Rename badaddr to tval
[riscv-isa-sim.git] / riscv / mmu.h
1 // See LICENSE for license details.
2
3 #ifndef _RISCV_MMU_H
4 #define _RISCV_MMU_H
5
6 #include "decode.h"
7 #include "trap.h"
8 #include "common.h"
9 #include "config.h"
10 #include "sim.h"
11 #include "processor.h"
12 #include "memtracer.h"
13 #include <stdlib.h>
14 #include <vector>
15
16 // virtual memory configuration
17 #define PGSHIFT 12
18 const reg_t PGSIZE = 1 << PGSHIFT;
19 const reg_t PGMASK = ~(PGSIZE-1);
20
21 struct insn_fetch_t
22 {
23 insn_func_t func;
24 insn_t insn;
25 };
26
27 struct icache_entry_t {
28 reg_t tag;
29 reg_t pad;
30 insn_fetch_t data;
31 };
32
33 struct tlb_entry_t {
34 char* host_offset;
35 reg_t target_offset;
36 };
37
38 class trigger_matched_t
39 {
40 public:
41 trigger_matched_t(int index,
42 trigger_operation_t operation, reg_t address, reg_t data) :
43 index(index), operation(operation), address(address), data(data) {}
44
45 int index;
46 trigger_operation_t operation;
47 reg_t address;
48 reg_t data;
49 };
50
51 // this class implements a processor's port into the virtual memory system.
52 // an MMU and instruction cache are maintained for simulator performance.
53 class mmu_t
54 {
55 public:
56 mmu_t(sim_t* sim, processor_t* proc);
57 ~mmu_t();
58
59 inline reg_t misaligned_load(reg_t addr, size_t size)
60 {
61 #ifdef RISCV_ENABLE_MISALIGNED
62 reg_t res = 0;
63 for (size_t i = 0; i < size; i++)
64 res += (reg_t)load_uint8(addr + i) << (i * 8);
65 return res;
66 #else
67 throw trap_load_address_misaligned(addr);
68 #endif
69 }
70
71 inline void misaligned_store(reg_t addr, reg_t data, size_t size)
72 {
73 #ifdef RISCV_ENABLE_MISALIGNED
74 for (size_t i = 0; i < size; i++)
75 store_uint8(addr + i, data >> (i * 8));
76 #else
77 throw trap_store_address_misaligned(addr);
78 #endif
79 }
80
81 // template for functions that load an aligned value from memory
82 #define load_func(type) \
83 inline type##_t load_##type(reg_t addr) { \
84 if (unlikely(addr & (sizeof(type##_t)-1))) \
85 return misaligned_load(addr, sizeof(type##_t)); \
86 reg_t vpn = addr >> PGSHIFT; \
87 if (likely(tlb_load_tag[vpn % TLB_ENTRIES] == vpn)) \
88 return *(type##_t*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr); \
89 if (unlikely(tlb_load_tag[vpn % TLB_ENTRIES] == (vpn | TLB_CHECK_TRIGGERS))) { \
90 type##_t data = *(type##_t*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr); \
91 if (!matched_trigger) { \
92 matched_trigger = trigger_exception(OPERATION_LOAD, addr, data); \
93 if (matched_trigger) \
94 throw *matched_trigger; \
95 } \
96 return data; \
97 } \
98 type##_t res; \
99 load_slow_path(addr, sizeof(type##_t), (uint8_t*)&res); \
100 return res; \
101 }
102
103 // load value from memory at aligned address; zero extend to register width
104 load_func(uint8)
105 load_func(uint16)
106 load_func(uint32)
107 load_func(uint64)
108
109 // load value from memory at aligned address; sign extend to register width
110 load_func(int8)
111 load_func(int16)
112 load_func(int32)
113 load_func(int64)
114
115 // template for functions that store an aligned value to memory
116 #define store_func(type) \
117 void store_##type(reg_t addr, type##_t val) { \
118 if (unlikely(addr & (sizeof(type##_t)-1))) \
119 return misaligned_store(addr, val, sizeof(type##_t)); \
120 reg_t vpn = addr >> PGSHIFT; \
121 if (likely(tlb_store_tag[vpn % TLB_ENTRIES] == vpn)) \
122 *(type##_t*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr) = val; \
123 else if (unlikely(tlb_store_tag[vpn % TLB_ENTRIES] == (vpn | TLB_CHECK_TRIGGERS))) { \
124 if (!matched_trigger) { \
125 matched_trigger = trigger_exception(OPERATION_STORE, addr, val); \
126 if (matched_trigger) \
127 throw *matched_trigger; \
128 } \
129 *(type##_t*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr) = val; \
130 } \
131 else \
132 store_slow_path(addr, sizeof(type##_t), (const uint8_t*)&val); \
