTMCS_ABITS_OFFSET)
84 /*
85 * 0: Version described in spec version 0.11.
86 *
87 * 1: Version described in spec version 0.13 (and later?), which
88 * reduces the DMI data width to 32 bits.
89 *
90 * 15: Version not described in any available version of this spec.
91 */
92 #define DTM_DTMCS_VERSION_OFFSET 0
93 #define DTM_DTMCS_VERSION_LENGTH 4
94 #define DTM_DTMCS_VERSION (0xfU << DTM_DTMCS_VERSION_OFFSET)
95 #define DTM_DMI 0x11
96 /*
97 * Address used for DMI access. In Update-DR this value is used
98 * to access the DM over the DMI.
99 */
100 #define DTM_DMI_ADDRESS_OFFSET 34
101 #define DTM_DMI_ADDRESS_LENGTH abits
102 #define DTM_DMI_ADDRESS (((1L<<abits)-1) << DTM_DMI_ADDRESS_OFFSET)
103 /*
104 * The data to send to the DM over the DMI during Update-DR, and
105 * the data returned from the DM as a result of the previous operation.
106 */
107 #define DTM_DMI_DATA_OFFSET 2
108 #define DTM_DMI_DATA_LENGTH 32
109 #define DTM_DMI_DATA (0xffffffffULL << DTM_DMI_DATA_OFFSET)
110 /*
111 * When the debugger writes this field, it has the following meaning:
112 *
113 * 0: Ignore \Fdata and \Faddress. (nop)
114 *
115 * Don't send anything over the DMI during Update-DR.
116 * This operation should never result in a busy or error response.
117 * The address and data reported in the following Capture-DR
118 * are undefined.
119 *
120 * 1: Read from \Faddress. (read)
121 *
122 * 2: Write \Fdata to \Faddress. (write)
123 *
124 * 3: Reserved.
125 *
126 * When the debugger reads this field, it means the following:
127 *
128 * 0: The previous operation completed successfully.
129 *
130 * 1: Reserved.
131 *
132 * 2: A previous operation failed. The data scanned into \Rdmi in
133 * this access will be ignored. This status is sticky and can be
134 * cleared by writing \Fdmireset in \Rdtmcs.
135 *
136 * This indicates that the DM itself responded with an error.
137 * Note: there are no specified cases in which the DM would
138 * respond with an error, and DMI is not required to support
139 * returning errors.
140 *
141 * 3: An operation was attempted while a DMI request is still in
142 * progress. The data scanned into \Rdmi in this access will be
143 * ignored. This status is sticky and can be cleared by writing
144 * \Fdmireset in \Rdtmcs. If a debugger sees this status, it
145 * needs to give the target more TCK edges between Update-DR and
146 * Capture-DR. The simplest way to do that is to add extra transitions
147 * in Run-Test/Idle.
148 *
149 * (The DTM, DM, and/or component may be in different clock domains,
150 * so synchronization may be required. Some relatively fixed number of
151 * TCK ticks may be needed for the request to reach the DM, complete,
152 * and for the response to be synchronized back into the TCK domain.)
153 */
154 #define DTM_DMI_OP_OFFSET 0
155 #define DTM_DMI_OP_LENGTH 2
156 #define DTM_DMI_OP (0x3ULL << DTM_DMI_OP_OFFSET)
157 #define CSR_DCSR 0x7b0
158 /*
159 * 0: There is no external debug support.
160 *
161 * 4: External debug support exists as it is described in this document.
162 *
163 * 15: There is external debug support, but it does not conform to any
164 * available version of this spec.
165 */
166 #define CSR_DCSR_XDEBUGVER_OFFSET 28
167 #define CSR_DCSR_XDEBUGVER_LENGTH 4
168 #define CSR_DCSR_XDEBUGVER (0xfU << CSR_DCSR_XDEBUGVER_OFFSET)
169 /*
170 * When 1, {\tt ebreak} instructions in Machine Mode enter Debug Mode.
171 */
172 #define CSR_DCSR_EBREAKM_OFFSET 15
173 #define CSR_DCSR_EBREAKM_LENGTH 1
174 #define CSR_DCSR_EBREAKM (0x1U << CSR_DCSR_EBREAKM_OFFSET)
175 /*
176 * When 1, {\tt ebreak} instructions in Supervisor Mode enter Debug Mode.
177 */
178 #define CSR_DCSR_EBREAKS_OFFSET 13
179 #define CSR_DCSR_EBREAKS_LENGTH 1
180 #define CSR_DCSR_EBREAKS (0x1U << CSR_DCSR_EBREAKS_OFFSET)
181 /*
182 * When 1, {\tt ebreak} instructions in User/Application Mode enter
183 * Debug Mode.
184 */
185 #define CSR_DCSR_EBREAKU_OFFSET 12
186 #define CSR_DCSR_EBREAKU_LENGTH 1
187 #define CSR_DCSR_EBREAKU (0x1U << CSR_DCSR_EBREAKU_OFFSET)
188 /*
189 * 0: Interrupts are disabled during single stepping.
190 *
191 * 1: Interrupts are enabled during single stepping.
192 *
193 * Implementations may hard wire this bit to 0.
194 * The debugger must read back the value it
195 * writes to check whether the feature is supported. If not
196 * supported, interrupt behavior can be emulated by the debugger.
197 */
198 #define CSR_DCSR_STEPIE_OFFSET 11
199 #define CSR_DCSR_STEPIE_LENGTH 1
200 #define CSR_DCSR_STEPIE (0x1U << CSR_DCSR_STEPIE_OFFSET)
201 /*
202 * 0: Increment counters as usual.
203 *
204 * 1: Don't increment any counters while in Debug Mode or on {\tt
205 * ebreak} instructions that cause entry into Debug Mode. These
206 * counters include the {\tt cycle} and {\tt instret} CSRs. This is
207 * preferred for most debugging scenarios.
208 *
209 * An implementation may choose not to support writing to this bit.
210 * The debugger must read back the value it writes to check whether
211 * the feature is supported.
212 */
213 #define CSR_DCSR_STOPCOUNT_OFFSET 10
214 #define CSR_DCSR_STOPCOUNT_LENGTH 1
215 #define CSR_DCSR_STOPCOUNT (0x1U << CSR_DCSR_STOPCOUNT_OFFSET)
216 /*
217 * 0: Increment timers as usual.
218 *
219 * 1: Don't increment any hart-local timers while in Debug Mode.
220 *
221 * An implementation may choose not to support writing to this bit.
222 * The debugger must read back the value it writes to check whether
223 * the feature is supported.
224 */
225 #define CSR_DCSR_STOPTIME_OFFSET 9
226 #define CSR_DCSR_STOPTIME_LENGTH 1
227 #define CSR_DCSR_STOPTIME (0x1U << CSR_DCSR_STOPTIME_OFFSET)
228 /*
229 * Explains why Debug Mode was entered.
230 *
231 * When there are multiple reasons to enter Debug Mode in a single
232 * cycle, the cause with the highest priority is the one written.
233 *
234 * 1: An {\tt ebreak} instruction was executed. (priority 3)
235 *
236 * 2: The Trigger Module caused a breakpoint exception. (priority 4)
237 *
238 * 3: The debugger requested entry to Debug Mode. (priority 2)
239 *
240 * 4: The hart single stepped because \Fstep was set. (priority 1)
241 *
242 * Other values are reserved for future use.
243 */
244 #define CSR_DCSR_CAUSE_OFFSET 6
245 #define CSR_DCSR_CAUSE_LENGTH 3
246 #define CSR_DCSR_CAUSE (0x7U << CSR_DCSR_CAUSE_OFFSET)
247 /*
248 * When set and not in Debug Mode, the hart will only execute a single
249 * instruction and then enter Debug Mode.
250 * If the instruction does not complete due to an exception,
251 * the hart will immediately enter Debug Mode before executing
252 * the trap handler, with appropriate exception registers set.
253 */
254 #define CSR_DCSR_STEP_OFFSET 2
255 #define CSR_DCSR_STEP_LENGTH 1
256 #define CSR_DCSR_STEP (0x1U << CSR_DCSR_STEP_OFFSET)
257 /*
258 * Contains the privilege level the hart was operating in when Debug
259 * Mode was entered. The encoding is described in Table
260 * \ref{tab:privlevel}. A debugger can change this value to change
261 * the hart's privilege level when exiting Debug Mode.
262 *
263 * Not all privilege levels are supported on all harts. If the
264 * encoding written is not supported or the debugger is not allowed to
265 * change to it, the hart may change to any supported privilege level.
266 */
267 #define CSR_DCSR_PRV_OFFSET 0
268 #define CSR_DCSR_PRV_LENGTH 2
269 #define CSR_DCSR_PRV (0x3U << CSR_DCSR_PRV_OFFSET)
270 #define CSR_DPC 0x7b1
271 #define CSR_DPC_DPC_OFFSET 0
272 #define CSR_DPC_DPC_LENGTH XLEN
273 #define CSR_DPC_DPC (((1L<<XLEN)-1) << CSR_DPC_DPC_OFFSET)
274 #define CSR_DSCRATCH0 0x7b2
275 #define CSR_DSCRATCH1 0x7b3
276 #define CSR_TSELECT 0x7a0
277 #define CSR_TSELECT_INDEX_OFFSET 0
278 #define CSR_TSELECT_INDEX_LENGTH XLEN
279 #define CSR_TSELECT_INDEX (((1L<<XLEN)-1) << CSR_TSELECT_INDEX_OFFSET)
280 #define CSR_TDATA1 0x7a1
281 /*
282 * 0: There is no trigger at this \Rtselect.
