Add debug_module bus device.
[riscv-isa-sim.git] / riscv / mmu.cc
1 // See LICENSE for license details.
2
3 #include "mmu.h"
4 #include "sim.h"
5 #include "processor.h"
6
7 mmu_t::mmu_t(sim_t* sim, processor_t* proc)
8 : sim(sim), proc(proc)
9 {
10 flush_tlb();
11 }
12
13 mmu_t::~mmu_t()
14 {
15 }
16
17 void mmu_t::flush_icache()
18 {
19 for (size_t i = 0; i < ICACHE_ENTRIES; i++)
20 icache[i].tag = -1;
21 }
22
23 void mmu_t::flush_tlb()
24 {
25 memset(tlb_insn_tag, -1, sizeof(tlb_insn_tag));
26 memset(tlb_load_tag, -1, sizeof(tlb_load_tag));
27 memset(tlb_store_tag, -1, sizeof(tlb_store_tag));
28
29 flush_icache();
30 }
31
32 reg_t mmu_t::translate(reg_t addr, access_type type)
33 {
34 if (!proc)
35 return addr;
36
37 reg_t mode = proc->state.prv;
38 bool pum = false;
39 if (type != FETCH) {
40 if (get_field(proc->state.mstatus, MSTATUS_MPRV))
41 mode = get_field(proc->state.mstatus, MSTATUS_MPP);
42 pum = (mode == PRV_S && get_field(proc->state.mstatus, MSTATUS_PUM));
43 }
44 if (get_field(proc->state.mstatus, MSTATUS_VM) == VM_MBARE)
45 mode = PRV_M;
46
47 if (mode == PRV_M) {
48 reg_t msb_mask = (reg_t(2) << (proc->xlen-1))-1; // zero-extend from xlen
49 return addr & msb_mask;
50 }
51 return walk(addr, type, mode > PRV_U, pum) | (addr & (PGSIZE-1));
52 }
53
54 const char* mmu_t::fill_from_mmio(reg_t vaddr, reg_t paddr)
55 {
56 reg_t rv_start = paddr & PGMASK;
57 char* spike_start = proc->sim->mmio_page(rv_start);
58
59 if (!spike_start)
60 return NULL;
61
62 // TODO: refactor with refill_tlb()
63 reg_t idx = (vaddr >> PGSHIFT) % TLB_ENTRIES;
64 reg_t expected_tag = vaddr >> PGSHIFT;
65
66 if (tlb_load_tag[idx] != expected_tag) tlb_load_tag[idx] = -1;
67 if (tlb_store_tag[idx] != expected_tag) tlb_store_tag[idx] = -1;
68 if (tlb_insn_tag[idx] != expected_tag) tlb_insn_tag[idx] = -1;
69
70 tlb_insn_tag[idx] = expected_tag;
71 tlb_data[idx] = spike_start - DEBUG_START;
72
73 return spike_start + (paddr & ~PGMASK);
74 }
75
76 const uint16_t* mmu_t::fetch_slow_path(reg_t vaddr)
77 {
78 reg_t paddr = translate(vaddr, FETCH);
79
80 // mmu_t::walk() returns -1 if it can't find a match. Of course -1 could also
81 // be a valid address.