133 }
134
135 // template for functions that perform an atomic memory operation
136 #define amo_func(type) \
137 template<typename op> \
138 type##_t amo_##type(reg_t addr, op f) { \
139 if (addr & (sizeof(type##_t)-1)) \
140 throw trap_store_address_misaligned(addr); \
141 try { \
142 auto lhs = load_##type(addr); \
143 store_##type(addr, f(lhs)); \
144 return lhs; \
145 } catch (trap_load_page_fault& t) { \
146 /* AMO faults should be reported as store faults */ \
147 throw trap_store_page_fault(t.get_tval()); \
148 } catch (trap_load_access_fault& t) { \
149 /* AMO faults should be reported as store faults */ \
150 throw trap_store_access_fault(t.get_tval()); \
151 } \
152 }
153
154 void store_float128(reg_t addr, float128_t val)
155 {
156 #ifndef RISCV_ENABLE_MISALIGNED
157 if (unlikely(addr & (sizeof(float128_t)-1)))
158 throw trap_store_address_misaligned(addr);
159 #endif
160 store_uint64(addr, val.v[0]);
161 store_uint64(addr + 8, val.v[1]);
162 }
163
164 float128_t load_float128(reg_t addr)
165 {
166 #ifndef RISCV_ENABLE_MISALIGNED
167 if (unlikely(addr & (sizeof(float128_t)-1)))
168 throw trap_load_address_misaligned(addr);
169 #endif
170 return (float128_t){load_uint64(addr), load_uint64(addr + 8)};
171 }
172
173 // store value to memory at aligned address
174 store_func(uint8)
175 store_func(uint16)
176 store_func(uint32)
177 store_func(uint64)
178
179 // perform an atomic memory operation at an aligned address
180 amo_func(uint32)
181 amo_func(uint64)
182
183 static const reg_t ICACHE_ENTRIES = 1024;
184
185 inline size_t icache_index(reg_t addr)
186 {
187 return (addr / PC_ALIGN) % ICACHE_ENTRIES;
188 }
189
190 inline icache_entry_t* refill_icache(reg_t addr, icache_entry_t* entry)
191 {
192 auto tlb_entry = translate_insn_addr(addr);
193 insn_bits_t insn = *(uint16_t*)(tlb_entry.host_offset + addr);
194 int length = insn_length(insn);
195
196 if (likely(length == 4)) {
197 insn |= (insn_bits_t)*(const int16_t*)translate_insn_addr_to_host(addr + 2) << 16;
198 } else if (length == 2) {
199 insn = (int16_t)insn;
200 } else if (length == 6) {
201 insn |= (insn_bits_t)*(const int16_t*)translate_insn_addr_to_host(addr + 4) << 32;
202 insn |= (insn_bits_t)*(const uint16_t*)translate_insn_addr_to_host(addr + 2) << 16;
203 } else {
204 static_assert(sizeof(insn_bits_t) == 8, "insn_bits_t must be uint64_t");
205 insn |= (insn_bits_t)*(const int16_t*)translate_insn_addr_to_host(addr + 6) << 48;
206 insn |= (insn_bits_t)*(const uint16_t*)translate_insn_addr_to_host(addr + 4) << 32;
207 insn |= (insn_bits_t)*(const uint16_t*)translate_insn_addr_to_host(addr + 2) << 16;
208 }
209
210 insn_fetch_t fetch = {proc->decode_insn(insn), insn};
211 entry->tag = addr;
212 entry->data = fetch;
213
214 reg_t paddr = tlb_entry.target_offset + addr;;
215 if (tracer.interested_in_range(paddr, paddr + 1, FETCH)) {
216 entry->tag = -1;
217 tracer.trace(paddr, length, FETCH);
218 }
219 return entry;
220 }
221
222 inline icache_entry_t* access_icache(reg_t addr)
223 {
224 icache_entry_t* entry = &icache[icache_index(addr)];
225 if (likely(entry->tag == addr))
226 return entry;
227 return refill_icache(addr, entry);
228 }
229
230 inline insn_fetch_t load_insn(reg_t addr)
231 {
232 icache_entry_t entry;
233 return refill_icache(addr, &entry)->data;
234 }
235
236 void flush_tlb();
237 void flush_icache();
238
239 void register_memtracer(memtracer_t*);
240
241 private:
242 sim_t* sim;
243 processor_t* proc;
244 memtracer_list_t tracer;
245 uint16_t fetch_temp;
246
247 // implement an instruction cache for simulator performance
248 icache_entry_t icache[ICACHE_ENTRIES];
249
250 // implement a TLB for simulator performance
251 static const reg_t TLB_ENTRIES = 256;
252 // If a TLB tag has TLB_CHECK_TRIGGERS set, then the MMU must check for a
253 // trigger match before completing an access.