283 *
284 * 1: The trigger is a legacy SiFive address match trigger. These
285 * should not be implemented and aren't further documented here.
286 *
287 * 2: The trigger is an address/data match trigger. The remaining bits
288 * in this register act as described in \Rmcontrol.
289 *
290 * 3: The trigger is an instruction count trigger. The remaining bits
291 * in this register act as described in \Ricount.
292 *
293 * 15: This trigger exists (so enumeration shouldn't terminate), but
294 * is not currently available.
295 *
296 * Other values are reserved for future use.
297 */
298 #define CSR_TDATA1_TYPE_OFFSET XLEN-4
299 #define CSR_TDATA1_TYPE_LENGTH 4
300 #define CSR_TDATA1_TYPE (0xfULL << CSR_TDATA1_TYPE_OFFSET)
301 /*
302 * 0: Both Debug and M Mode can write the {\tt tdata} registers at the
303 * selected \Rtselect.
304 *
305 * 1: Only Debug Mode can write the {\tt tdata} registers at the
306 * selected \Rtselect. Writes from other modes are ignored.
307 *
308 * This bit is only writable from Debug Mode.
309 */
310 #define CSR_TDATA1_DMODE_OFFSET XLEN-5
311 #define CSR_TDATA1_DMODE_LENGTH 1
312 #define CSR_TDATA1_DMODE (0x1ULL << CSR_TDATA1_DMODE_OFFSET)
313 /*
314 * Trigger-specific data.
315 */
316 #define CSR_TDATA1_DATA_OFFSET 0
317 #define CSR_TDATA1_DATA_LENGTH XLEN - 5
318 #define CSR_TDATA1_DATA (((1L<<XLEN - 5)-1) << CSR_TDATA1_DATA_OFFSET)
319 #define CSR_TDATA2 0x7a2
320 #define CSR_TDATA2_DATA_OFFSET 0
321 #define CSR_TDATA2_DATA_LENGTH XLEN
322 #define CSR_TDATA2_DATA (((1L<<XLEN)-1) << CSR_TDATA2_DATA_OFFSET)
323 #define CSR_TDATA3 0x7a3
324 #define CSR_TDATA3_DATA_OFFSET 0
325 #define CSR_TDATA3_DATA_LENGTH XLEN
326 #define CSR_TDATA3_DATA (((1L<<XLEN)-1) << CSR_TDATA3_DATA_OFFSET)
327 #define CSR_MCONTROL 0x7a1
328 #define CSR_MCONTROL_TYPE_OFFSET XLEN-4
329 #define CSR_MCONTROL_TYPE_LENGTH 4
330 #define CSR_MCONTROL_TYPE (0xfULL << CSR_MCONTROL_TYPE_OFFSET)
331 #define CSR_MCONTROL_DMODE_OFFSET XLEN-5
332 #define CSR_MCONTROL_DMODE_LENGTH 1
333 #define CSR_MCONTROL_DMODE (0x1ULL << CSR_MCONTROL_DMODE_OFFSET)
334 /*
335 * Specifies the largest naturally aligned powers-of-two (NAPOT) range
336 * supported by the hardware. The value is the logarithm base 2 of the
337 * number of bytes in that range. A value of 0 indicates that only
338 * exact value matches are supported (one byte range). A value of 63
339 * corresponds to the maximum NAPOT range, which is $2^{63}$ bytes in
340 * size.
341 */
342 #define CSR_MCONTROL_MASKMAX_OFFSET XLEN-11
343 #define CSR_MCONTROL_MASKMAX_LENGTH 6
344 #define CSR_MCONTROL_MASKMAX (0x3fULL << CSR_MCONTROL_MASKMAX_OFFSET)
345 /*
346 * 0: Perform a match on the virtual address.
347 *
348 * 1: Perform a match on the data value loaded/stored, or the
349 * instruction executed.
350 */
351 #define CSR_MCONTROL_SELECT_OFFSET 19
352 #define CSR_MCONTROL_SELECT_LENGTH 1
353 #define CSR_MCONTROL_SELECT (0x1ULL << CSR_MCONTROL_SELECT_OFFSET)
354 /*
355 * 0: The action for this trigger will be taken just before the
356 * instruction that triggered it is executed, but after all preceding
357 * instructions are are committed.
358 *
359 * 1: The action for this trigger will be taken after the instruction
360 * that triggered it is executed. It should be taken before the next
361 * instruction is executed, but it is better to implement triggers and
362 * not implement that suggestion than to not implement them at all.
363 *
364 * Most hardware will only implement one timing or the other, possibly
365 * dependent on \Fselect, \Fexecute, \Fload, and \Fstore. This bit
366 * primarily exists for the hardware to communicate to the debugger
367 * what will happen. Hardware may implement the bit fully writable, in
368 * which case the debugger has a little more control.
369 *
370 * Data load triggers with \Ftiming of 0 will result in the same load
371 * happening again when the debugger lets the core run. For data load
372 * triggers, debuggers must first attempt to set the breakpoint with
373 * \Ftiming of 1.
374 *
375 * A chain of triggers that don't all have the same \Ftiming value
376 * will never fire (unless consecutive instructions match the
377 * appropriate triggers).
378 */
379 #define CSR_MCONTROL_TIMING_OFFSET 18
380 #define CSR_MCONTROL_TIMING_LENGTH 1
381 #define CSR_MCONTROL_TIMING (0x1ULL << CSR_MCONTROL_TIMING_OFFSET)
382 /*
383 * Determines what happens when this trigger matches.
384 *
385 * 0: Raise a breakpoint exception. (Used when software wants to use
386 * the trigger module without an external debugger attached.)
387 *
388 * 1: Enter Debug Mode. (Only supported when \Fdmode is 1.)
389 *
390 * 2: Start tracing.
391 *
392 * 3: Stop tracing.
393 *
394 * 4: Emit trace data for this match. If it is a data access match,
395 * emit appropriate Load/Store Address/Data. If it is an instruction
396 * execution, emit its PC.
397 *
398 * Other values are reserved for future use.
399 */
400 #define CSR_MCONTROL_ACTION_OFFSET 12
401 #define CSR_MCONTROL_ACTION_LENGTH 6
402 #define CSR_MCONTROL_ACTION (0x3fULL << CSR_MCONTROL_ACTION_OFFSET)
403 /*
404 * 0: When this trigger matches, the configured action is taken.
405 *
406 * 1: While this trigger does not match, it prevents the trigger with
407 * the next index from matching.
408 */
409 #define CSR_MCONTROL_CHAIN_OFFSET 11
410 #define CSR_MCONTROL_CHAIN_LENGTH 1
411 #define CSR_MCONTROL_CHAIN (0x1ULL << CSR_MCONTROL_CHAIN_OFFSET)
412 /*
413 * 0: Matches when the value equals \Rtdatatwo.
414 *
415 * 1: Matches when the top M bits of the value match the top M bits of
416 * \Rtdatatwo. M is XLEN-1 minus the index of the least-significant
417 * bit containing 0 in \Rtdatatwo.
418 *
419 * 2: Matches when the value is greater than (unsigned) or equal to
420 * \Rtdatatwo.
421 *
422 * 3: Matches when the value is less than (unsigned) \Rtdatatwo.
423 *
424 * 4: Matches when the lower half of the value equals the lower half
425 * of \Rtdatatwo after the lower half of the value is ANDed with the
426 * upper half of \Rtdatatwo.
427 *
428 * 5: Matches when the upper half of the value equals the lower half
429 * of \Rtdatatwo after the upper half of the value is ANDed with the
430 * upper half of \Rtdatatwo.
431 *
432 * Other values are reserved for future use.
433 */
434 #define CSR_MCONTROL_MATCH_OFFSET 7
435 #define CSR_MCONTROL_MATCH_LENGTH 4
436 #define CSR_MCONTROL_MATCH (0xfULL << CSR_MCONTROL_MATCH_OFFSET)
437 /*
438 * When set, enable this trigger in M mode.
439 */
440 #define CSR_MCONTROL_M_OFFSET 6
441 #define CSR_MCONTROL_M_LENGTH 1
442 #define CSR_MCONTROL_M (0x1ULL << CSR_MCONTROL_M_OFFSET)
443 /*
444 * When set, enable this trigger in H mode.
445 */
446 #define CSR_MCONTROL_H_OFFSET 5
447 #define CSR_MCONTROL_H_LENGTH 1
448 #define CSR_MCONTROL_H (0x1ULL << CSR_MCONTROL_H_OFFSET)
449 /*
450 * When set, enable this trigger in S mode.
451 */
452 #define CSR_MCONTROL_S_OFFSET 4
453 #define CSR_MCONTROL_S_LENGTH 1
454 #define CSR_MCONTROL_S (0x1ULL << CSR_MCONTROL_S_OFFSET)
455 /*
456 * When set, enable this trigger in U mode.
457 */
458 #define CSR_MCONTROL_U_OFFSET 3
459 #define CSR_MCONTROL_U_LENGTH 1
460 #define CSR_MCONTROL_U (0x1ULL << CSR_MCONTROL_U_OFFSET)
461 /*
462 * When set, the trigger fires on the virtual address or opcode of an
463 * instruction that is executed.
464 */
465 #define CSR_MCONTROL_EXECUTE_OFFSET 2
466 #define CSR_MCONTROL_EXECUTE_LENGTH 1
467 #define CSR_MCONTROL_EXECUTE (0x1ULL << CSR_MCONTROL_EXECUTE_OFFSET)
468 /*
469 * When set, the trigger fires on the virtual address or data of a store.