82 if (paddr == ~(reg_t) 0 && vaddr != ~(reg_t) 0) {
83 throw trap_instruction_access_fault(vaddr);
84 }
85
86 if (sim->addr_is_mem(paddr)) {
87 refill_tlb(vaddr, paddr, FETCH);
88 return (const uint16_t*)sim->addr_to_mem(paddr);
89 } else {
90 if (!sim->mmio_load(paddr, sizeof fetch_temp, (uint8_t*)&fetch_temp))
91 throw trap_instruction_access_fault(vaddr);
92 return &fetch_temp;
93 }
94 }
95
96 void mmu_t::load_slow_path(reg_t addr, reg_t len, uint8_t* bytes)
97 {
98 reg_t paddr = translate(addr, LOAD);
99 if (sim->addr_is_mem(paddr)) {
100 memcpy(bytes, sim->addr_to_mem(paddr), len);
101 if (tracer.interested_in_range(paddr, paddr + PGSIZE, LOAD))
102 tracer.trace(paddr, len, LOAD);
103 else
104 refill_tlb(addr, paddr, LOAD);
105 } else if (!sim->mmio_load(paddr, len, bytes)) {
106 throw trap_load_access_fault(addr);
107 }
108 }
109
110 void mmu_t::store_slow_path(reg_t addr, reg_t len, const uint8_t* bytes)
111 {
112 reg_t paddr = translate(addr, STORE);
113 if (sim->addr_is_mem(paddr)) {
114 memcpy(sim->addr_to_mem(paddr), bytes, len);
115 if (tracer.interested_in_range(paddr, paddr + PGSIZE, STORE))
116 tracer.trace(paddr, len, STORE);
117 else
118 refill_tlb(addr, paddr, STORE);
119 } else if (!sim->mmio_store(paddr, len, bytes)) {
120 throw trap_store_access_fault(addr);
121 }
122 }
123
124 void mmu_t::refill_tlb(reg_t vaddr, reg_t paddr, access_type type)
125 {
126 reg_t idx = (vaddr >> PGSHIFT) % TLB_ENTRIES;
127 reg_t expected_tag = vaddr >> PGSHIFT;
128
129 if (tlb_load_tag[idx] != expected_tag) tlb_load_tag[idx] = -1;
130 if (tlb_store_tag[idx] != expected_tag) tlb_store_tag[idx] = -1;
131 if (tlb_insn_tag[idx] != expected_tag) tlb_insn_tag[idx] = -1;
132
133 if (type == FETCH) tlb_insn_tag[idx] = expected_tag;
134 else if (type == STORE) tlb_store_tag[idx] = expected_tag;
135 else tlb_load_tag[idx] = expected_tag;
136
137 tlb_data[idx] = sim->addr_to_mem(paddr) - vaddr;
138 }
139
140 reg_t mmu_t::walk(reg_t addr, access_type type, bool supervisor, bool pum)
141 {
142 int levels, ptidxbits, ptesize;
143 switch (get_field(proc->get_state()->mstatus, MSTATUS_VM))
144 {
145 case VM_SV32: levels = 2; ptidxbits = 10; ptesize = 4; break;
146 case VM_SV39: levels = 3; ptidxbits = 9; ptesize = 8; break;
147 case VM_SV48: levels = 4; ptidxbits = 9; ptesize = 8; break;
148 default: abort();
149 }
150
151 // verify bits xlen-1:va_bits-1 are all equal
152 int va_bits = PGSHIFT + levels * ptidxbits;
153 reg_t mask = (reg_t(1) << (proc->xlen - (va_bits-1))) - 1;
154 reg_t masked_msbs = (addr >> (va_bits-1)) & mask;
155 if (masked_msbs != 0 && masked_msbs != mask)
156 return -1;
157
158 reg_t base = proc->get_state()->sptbr << PGSHIFT;
159 int ptshift = (levels - 1) * ptidxbits;
160 for (int i = 0; i < levels; i++, ptshift -= ptidxbits) {
161 reg_t idx = (addr >> (PGSHIFT + ptshift)) & ((1 << ptidxbits) - 1);
162
163 // check that physical address of PTE is legal
164 reg_t pte_addr = base + idx * ptesize;
165 if (!sim->addr_is_mem(pte_addr))
166 break;
167
168 void* ppte = sim->addr_to_mem(pte_addr);
169 reg_t pte = ptesize == 4 ? *(uint32_t*)ppte : *(uint64_t*)ppte;
170 reg_t ppn = pte >> PTE_PPN_SHIFT;
171
172 if (PTE_TABLE(pte)) { // next level of page table
173 base = ppn << PGSHIFT;
174 } else if (pum && PTE_CHECK_PERM(pte, 0, type == STORE, type == FETCH)) {
175 break;
176 } else if (!PTE_CHECK_PERM(pte, supervisor, type == STORE, type == FETCH)) {
177 break;
178 } else {
179 // set referenced and possibly dirty bits.
180 *(uint32_t*)ppte |= PTE_R | ((type == STORE) * PTE_D);
181 // for superpage mappings, make a fake leaf PTE for the TLB's benefit.
182 reg_t vpn = addr >> PGSHIFT;
183 return (ppn | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT;
184 }
185 }
186
187 return -1;
188 }
189
190 void mmu_t::register_memtracer(memtracer_t* t)
191 {
192 flush_tlb();
193 tracer.hook(t);
194 }