470 */
471 #define CSR_MCONTROL_STORE_OFFSET 1
472 #define CSR_MCONTROL_STORE_LENGTH 1
473 #define CSR_MCONTROL_STORE (0x1ULL << CSR_MCONTROL_STORE_OFFSET)
474 /*
475 * When set, the trigger fires on the virtual address or data of a load.
476 */
477 #define CSR_MCONTROL_LOAD_OFFSET 0
478 #define CSR_MCONTROL_LOAD_LENGTH 1
479 #define CSR_MCONTROL_LOAD (0x1ULL << CSR_MCONTROL_LOAD_OFFSET)
480 #define CSR_ICOUNT 0x7a1
481 #define CSR_ICOUNT_TYPE_OFFSET XLEN-4
482 #define CSR_ICOUNT_TYPE_LENGTH 4
483 #define CSR_ICOUNT_TYPE (0xfULL << CSR_ICOUNT_TYPE_OFFSET)
484 #define CSR_ICOUNT_DMODE_OFFSET XLEN-5
485 #define CSR_ICOUNT_DMODE_LENGTH 1
486 #define CSR_ICOUNT_DMODE (0x1ULL << CSR_ICOUNT_DMODE_OFFSET)
487 /*
488 * When count is decremented to 0, the trigger fires. Instead of
489 * changing \Fcount from 1 to 0, it is also acceptable for hardware to
490 * clear \Fm, \Fh, \Fs, and \Fu. This allows \Fcount to be hard-wired
491 * to 1 if this register just exists for single step.
492 */
493 #define CSR_ICOUNT_COUNT_OFFSET 10
494 #define CSR_ICOUNT_COUNT_LENGTH 14
495 #define CSR_ICOUNT_COUNT (0x3fffULL << CSR_ICOUNT_COUNT_OFFSET)
496 /*
497 * When set, every instruction completed or exception taken in M mode decrements \Fcount
498 * by 1.
499 */
500 #define CSR_ICOUNT_M_OFFSET 9
501 #define CSR_ICOUNT_M_LENGTH 1
502 #define CSR_ICOUNT_M (0x1ULL << CSR_ICOUNT_M_OFFSET)
503 /*
504 * When set, every instruction completed or exception taken in in H mode decrements \Fcount
505 * by 1.
506 */
507 #define CSR_ICOUNT_H_OFFSET 8
508 #define CSR_ICOUNT_H_LENGTH 1
509 #define CSR_ICOUNT_H (0x1ULL << CSR_ICOUNT_H_OFFSET)
510 /*
511 * When set, every instruction completed or exception taken in S mode decrements \Fcount
512 * by 1.
513 */
514 #define CSR_ICOUNT_S_OFFSET 7
515 #define CSR_ICOUNT_S_LENGTH 1
516 #define CSR_ICOUNT_S (0x1ULL << CSR_ICOUNT_S_OFFSET)
517 /*
518 * When set, every instruction completed or exception taken in U mode decrements \Fcount
519 * by 1.
520 */
521 #define CSR_ICOUNT_U_OFFSET 6
522 #define CSR_ICOUNT_U_LENGTH 1
523 #define CSR_ICOUNT_U (0x1ULL << CSR_ICOUNT_U_OFFSET)
524 /*
525 * Determines what happens when this trigger matches.
526 *
527 * 0: Raise a breakpoint exception. (Used when software wants to use the
528 * trigger module without an external debugger attached.)
529 *
530 * 1: Enter Debug Mode. (Only supported when \Fdmode is 1.)
531 *
532 * 2: Start tracing.
533 *
534 * 3: Stop tracing.
535 *
536 * 4: Emit trace data for this match. If it is a data access match,
537 * emit appropriate Load/Store Address/Data. If it is an instruction
538 * execution, emit its PC.
539 *
540 * Other values are reserved for future use.
541 */
542 #define CSR_ICOUNT_ACTION_OFFSET 0
543 #define CSR_ICOUNT_ACTION_LENGTH 6
544 #define CSR_ICOUNT_ACTION (0x3fULL << CSR_ICOUNT_ACTION_OFFSET)
545 #define DMI_DMSTATUS 0x11
546 /*
547 * Gets set if the Debug Module was accessed incorrectly.
548 *
549 * 0 (none): No error.
550 *
551 * 1 (badaddr): There was an access to an unimplemented Debug Module
552 * address.
553 *
554 * 7 (other): An access failed for another reason.
555 */
556 #define DMI_DMSTATUS_DMERR_OFFSET 24
557 #define DMI_DMSTATUS_DMERR_LENGTH 3
558 #define DMI_DMSTATUS_DMERR (0x7U << DMI_DMSTATUS_DMERR_OFFSET)
559 /*
560 * If 1, then there is an implicit {\tt ebreak} instruction at the
561 * non-existent word immediately after the Program Buffer. This saves
562 * the debugger from having to write the {\tt ebreak} itself, and
563 * allows the Program Buffer to be one word smaller.
564 *
565 * This must be 1 when \Fprogbufsize is 1.
566 */
567 #define DMI_DMSTATUS_IMPEBREAK_OFFSET 22
568 #define DMI_DMSTATUS_IMPEBREAK_LENGTH 1
569 #define DMI_DMSTATUS_IMPEBREAK (0x1U << DMI_DMSTATUS_IMPEBREAK_OFFSET)
570 /*
571 * This field is 1 when all currently selected harts have been reset but the reset has not been acknowledged.
572 */
573 #define DMI_DMSTATUS_ALLHAVERESET_OFFSET 19
574 #define DMI_DMSTATUS_ALLHAVERESET_LENGTH 1
575 #define DMI_DMSTATUS_ALLHAVERESET (0x1U << DMI_DMSTATUS_ALLHAVERESET_OFFSET)
576 /*
577 * This field is 1 when any currently selected hart has been reset but the reset has not been acknowledged.
578 */
579 #define DMI_DMSTATUS_ANYHAVERESET_OFFSET 18
580 #define DMI_DMSTATUS_ANYHAVERESET_LENGTH 1
581 #define DMI_DMSTATUS_ANYHAVERESET (0x1U << DMI_DMSTATUS_ANYHAVERESET_OFFSET)
582 /*
583 * This field is 1 when all currently selected harts have acknowledged
584 * the previous resume request.
585 */
586 #define DMI_DMSTATUS_ALLRESUMEACK_OFFSET 17
587 #define DMI_DMSTATUS_ALLRESUMEACK_LENGTH 1
588 #define DMI_DMSTATUS_ALLRESUMEACK (0x1U << DMI_DMSTATUS_ALLRESUMEACK_OFFSET)
589 /*
590 * This field is 1 when any currently selected hart has acknowledged
591 * the previous resume request.
592 */
593 #define DMI_DMSTATUS_ANYRESUMEACK_OFFSET 16
594 #define DMI_DMSTATUS_ANYRESUMEACK_LENGTH 1
595 #define DMI_DMSTATUS_ANYRESUMEACK (0x1U << DMI_DMSTATUS_ANYRESUMEACK_OFFSET)
596 /*
597 * This field is 1 when all currently selected harts do not exist in this system.
598 */
599 #define DMI_DMSTATUS_ALLNONEXISTENT_OFFSET 15
600 #define DMI_DMSTATUS_ALLNONEXISTENT_LENGTH 1
601 #define DMI_DMSTATUS_ALLNONEXISTENT (0x1U << DMI_DMSTATUS_ALLNONEXISTENT_OFFSET)
602 /*
603 * This field is 1 when any currently selected hart does not exist in this system.
604 */
605 #define DMI_DMSTATUS_ANYNONEXISTENT_OFFSET 14
606 #define DMI_DMSTATUS_ANYNONEXISTENT_LENGTH 1
607 #define DMI_DMSTATUS_ANYNONEXISTENT (0x1U << DMI_DMSTATUS_ANYNONEXISTENT_OFFSET)
608 /*
609 * This field is 1 when all currently selected harts are unavailable.
610 */
611 #define DMI_DMSTATUS_ALLUNAVAIL_OFFSET 13
612 #define DMI_DMSTATUS_ALLUNAVAIL_LENGTH 1
613 #define DMI_DMSTATUS_ALLUNAVAIL (0x1U << DMI_DMSTATUS_ALLUNAVAIL_OFFSET)
614 /*
615 * This field is 1 when any currently selected hart is unavailable.
616 */
617 #define DMI_DMSTATUS_ANYUNAVAIL_OFFSET 12
618 #define DMI_DMSTATUS_ANYUNAVAIL_LENGTH 1
619 #define DMI_DMSTATUS_ANYUNAVAIL (0x1U << DMI_DMSTATUS_ANYUNAVAIL_OFFSET)
620 /*
621 * This field is 1 when all currently selected harts are running.
622 */
623 #define DMI_DMSTATUS_ALLRUNNING_OFFSET 11
624 #define DMI_DMSTATUS_ALLRUNNING_LENGTH 1
625 #define DMI_DMSTATUS_ALLRUNNING (0x1U << DMI_DMSTATUS_ALLRUNNING_OFFSET)
626 /*
627 * This field is 1 when any currently selected hart is running.
628 */
629 #define DMI_DMSTATUS_ANYRUNNING_OFFSET 10
630 #define DMI_DMSTATUS_ANYRUNNING_LENGTH 1
631 #define DMI_DMSTATUS_ANYRUNNING (0x1U << DMI_DMSTATUS_ANYRUNNING_OFFSET)
632 /*
633 * This field is 1 when all currently selected harts are halted.
634 */
635 #define DMI_DMSTATUS_ALLHALTED_OFFSET 9
636 #define DMI_DMSTATUS_ALLHALTED_LENGTH 1
637 #define DMI_DMSTATUS_ALLHALTED (0x1U << DMI_DMSTATUS_ALLHALTED_OFFSET)
638 /*
639 * This field is 1 when any currently selected hart is halted.
640 */
641 #define DMI_DMSTATUS_ANYHALTED_OFFSET 8
642 #define DMI_DMSTATUS_ANYHALTED_LENGTH 1
643 #define DMI_DMSTATUS_ANYHALTED (0x1U << DMI_DMSTATUS_ANYHALTED_OFFSET)
644 /*
645 * 0 when authentication is required before using the DM. 1 when the
646 * authentication check has passed. On components that don't implement
647 * authentication, this bit must be preset as 1.
648 */
649 #define DMI_DMSTATUS_AUTHENTICATED_OFFSET 7
650 #define DMI_DMSTATUS_AUTHENTICATED_LENGTH 1
651 #define DMI_DMSTATUS_AUTHENTICATED (0x1U << DMI_DMSTATUS_AUTHENTICATED_OFFSET)
652 /*
653 * 0: The authentication module is ready to process the next
654 * read/write to \Rauthdata.
655 *
656 * 1: The authentication module is busy. Accessing \Rauthdata results
657 * in unspecified behavior.
658 *
659 * \Fauthbusy only becomes set in immediate response to an access to
660 * \Rauthdata.
661 */
662 #define DMI_DMSTATUS_AUTHBUSY_OFFSET 6
663 #define DMI_DMSTATUS_AUTHBUSY_LENGTH 1
664 #define DMI_DMSTATUS_AUTHBUSY (0x1U << DMI_DMSTATUS_AUTHBUSY_OFFSET)
665 /*
666 * 0: \Rdevtreeaddrzero--\Rdevtreeaddrthree hold information which
667 * is not relevant to the Device Tree.
668 *
669 * 1: \Rdevtreeaddrzero--\Rdevtreeaddrthree registers hold the address of the
670 * Device Tree.
671 */
672 #define DMI_DMSTATUS_DEVTREEVALID_OFFSET 4
673 #define DMI_DMSTATUS_DEVTREEVALID_LENGTH 1
674 #define DMI_DMSTATUS_DEVTREEVALID (0x1U << DMI_DMSTATUS_DEVTREEVALID_OFFSET)
675 /*
676 * 0: There is no Debug Module present.
677 *
678 * 1: There is a Debug Module and it conforms to version 0.11 of this
679 * specification.
680 *
681 * 2: There is a Debug Module and it conforms to version 0.13 of this
682 * specification.
683 *
684 * 15: There is a Debug Module but it does not conform to any
685 * available version of this spec.
686 */
687 #define DMI_DMSTATUS_VERSION_OFFSET 0
688 #define DMI_DMSTATUS_VERSION_LENGTH 4
689 #define DMI_DMSTATUS_VERSION (0xfU << DMI_DMSTATUS_VERSION_OFFSET)
690 #define DMI_DMCONTROL 0x10
691 /*
692 * Writes the halt request bit for all currently selected harts.
693 * When set to 1, each selected hart will halt if it is not currently
694 * halted.
695 *
696 * Writing 1 or 0 has no effect on a hart which is already halted, but
697 * the bit must be cleared to 0 before the hart is resumed.
698 *
699 * Writes apply to the new value of \Fhartsel and \Fhasel.
700 */
701 #define DMI_DMCONTROL_HALTREQ_OFFSET 31
702 #define DMI_DMCONTROL_HALTREQ_LENGTH 1
703 #define DMI_DMCONTROL_HALTREQ (0x1U << DMI_DMCONTROL_HALTREQ_OFFSET)
704 /*
705 * Writes the resume request bit for all currently selected harts.
706 * When set to 1, each selected hart will resume if it is currently
707 * halted.
708 *
709 * The resume request bit is ignored while the halt request bit is
710 * set.
711 *
712 * Writes apply to the new value of \Fhartsel and \Fhasel.
713 */
714 #define DMI_DMCONTROL_RESUMEREQ_OFFSET 30
715 #define DMI_DMCONTROL_RESUMEREQ_LENGTH 1
716 #define DMI_DMCONTROL_RESUMEREQ (0x1U << DMI_DMCONTROL_RESUMEREQ_OFFSET)
717 /*
718 * This optional field writes the reset bit for all the currently
719 * selected harts. To perform a reset the debugger writes 1, and then
720 * writes 0 to deassert the reset signal.
721 *
722 * If this feature is not implemented, the bit always stays 0, so
723 * after writing 1 the debugger can read the register back to see if
724 * the feature is supported.
725 *
726 * Writes apply to the new value of \Fhartsel and \Fhasel.
727 */
728 #define DMI_DMCONTROL_HARTRESET_OFFSET 29
729 #define DMI_DMCONTROL_HARTRESET_LENGTH 1
730 #define DMI_DMCONTROL_HARTRESET (0x1U << DMI_DMCONTROL_HARTRESET_OFFSET)
731 /*
732 * Writing 1 to this bit clears the {\tt havereset} bits for
733 * any selected harts.
734 *
735 * Writes apply to the new value of \Fhartsel and \Fhasel.
736 */
737 #define DMI_DMCONTROL_ACKHAVERESET_OFFSET 28
738 #define DMI_DMCONTROL_ACKHAVERESET_LENGTH 1
739 #define DMI_DMCONTROL_ACKHAVERESET (0x1U << DMI_DMCONTROL_ACKHAVERESET_OFFSET)
740 /*
741 * Selects the definition of currently selected harts.
742 *
743 * 0: There is a single currently selected hart, that selected by \Fhartsel.
744 *
745 * 1: There may be multiple currently selected harts -- that selected by \Fhartsel,
746 * plus those selected by the hart array mask register.
747 *
748 * An implementation which does not implement the hart array mask register
749 * should tie this field to 0. A debugger which wishes to use the hart array
750 * mask register feature should set this bit and read back to see if the functionality
751 * is supported.
752 */
753 #define DMI_DMCONTROL_HASEL_OFFSET 26
754 #define DMI_DMCONTROL_HASEL_LENGTH 1
755 #define DMI_DMCONTROL_HASEL (0x1U << DMI_DMCONTROL_HASEL_OFFSET)
756 /*
757 * The DM-specific index of the hart to select. This hart is always part of the
758 * currently selected harts.
759 */
760 #define DMI_DMCONTROL_HARTSEL_OFFSET 16
761 #define DMI_DMCONTROL_HARTSEL_LENGTH 10
762 #define DMI_DMCONTROL_HARTSEL (0x3ffU << DMI_DMCONTROL_HARTSEL_OFFSET)
763 /*
764 * This bit controls the reset signal from the DM to the rest of the
765 * system. The signal should reset every part of the system, including
766 * every hart, except for the DM and any logic required to access the
767 * DM.
768 * To perform a system reset the debugger writes 1,
769 * and then writes 0
770 * to deassert the reset.
771 */
772 #define DMI_DMCONTROL_NDMRESET_OFFSET 1
773 #define DMI_DMCONTROL_NDMRESET_LENGTH 1
774 #define DMI_DMCONTROL_NDMRESET (0x1U << DMI_DMCONTROL_NDMRESET_OFFSET)
775 /*
776 * This bit serves as a reset signal for the Debug Module itself.
777 *
778 * 0: The module's state, including authentication mechanism,
779 * takes its reset values (the \Fdmactive bit is the only bit which can
780 * be written to something other than its reset value).
781 *
782 * 1: The module functions normally.
783 *
784 * No other mechanism should exist that may result in resetting the
785 * Debug Module after power up, including the platform's system reset
786 * or Debug Transport reset signals.
787 *
788 * A debugger may pulse this bit low to get the debug module into a
789 * known state.
790 *
791 * Implementations may use this bit to aid debugging, for example by
792 * preventing the Debug Module from being power gated while debugging
793 * is active.
794 */
795 #define DMI_DMCONTROL_DMACTIVE_OFFSET 0
796 #define DMI_DMCONTROL_DMACTIVE_LENGTH 1
797 #define DMI_DMCONTROL_DMACTIVE (0x1U << DMI_DMCONTROL_DMACTIVE_OFFSET)
798 #define DMI_HARTINFO 0x12
799 /*
800 * Number of {\tt dscratch} registers available for the debugger
801 * to use during program buffer execution, starting from \Rdscratchzero.
802 * The debugger can make no assumptions about the contents of these
803 * registers between commands.
804 */
805 #define DMI_HARTINFO_NSCRATCH_OFFSET 20
806 #define DMI_HARTINFO_NSCRATCH_LENGTH 4
807 #define DMI_HARTINFO_NSCRATCH (0xfU << DMI_HARTINFO_NSCRATCH_OFFSET)
808 /*
809 * 0: The {\tt data} registers are shadowed in the hart by CSR
810 * registers. Each CSR register is XLEN bits in size, and corresponds
811 * to a single argument, per Table~\ref{tab:datareg}.
812 *
813 * 1: The {\tt data} registers are shadowed in the hart's memory map.
814 * Each register takes up 4 bytes in the memory map.
815 */
816 #define DMI_HARTINFO_DATAACCESS_OFFSET 16
817 #define DMI_HARTINFO_DATAACCESS_LENGTH 1
818 #define DMI_HARTINFO_DATAACCESS (0x1U << DMI_HARTINFO_DATAACCESS_OFFSET)
819 /*
820 * If \Fdataaccess is 0: Number of CSR registers dedicated to
821 * shadowing the {\tt data} registers.
822 *
823 * If \Fdataaccess is 1: Number of 32-bit words in the memory map
824 * dedicated to shadowing the {\tt data} registers.
825 */
826 #define DMI_HARTINFO_DATASIZE_OFFSET 12
827 #define DMI_HARTINFO_DATASIZE_LENGTH 4
828 #define DMI_HARTINFO_DATASIZE (0xfU << DMI_HARTINFO_DATASIZE_OFFSET)
829 /*
830 * If \Fdataaccess is 0: The number of the first CSR dedicated to
831 * shadowing the {\tt data} registers.
832 *
833 * If \Fdataaccess is 1: Signed address of RAM where the {\tt data}
834 * registers are shadowed, to be used to access relative to \Rzero.
835 */
836 #define DMI_HARTINFO_DATAADDR_OFFSET 0
837 #define DMI_HARTINFO_DATAADDR_LENGTH 12
838 #define DMI_HARTINFO_DATAADDR (0xfffU << DMI_HARTINFO_DATAADDR_OFFSET)
839 #define DMI_HALTSUM 0x13
840 #define DMI_HALTSUM_HALT1023_992_OFFSET 31
841 #define DMI_HALTSUM_HALT1023_992_LENGTH 1
842 #define DMI_HALTSUM_HALT1023_992 (0x1U << DMI_HALTSUM_HALT1023_992_OFFSET)
843 #define DMI_HALTSUM_HALT991_960_OFFSET 30
844 #define DMI_HALTSUM_HALT991_960_LENGTH 1
845 #define DMI_HALTSUM_HALT991_960 (0x1U << DMI_HALTSUM_HALT991_960_OFFSET)
846 #define DMI_HALTSUM_HALT959_928_OFFSET 29
847 #define DMI_HALTSUM_HALT959_928_LENGTH 1
848 #define DMI_HALTSUM_HALT959_928 (0x1U << DMI_HALTSUM_HALT959_928_OFFSET)
849 #define DMI_HALTSUM_HALT927_896_OFFSET 28
850 #define DMI_HALTSUM_HALT927_896_LENGTH 1
851 #define DMI_HALTSUM_HALT927_896 (0x1U << DMI_HALTSUM_HALT927_896_OFFSET)
852 #define DMI_HALTSUM_HALT895_864_OFFSET 27
853 #define DMI_HALTSUM_HALT895_864_LENGTH 1
854 #define DMI_HALTSUM_HALT895_864 (0x1U << DMI_HALTSUM_HALT895_864_OFFSET)
855 #define DMI_HALTSUM_HALT863_832_OFFSET 26
856 #define DMI_HALTSUM_HALT863_832_LENGTH 1
857 #define DMI_HALTSUM_HALT863_832 (0x1U << DMI_HALTSUM_HALT863_832_OFFSET)
858 #define DMI_HALTSUM_HALT831_800_OFFSET 25
859 #define DMI_HALTSUM_HALT831_800_LENGTH 1
860 #define DMI_HALTSUM_HALT831_800 (0x1U << DMI_HALTSUM_HALT831_800_OFFSET)
861 #define DMI_HALTSUM_HALT799_768_OFFSET 24
862 #define DMI_HALTSUM_HALT799_768_LENGTH 1
863 #define DMI_HALTSUM_HALT799_768 (0x1U << DMI_HALTSUM_HALT799_768_OFFSET)
864 #define DMI_HALTSUM_HALT767_736_OFFSET 23
865 #define DMI_HALTSUM_HALT767_736_LENGTH 1
866 #define DMI_HALTSUM_HALT767_736 (0x1U << DMI_HALTSUM_HALT767_736_OFFSET)
867 #define DMI_HALTSUM_HALT735_704_OFFSET 22
868 #define DMI_HALTSUM_HALT735_704_LENGTH 1
869 #define DMI_HALTSUM_HALT735_704 (0x1U << DMI_HALTSUM_HALT735_704_OFFSET)
870 #define DMI_HALTSUM_HALT703_672_OFFSET 21
871 #define DMI_HALTSUM_HALT703_672_LENGTH 1
872 #define DMI_HALTSUM_HALT703_672 (0x1U << DMI_HALTSUM_HALT703_672_OFFSET)
873 #define DMI_HALTSUM_HALT671_640_OFFSET 20
874 #define DMI_HALTSUM_HALT671_640_LENGTH 1
875 #define DMI_HALTSUM_HALT671_640 (0x1U << DMI_HALTSUM_HALT671_640_OFFSET)
876 #define DMI_HALTSUM_HALT639_608_OFFSET 19
877 #define DMI_HALTSUM_HALT639_608_LENGTH 1
878 #define DMI_HALTSUM_HALT639_608 (0x1U << DMI_HALTSUM_HALT639_608_OFFSET)
879 #define DMI_HALTSUM_HALT607_576_OFFSET 18
880 #define DMI_HALTSUM_HALT607_576_LENGTH 1
881 #define DMI_HALTSUM_HALT607_576 (0x1U << DMI_HALTSUM_HALT607_576_OFFSET)
882 #define DMI_HALTSUM_HALT575_544_OFFSET 17
883 #define DMI_HALTSUM_HALT575_544_LENGTH 1
884 #define DMI_HALTSUM_HALT575_544 (0x1U << DMI_HALTSUM_HALT575_544_OFFSET)
885 #define DMI_HALTSUM_HALT543_512_OFFSET 16
886 #define DMI_HALTSUM_HALT543_512_LENGTH 1
887 #define DMI_HALTSUM_HALT543_512 (0x1U << DMI_HALTSUM_HALT543_512_OFFSET)
888 #define DMI_HALTSUM_HALT511_480_OFFSET 15
889 #define DMI_HALTSUM_HALT511_480_LENGTH 1
890 #define DMI_HALTSUM_HALT511_480 (0x1U << DMI_HALTSUM_HALT511_480_OFFSET)
891 #define DMI_HALTSUM_HALT479_448_OFFSET 14
892 #define DMI_HALTSUM_HALT479_448_LENGTH 1
893 #define DMI_HALTSUM_HALT479_448 (0x1U << DMI_HALTSUM_HALT479_448_OFFSET)
894 #define DMI_HALTSUM_HALT447_416_OFFSET 13
895 #define DMI_HALTSUM_HALT447_416_LENGTH 1
896 #define DMI_HALTSUM_HALT447_416 (0x1U << DMI_HALTSUM_HALT447_416_OFFSET)
897 #define DMI_HALTSUM_HALT415_384_OFFSET 12
898 #define DMI_HALTSUM_HALT415_384_LENGTH 1
899 #define DMI_HALTSUM_HALT415_384 (0x1U << DMI_HALTSUM_HALT415_384_OFFSET)
900 #define DMI_HALTSUM_HALT383_352_OFFSET 11
901 #define DMI_HALTSUM_HALT383_352_LENGTH 1
902 #define DMI_HALTSUM_HALT383_352 (0x1U << DMI_HALTSUM_HALT383_352_OFFSET)
903 #define DMI_HALTSUM_HALT351_320_OFFSET 10
904 #define DMI_HALTSUM_HALT351_320_LENGTH 1
905 #define DMI_HALTSUM_HALT351_320 (0x1U << DMI_HALTSUM_HALT351_320_OFFSET)
906 #define DMI_HALTSUM_HALT319_288_OFFSET 9
907 #define DMI_HALTSUM_HALT319_288_LENGTH 1
908 #define DMI_HALTSUM_HALT319_288 (0x1U << DMI_HALTSUM_HALT319_288_OFFSET)
909 #define DMI_HALTSUM_HALT287_256_OFFSET 8
910 #define DMI_HALTSUM_HALT287_256_LENGTH 1
911 #define DMI_HALTSUM_HALT287_256 (0x1U << DMI_HALTSUM_HALT287_256_OFFSET)
912 #define DMI_HALTSUM_HALT255_224_OFFSET 7
913 #define DMI_HALTSUM_HALT255_224_LENGTH 1
914 #define DMI_HALTSUM_HALT255_224 (0x1U << DMI_HALTSUM_HALT255_224_OFFSET)
915 #define DMI_HALTSUM_HALT223_192_OFFSET 6
916 #define DMI_HALTSUM_HALT223_192_LENGTH 1
917 #define DMI_HALTSUM_HALT223_192 (0x1U << DMI_HALTSUM_HALT223_192_OFFSET)
918 #define DMI_HALTSUM_HALT191_160_OFFSET 5
919 #define DMI_HALTSUM_HALT191_160_LENGTH 1
920 #define DMI_HALTSUM_HALT191_160 (0x1U << DMI_HALTSUM_HALT191_160_OFFSET)
921 #define DMI_HALTSUM_HALT159_128_OFFSET 4
922 #define DMI_HALTSUM_HALT159_128_LENGTH 1
923 #define DMI_HALTSUM_HALT159_128 (0x1U << DMI_HALTSUM_HALT159_128_OFFSET)
924 #define DMI_HALTSUM_HALT127_96_OFFSET 3
925 #define DMI_HALTSUM_HALT127_96_LENGTH 1
926 #define DMI_HALTSUM_HALT127_96 (0x1U << DMI_HALTSUM_HALT127_96_OFFSET)
927 #define DMI_HALTSUM_HALT95_64_OFFSET 2
928 #define DMI_HALTSUM_HALT95_64_LENGTH 1
929 #define DMI_HALTSUM_HALT95_64 (0x1U << DMI_HALTSUM_HALT95_64_OFFSET)
930 #define DMI_HALTSUM_HALT63_32_OFFSET 1
931 #define DMI_HALTSUM_HALT63_32_LENGTH 1
932 #define DMI_HALTSUM_HALT63_32 (0x1U << DMI_HALTSUM_HALT63_32_OFFSET)
933 #define DMI_HALTSUM_HALT31_0_OFFSET 0
934 #define DMI_HALTSUM_HALT31_0_LENGTH 1
935 #define DMI_HALTSUM_HALT31_0 (0x1U << DMI_HALTSUM_HALT31_0_OFFSET)
936 #define DMI_HAWINDOWSEL 0x14
937 #define DMI_HAWINDOWSEL_HAWINDOWSEL_OFFSET 0
938 #define DMI_HAWINDOWSEL_HAWINDOWSEL_LENGTH 5
939 #define DMI_HAWINDOWSEL_HAWINDOWSEL (0x1fU << DMI_HAWINDOWSEL_HAWINDOWSEL_OFFSET)
940 #define DMI_HAWINDOW 0x15
941 #define DMI_HAWINDOW_MASKDATA_OFFSET 0
942 #define DMI_HAWINDOW_MASKDATA_LENGTH 32
943 #define DMI_HAWINDOW_MASKDATA (0xffffffffU << DMI_HAWINDOW_MASKDATA_OFFSET)
944 #define DMI_ABSTRACTCS 0x16
945 /*
946 * Size of the Program Buffer, in 32-bit words. Valid sizes are 0 - 16.
947 */
948 #define DMI_ABSTRACTCS_PROGBUFSIZE_OFFSET 24
949 #define DMI_ABSTRACTCS_PROGBUFSIZE_LENGTH 5
950 #define DMI_ABSTRACTCS_PROGBUFSIZE (0x1fU << DMI_ABSTRACTCS_PROGBUFSIZE_OFFSET)
951 /*
952 * 1: An abstract command is currently being executed.
953 *
954 * This bit is set as soon as \Rcommand is written, and is
955 * not cleared until that command has completed.
956 */
957 #define DMI_ABSTRACTCS_BUSY_OFFSET 12
958 #define DMI_ABSTRACTCS_BUSY_LENGTH 1
959 #define DMI_ABSTRACTCS_BUSY (0x1U << DMI_ABSTRACTCS_BUSY_OFFSET)
960 /*
961 * Gets set if an abstract command fails. The bits in this field remain set until
962 * they are cleared by writing 1 to them. No abstract command is
963 * started until the value is reset to 0.
964 *
965 * 0 (none): No error.
966 *
967 * 1 (busy): An abstract command was executing while \Rcommand,
968 * \Rabstractcs, \Rabstractauto was written, or when one
969 * of the {\tt data} or {\tt progbuf} registers was read or written.
970 *
971 * 2 (not supported): The requested command is not supported. A
972 * command that is not supported while the hart is running may be
973 * supported when it is halted.
974 *
975 * 3 (exception): An exception occurred while executing the command
976 * (eg. while executing the Program Buffer).
977 *
978 * 4 (halt/resume): An abstract command couldn't execute because the
979 * hart wasn't in the expected state (running/halted).
980 *
981 * 7 (other): The command failed for another reason.
982 */
983 #define DMI_ABSTRACTCS_CMDERR_OFFSET 8
984 #define DMI_ABSTRACTCS_CMDERR_LENGTH 3
985 #define DMI_ABSTRACTCS_CMDERR (0x7U << DMI_ABSTRACTCS_CMDERR_OFFSET)
986 /*
987 * Number of {\tt data} registers that are implemented as part of the
988 * abstract command interface. Valid sizes are 0 - 12.
989 */
990 #define DMI_ABSTRACTCS_DATACOUNT_OFFSET 0
991 #define DMI_ABSTRACTCS_DATACOUNT_LENGTH 5
992 #define DMI_ABSTRACTCS_DATACOUNT (0x1fU << DMI_ABSTRACTCS_DATACOUNT_OFFSET)
993 #define DMI_COMMAND 0x17
994 /*
995 * The type determines the overall functionality of this
996 * abstract command.
997 */
998 #define DMI_COMMAND_CMDTYPE_OFFSET 24
999 #define DMI_COMMAND_CMDTYPE_LENGTH 8
1000 #define DMI_COMMAND_CMDTYPE (0xffU << DMI_COMMAND_CMDTYPE_OFFSET)
1001 /*
1002 * This field is interpreted in a command-specific manner,
1003 * described for each abstract command.
1004 */
1005 #define DMI_COMMAND_CONTROL_OFFSET 0
1006 #define DMI_COMMAND_CONTROL_LENGTH 24
1007 #define DMI_COMMAND_CONTROL (0xffffffU << DMI_COMMAND_CONTROL_OFFSET)
1008 #define DMI_ABSTRACTAUTO 0x18
1009 /*
1010 * When a bit in this field is 1, read or write accesses the corresponding {\tt progbuf} word
1011 * cause the command in \Rcommand to be executed again.
1012 */
1013 #define DMI_ABSTRACTAUTO_AUTOEXECPROGBUF_OFFSET 16
1014 #define DMI_ABSTRACTAUTO_AUTOEXECPROGBUF_LENGTH 16
1015 #define DMI_ABSTRACTAUTO_AUTOEXECPROGBUF (0xffffU << DMI_ABSTRACTAUTO_AUTOEXECPROGBUF_OFFSET)
1016 /*
1017 * When a bit in this field is 1, read or write accesses the corresponding {\tt data} word
1018 * cause the command in \Rcommand to be executed again.
1019 */
1020 #define DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET 0
1021 #define DMI_ABSTRACTAUTO_AUTOEXECDATA_LENGTH 12
1022 #define DMI_ABSTRACTAUTO_AUTOEXECDATA (0xfffU << DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET)
1023 #define DMI_DEVTREEADDR0 0x19
1024 #define DMI_DEVTREEADDR0_ADDR_OFFSET 0
1025 #define DMI_DEVTREEADDR0_ADDR_LENGTH 32
1026 #define DMI_DEVTREEADDR0_ADDR (0xffffffffU << DMI_DEVTREEADDR0_ADDR_OFFSET)
1027 #define DMI_DEVTREEADDR1 0x1a
1028 #define DMI_DEVTREEADDR2 0x1b
1029 #define DMI_DEVTREEADDR3 0x1c
1030 #define DMI_DATA0 0x04
1031 #define DMI_DATA0_DATA_OFFSET 0
1032 #define DMI_DATA0_DATA_LENGTH 32
1033 #define DMI_DATA0_DATA (0xffffffffU << DMI_DATA0_DATA_OFFSET)
1034 #define DMI_DATA11 0x0f
1035 #define DMI_PROGBUF0 0x20
1036 #define DMI_PROGBUF0_DATA_OFFSET 0
1037 #define DMI_PROGBUF0_DATA_LENGTH 32
1038 #define DMI_PROGBUF0_DATA (0xffffffffU << DMI_PROGBUF0_DATA_OFFSET)
1039 #define DMI_PROGBUF15 0x2f
1040 #define DMI_AUTHDATA 0x30
1041 #define DMI_AUTHDATA_DATA_OFFSET 0
1042 #define DMI_AUTHDATA_DATA_LENGTH 32
1043 #define DMI_AUTHDATA_DATA (0xffffffffU << DMI_AUTHDATA_DATA_OFFSET)
1044 #define DMI_SBCS 0x38
1045 /*
1046 * When a 1 is written here, triggers a read at the address in {\tt
1047 * sbaddress} using the access size set by \Fsbaccess.
1048 */
1049 #define DMI_SBCS_SBSINGLEREAD_OFFSET 20
1050 #define DMI_SBCS_SBSINGLEREAD_LENGTH 1
1051 #define DMI_SBCS_SBSINGLEREAD (0x1U << DMI_SBCS_SBSINGLEREAD_OFFSET)
1052 /*
1053 * Select the access size to use for system bus accesses triggered by
1054 * writes to the {\tt sbaddress} registers or \Rsbdatazero.
1055 *
1056 * 0: 8-bit
1057 *
1058 * 1: 16-bit
1059 *
1060 * 2: 32-bit
1061 *
1062 * 3: 64-bit
1063 *
1064 * 4: 128-bit
1065 *
1066 * If an unsupported system bus access size is written here, the DM
1067 * does not perform the access and sberror is set to 3.
1068 */
1069 #define DMI_SBCS_SBACCESS_OFFSET 17
1070 #define DMI_SBCS_SBACCESS_LENGTH 3
1071 #define DMI_SBCS_SBACCESS (0x7U << DMI_SBCS_SBACCESS_OFFSET)
1072 /*
1073 * When 1, {\tt sbaddress} is incremented by the access size (in
1074 * bytes) selected in \Fsbaccess after every system bus access.
1075 */
1076 #define DMI_SBCS_SBAUTOINCREMENT_OFFSET 16
1077 #define DMI_SBCS_SBAUTOINCREMENT_LENGTH 1
1078 #define DMI_SBCS_SBAUTOINCREMENT (0x1U << DMI_SBCS_SBAUTOINCREMENT_OFFSET)
1079 /*
1080 * When 1, every read from \Rsbdatazero automatically triggers a
1081 * system bus read at the (possibly auto-incremented) address.
1082 */
1083 #define DMI_SBCS_SBAUTOREAD_OFFSET 15
1084 #define DMI_SBCS_SBAUTOREAD_LENGTH 1
1085 #define DMI_SBCS_SBAUTOREAD (0x1U << DMI_SBCS_SBAUTOREAD_OFFSET)
1086 /*
1087 * When the debug module's system bus
1088 * master causes a bus error, this field gets set. The bits in this
1089 * field remain set until they are cleared by writing 1 to them.
1090 * While this field is non-zero, no more system bus accesses can be
1091 * initiated by the debug module.
1092 *
1093 * 0: There was no bus error.
1094 *
1095 * 1: There was a timeout.
1096 *
1097 * 2: A bad address was accessed.
1098 *
1099 * 3: There was some other error (eg. alignment).
1100 *
1101 * 4: The system bus master was busy when one of the
1102 * {\tt sbaddress} or {\tt sbdata} registers was written,
1103 * or \Rsbdatazero was read when it had stale data.
1104 */
1105 #define DMI_SBCS_SBERROR_OFFSET 12
1106 #define DMI_SBCS_SBERROR_LENGTH 3
1107 #define DMI_SBCS_SBERROR (0x7U << DMI_SBCS_SBERROR_OFFSET)
1108 /*
1109 * Width of system bus addresses in bits. (0 indicates there is no bus
1110 * access support.)
1111 */
1112 #define DMI_SBCS_SBASIZE_OFFSET 5
1113 #define DMI_SBCS_SBASIZE_LENGTH 7
1114 #define DMI_SBCS_SBASIZE (0x7fU << DMI_SBCS_SBASIZE_OFFSET)
1115 /*
1116 * 1 when 128-bit system bus accesses are supported.
1117 */
1118 #define DMI_SBCS_SBACCESS128_OFFSET 4
1119 #define DMI_SBCS_SBACCESS128_LENGTH 1
1120 #define DMI_SBCS_SBACCESS128 (0x1U << DMI_SBCS_SBACCESS128_OFFSET)
1121 /*
1122 * 1 when 64-bit system bus accesses are supported.
1123 */
1124 #define DMI_SBCS_SBACCESS64_OFFSET 3
1125 #define DMI_SBCS_SBACCESS64_LENGTH 1
1126 #define DMI_SBCS_SBACCESS64 (0x1U << DMI_SBCS_SBACCESS64_OFFSET)
1127 /*
1128 * 1 when 32-bit system bus accesses are supported.
1129 */
1130 #define DMI_SBCS_SBACCESS32_OFFSET 2
1131 #define DMI_SBCS_SBACCESS32_LENGTH 1
1132 #define DMI_SBCS_SBACCESS32 (0x1U << DMI_SBCS_SBACCESS32_OFFSET)
1133 /*
1134 * 1 when 16-bit system bus accesses are supported.
1135 */
1136 #define DMI_SBCS_SBACCESS16_OFFSET 1
1137 #define DMI_SBCS_SBACCESS16_LENGTH 1
1138 #define DMI_SBCS_SBACCESS16 (0x1U << DMI_SBCS_SBACCESS16_OFFSET)
1139 /*
1140 * 1 when 8-bit system bus accesses are supported.
1141 */
1142 #define DMI_SBCS_SBACCESS8_OFFSET 0
1143 #define DMI_SBCS_SBACCESS8_LENGTH 1
1144 #define DMI_SBCS_SBACCESS8 (0x1U << DMI_SBCS_SBACCESS8_OFFSET)
1145 #define DMI_SBADDRESS0 0x39
1146 /*
1147 * Accesses bits 31:0 of the physical address in {\tt sbaddress}.
1148 */
1149 #define DMI_SBADDRESS0_ADDRESS_OFFSET 0
1150 #define DMI_SBADDRESS0_ADDRESS_LENGTH 32
1151 #define DMI_SBADDRESS0_ADDRESS (0xffffffffU << DMI_SBADDRESS0_ADDRESS_OFFSET)
1152 #define DMI_SBADDRESS1 0x3a
1153 /*
1154 * Accesses bits 63:32 of the physical address in {\tt sbaddress} (if
1155 * the system address bus is that wide).
1156 */
1157 #define DMI_SBADDRESS1_ADDRESS_OFFSET 0
1158 #define DMI_SBADDRESS1_ADDRESS_LENGTH 32
1159 #define DMI_SBADDRESS1_ADDRESS (0xffffffffU << DMI_SBADDRESS1_ADDRESS_OFFSET)
1160 #define DMI_SBADDRESS2 0x3b
1161 /*
1162 * Accesses bits 95:64 of the physical address in {\tt sbaddress} (if
1163 * the system address bus is that wide).
1164 */
1165 #define DMI_SBADDRESS2_ADDRESS_OFFSET 0
1166 #define DMI_SBADDRESS2_ADDRESS_LENGTH 32
1167 #define DMI_SBADDRESS2_ADDRESS (0xffffffffU << DMI_SBADDRESS2_ADDRESS_OFFSET)
1168 #define DMI_SBDATA0 0x3c
1169 /*
1170 * Accesses bits 31:0 of {\tt sbdata}.
1171 */
1172 #define DMI_SBDATA0_DATA_OFFSET 0
1173 #define DMI_SBDATA0_DATA_LENGTH 32
1174 #define DMI_SBDATA0_DATA (0xffffffffU << DMI_SBDATA0_DATA_OFFSET)
1175 #define DMI_SBDATA1 0x3d
1176 /*
1177 * Accesses bits 63:32 of {\tt sbdata} (if the system bus is that
1178 * wide).
1179 */
1180 #define DMI_SBDATA1_DATA_OFFSET 0
1181 #define DMI_SBDATA1_DATA_LENGTH 32
1182 #define DMI_SBDATA1_DATA (0xffffffffU << DMI_SBDATA1_DATA_OFFSET)
1183 #define DMI_SBDATA2 0x3e
1184 /*
1185 * Accesses bits 95:64 of {\tt sbdata} (if the system bus is that
1186 * wide).
1187 */
1188 #define DMI_SBDATA2_DATA_OFFSET 0
1189 #define DMI_SBDATA2_DATA_LENGTH 32
1190 #define DMI_SBDATA2_DATA (0xffffffffU << DMI_SBDATA2_DATA_OFFSET)
1191 #define DMI_SBDATA3 0x3f
1192 /*
1193 * Accesses bits 127:96 of {\tt sbdata} (if the system bus is that
1194 * wide).
1195 */
1196 #define DMI_SBDATA3_DATA_OFFSET 0
1197 #define DMI_SBDATA3_DATA_LENGTH 32
1198 #define DMI_SBDATA3_DATA (0xffffffffU << DMI_SBDATA3_DATA_OFFSET)
1199 #define SHORTNAME 0x123
1200 /*
1201 * Description of what this field is used for.
1202 */
1203 #define SHORTNAME_FIELD_OFFSET 0
1204 #define SHORTNAME_FIELD_LENGTH 8
1205 #define SHORTNAME_FIELD (0xffU << SHORTNAME_FIELD_OFFSET)
1206 #define AC_ACCESS_REGISTER None
1207 /*
1208 * This is 0 to indicate Access Register Command.
1209 */
1210 #define AC_ACCESS_REGISTER_CMDTYPE_OFFSET 24
1211 #define AC_ACCESS_REGISTER_CMDTYPE_LENGTH 8
1212 #define AC_ACCESS_REGISTER_CMDTYPE (0xffU << AC_ACCESS_REGISTER_CMDTYPE_OFFSET)
1213 /*
1214 * 2: Access the lowest 32 bits of the register.
1215 *
1216 * 3: Access the lowest 64 bits of the register.
1217 *
1218 * 4: Access the lowest 128 bits of the register.
1219 *
1220 * If \Fsize specifies a size larger than the register's actual size,
1221 * then the access must fail. If a register is accessible, then reads of \Fsize
1222 * less than or equal to the register's actual size must be supported.
1223 */
1224 #define AC_ACCESS_REGISTER_SIZE_OFFSET 20
1225 #define AC_ACCESS_REGISTER_SIZE_LENGTH 3
1226 #define AC_ACCESS_REGISTER_SIZE (0x7U << AC_ACCESS_REGISTER_SIZE_OFFSET)
1227 /*
1228 * When 1, execute the program in the Program Buffer exactly once
1229 * after performing the transfer, if any.
1230 */
1231 #define AC_ACCESS_REGISTER_POSTEXEC_OFFSET 18
1232 #define AC_ACCESS_REGISTER_POSTEXEC_LENGTH 1
1233 #define AC_ACCESS_REGISTER_POSTEXEC (0x1U << AC_ACCESS_REGISTER_POSTEXEC_OFFSET)
1234 /*
1235 * 0: Don't do the operation specified by \Fwrite.
1236 *
1237 * 1: Do the operation specified by \Fwrite.
1238 *
1239 * This bit can be used to just execute the Program Buffer without
1240 * having to worry about placing valid values into \Fsize or \Fregno.
1241 */
1242 #define AC_ACCESS_REGISTER_TRANSFER_OFFSET 17
1243 #define AC_ACCESS_REGISTER_TRANSFER_LENGTH 1
1244 #define AC_ACCESS_REGISTER_TRANSFER (0x1U << AC_ACCESS_REGISTER_TRANSFER_OFFSET)
1245 /*
1246 * When \Ftransfer is set:
1247 * 0: Copy data from the specified register into {\tt arg0} portion
1248 * of {\tt data}.
1249 *
1250 * 1: Copy data from {\tt arg0} portion of {\tt data} into the
1251 * specified register.
1252 */
1253 #define AC_ACCESS_REGISTER_WRITE_OFFSET 16
1254 #define AC_ACCESS_REGISTER_WRITE_LENGTH 1
1255 #define AC_ACCESS_REGISTER_WRITE (0x1U << AC_ACCESS_REGISTER_WRITE_OFFSET)
1256 /*
1257 * Number of the register to access, as described in
1258 * Table~\ref{tab:regno}.
1259 * \Rdpc may be used as an alias for PC if this command is
1260 * supported on a non-halted hart.
1261 */
1262 #define AC_ACCESS_REGISTER_REGNO_OFFSET 0
1263 #define AC_ACCESS_REGISTER_REGNO_LENGTH 16
1264 #define AC_ACCESS_REGISTER_REGNO (0xffffU << AC_ACCESS_REGISTER_REGNO_OFFSET)
1265 #define AC_QUICK_ACCESS None
1266 /*
1267 * This is 1 to indicate Quick Access command.
1268 */
1269 #define AC_QUICK_ACCESS_CMDTYPE_OFFSET 24
1270 #define AC_QUICK_ACCESS_CMDTYPE_LENGTH 8
1271 #define AC_QUICK_ACCESS_CMDTYPE (0xffU << AC_QUICK_ACCESS_CMDTYPE_OFFSET)
1272 #define VIRT_PRIV virtual
1273 /*
1274 * Contains the privilege level the hart was operating in when Debug
1275 * Mode was entered. The encoding is described in Table
1276 * \ref{tab:privlevel}, and matches the privilege level encoding from
1277 * the RISC-V Privileged ISA Specification. A user can write this
1278 * value to change the hart's privilege level when exiting Debug Mode.
1279 */
1280 #define VIRT_PRIV_PRV_OFFSET 0
1281 #define VIRT_PRIV_PRV_LENGTH 2
1282 #define VIRT_PRIV_PRV (0x3U << VIRT_PRIV_PRV_OFFSET)
1283 #define DMI_SERCS 0x34
1284 /*
1285 * Number of supported serial ports.
1286 */
1287 #define DMI_SERCS_SERIALCOUNT_OFFSET 28
1288 #define DMI_SERCS_SERIALCOUNT_LENGTH 4
1289 #define DMI_SERCS_SERIALCOUNT (0xfU << DMI_SERCS_SERIALCOUNT_OFFSET)
1290 /*
1291 * Select which serial port is accessed by \Rserrx and \Rsertx.
1292 */
1293 #define DMI_SERCS_SERIAL_OFFSET 24
1294 #define DMI_SERCS_SERIAL_LENGTH 3
1295 #define DMI_SERCS_SERIAL (0x7U << DMI_SERCS_SERIAL_OFFSET)
1296 #define DMI_SERCS_ERROR7_OFFSET 23
1297 #define DMI_SERCS_ERROR7_LENGTH 1
1298 #define DMI_SERCS_ERROR7 (0x1U << DMI_SERCS_ERROR7_OFFSET)
1299 #define DMI_SERCS_VALID7_OFFSET 22
1300 #define DMI_SERCS_VALID7_LENGTH 1
1301 #define DMI_SERCS_VALID7 (0x1U << DMI_SERCS_VALID7_OFFSET)
1302 #define DMI_SERCS_FULL7_OFFSET 21
1303 #define DMI_SERCS_FULL7_LENGTH 1
1304 #define DMI_SERCS_FULL7 (0x1U << DMI_SERCS_FULL7_OFFSET)
1305 #define DMI_SERCS_ERROR6_OFFSET 20
1306 #define DMI_SERCS_ERROR6_LENGTH 1
1307 #define DMI_SERCS_ERROR6 (0x1U << DMI_SERCS_ERROR6_OFFSET)
1308 #define DMI_SERCS_VALID6_OFFSET 19
1309 #define DMI_SERCS_VALID6_LENGTH 1
1310 #define DMI_SERCS_VALID6 (0x1U << DMI_SERCS_VALID6_OFFSET)
1311 #define DMI_SERCS_FULL6_OFFSET 18
1312 #define DMI_SERCS_FULL6_LENGTH 1
1313 #define DMI_SERCS_FULL6 (0x1U << DMI_SERCS_FULL6_OFFSET)
1314 #define DMI_SERCS_ERROR5_OFFSET 17
1315 #define DMI_SERCS_ERROR5_LENGTH 1
1316 #define DMI_SERCS_ERROR5 (0x1U << DMI_SERCS_ERROR5_OFFSET)
1317 #define DMI_SERCS_VALID5_OFFSET 16
1318 #define DMI_SERCS_VALID5_LENGTH 1
1319 #define DMI_SERCS_VALID5 (0x1U << DMI_SERCS_VALID5_OFFSET)
1320 #define DMI_SERCS_FULL5_OFFSET 15
1321 #define DMI_SERCS_FULL5_LENGTH 1
1322 #define DMI_SERCS_FULL5 (0x1U << DMI_SERCS_FULL5_OFFSET)
1323 #define DMI_SERCS_ERROR4_OFFSET 14
1324 #define DMI_SERCS_ERROR4_LENGTH 1
1325 #define DMI_SERCS_ERROR4 (0x1U << DMI_SERCS_ERROR4_OFFSET)
1326 #define DMI_SERCS_VALID4_OFFSET 13
1327 #define DMI_SERCS_VALID4_LENGTH 1
1328 #define DMI_SERCS_VALID4 (0x1U << DMI_SERCS_VALID4_OFFSET)
1329 #define DMI_SERCS_FULL4_OFFSET 12
1330 #define DMI_SERCS_FULL4_LENGTH 1
1331 #define DMI_SERCS_FULL4 (0x1U << DMI_SERCS_FULL4_OFFSET)
1332 #define DMI_SERCS_ERROR3_OFFSET 11
1333 #define DMI_SERCS_ERROR3_LENGTH 1
1334 #define DMI_SERCS_ERROR3 (0x1U << DMI_SERCS_ERROR3_OFFSET)
1335 #define DMI_SERCS_VALID3_OFFSET 10
1336 #define DMI_SERCS_VALID3_LENGTH 1
1337 #define DMI_SERCS_VALID3 (0x1U << DMI_SERCS_VALID3_OFFSET)
1338 #define DMI_SERCS_FULL3_OFFSET 9
1339 #define DMI_SERCS_FULL3_LENGTH 1
1340 #define DMI_SERCS_FULL3 (0x1U << DMI_SERCS_FULL3_OFFSET)
1341 #define DMI_SERCS_ERROR2_OFFSET 8
1342 #define DMI_SERCS_ERROR2_LENGTH 1
1343 #define DMI_SERCS_ERROR2 (0x1U << DMI_SERCS_ERROR2_OFFSET)
1344 #define DMI_SERCS_VALID2_OFFSET 7
1345 #define DMI_SERCS_VALID2_LENGTH 1
1346 #define DMI_SERCS_VALID2 (0x1U << DMI_SERCS_VALID2_OFFSET)
1347 #define DMI_SERCS_FULL2_OFFSET 6
1348 #define DMI_SERCS_FULL2_LENGTH 1
1349 #define DMI_SERCS_FULL2 (0x1U << DMI_SERCS_FULL2_OFFSET)
1350 #define DMI_SERCS_ERROR1_OFFSET 5
1351 #define DMI_SERCS_ERROR1_LENGTH 1
1352 #define DMI_SERCS_ERROR1 (0x1U << DMI_SERCS_ERROR1_OFFSET)
1353 #define DMI_SERCS_VALID1_OFFSET 4
1354 #define DMI_SERCS_VALID1_LENGTH 1
1355 #define DMI_SERCS_VALID1 (0x1U << DMI_SERCS_VALID1_OFFSET)
1356 #define DMI_SERCS_FULL1_OFFSET 3
1357 #define DMI_SERCS_FULL1_LENGTH 1
1358 #define DMI_SERCS_FULL1 (0x1U << DMI_SERCS_FULL1_OFFSET)
1359 /*
1360 * 1 when the debugger-to-core queue for serial port 0 has
1361 * over or underflowed. This bit will remain set until it is reset by
1362 * writing 1 to this bit.
1363 */
1364 #define DMI_SERCS_ERROR0_OFFSET 2
1365 #define DMI_SERCS_ERROR0_LENGTH 1
1366 #define DMI_SERCS_ERROR0 (0x1U << DMI_SERCS_ERROR0_OFFSET)
1367 /*
1368 * 1 when the core-to-debugger queue for serial port 0 is not empty.
1369 */
1370 #define DMI_SERCS_VALID0_OFFSET 1
1371 #define DMI_SERCS_VALID0_LENGTH 1
1372 #define DMI_SERCS_VALID0 (0x1U << DMI_SERCS_VALID0_OFFSET)
1373 /*
1374 * 1 when the debugger-to-core queue for serial port 0 is full.
1375 */
1376 #define DMI_SERCS_FULL0_OFFSET 0
1377 #define DMI_SERCS_FULL0_LENGTH 1
1378 #define DMI_SERCS_FULL0 (0x1U << DMI_SERCS_FULL0_OFFSET)
1379 #define DMI_SERTX 0x35
1380 #define DMI_SERTX_DATA_OFFSET 0
1381 #define DMI_SERTX_DATA_LENGTH 32
1382 #define DMI_SERTX_DATA (0xffffffffU << DMI_SERTX_DATA_OFFSET)
1383 #define DMI_SERRX 0x36
1384 #define DMI_SERRX_DATA_OFFSET 0
1385 #define DMI_SERRX_DATA_LENGTH 32
1386 #define DMI_SERRX_DATA (0xffffffffU << DMI_SERRX_DATA_OFFSET)