254 static const reg_t TLB_CHECK_TRIGGERS = reg_t(1) << 63;
255 tlb_entry_t tlb_data[TLB_ENTRIES];
256 reg_t tlb_insn_tag[TLB_ENTRIES];
257 reg_t tlb_load_tag[TLB_ENTRIES];
258 reg_t tlb_store_tag[TLB_ENTRIES];
259
260 // finish translation on a TLB miss and update the TLB
261 tlb_entry_t refill_tlb(reg_t vaddr, reg_t paddr, char* host_addr, access_type type);
262 const char* fill_from_mmio(reg_t vaddr, reg_t paddr);
263
264 // perform a page table walk for a given VA; set referenced/dirty bits
265 reg_t walk(reg_t addr, access_type type, reg_t prv);
266
267 // handle uncommon cases: TLB misses, page faults, MMIO
268 tlb_entry_t fetch_slow_path(reg_t addr);
269 void load_slow_path(reg_t addr, reg_t len, uint8_t* bytes);
270 void store_slow_path(reg_t addr, reg_t len, const uint8_t* bytes);
271 reg_t translate(reg_t addr, access_type type);
272
273 // ITLB lookup
274 inline tlb_entry_t translate_insn_addr(reg_t addr) {
275 reg_t vpn = addr >> PGSHIFT;
276 if (likely(tlb_insn_tag[vpn % TLB_ENTRIES] == vpn))
277 return tlb_data[vpn % TLB_ENTRIES];
278 if (unlikely(tlb_insn_tag[vpn % TLB_ENTRIES] == (vpn | TLB_CHECK_TRIGGERS))) {
279 uint16_t* ptr = (uint16_t*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr);
280 int match = proc->trigger_match(OPERATION_EXECUTE, addr, *ptr);
281 if (match >= 0)
282 throw trigger_matched_t(match, OPERATION_EXECUTE, addr, *ptr);
283 return tlb_data[vpn % TLB_ENTRIES];
284 }
285 return fetch_slow_path(addr);
286 }
287
288 inline const uint16_t* translate_insn_addr_to_host(reg_t addr) {
289 return (uint16_t*)(translate_insn_addr(addr).host_offset + addr);
290 }
291
292 inline trigger_matched_t *trigger_exception(trigger_operation_t operation,
293 reg_t address, reg_t data)
294 {
295 if (!proc) {
296 return NULL;
297 }
298 int match = proc->trigger_match(operation, address, data);
299 if (match == -1)
300 return NULL;
301 if (proc->state.mcontrol[match].timing == 0) {
302 throw trigger_matched_t(match, operation, address, data);
303 }
304 return new trigger_matched_t(match, operation, address, data);
305 }
306
307 bool check_triggers_fetch;
308 bool check_triggers_load;
309 bool check_triggers_store;
310 // The exception describing a matched trigger, or NULL.
311 trigger_matched_t *matched_trigger;
312
313 friend class processor_t;
314 };
315
316 struct vm_info {
317 int levels;
318 int idxbits;
319 int ptesize;
320 reg_t ptbase;
321 };
322
323 inline vm_info decode_vm_info(int xlen, reg_t prv, reg_t satp)
324 {
325 if (prv == PRV_M) {
326 return {0, 0, 0, 0};
327 } else if (prv <= PRV_S && xlen == 32) {
328 switch (get_field(satp, SATP32_MODE)) {
329 case SATP_MODE_OFF: return {0, 0, 0, 0};
330 case SATP_MODE_SV32: return {2, 10, 4, (satp & SATP32_PPN) << PGSHIFT};
331 default: abort();
332 }
333 } else if (prv <= PRV_S && xlen == 64) {
334 switch (get_field(satp, SATP64_MODE)) {
335 case SATP_MODE_OFF: return {0, 0, 0, 0};
336 case SATP_MODE_SV39: return {3, 9, 8, (satp & SATP64_PPN) << PGSHIFT};
337 case SATP_MODE_SV48: return {4, 9, 8, (satp & SATP64_PPN) << PGSHIFT};
338 case SATP_MODE_SV57: return {5, 9, 8, (satp & SATP64_PPN) << PGSHIFT};
339 case SATP_MODE_SV64: return {6, 9, 8, (satp & SATP64_PPN) << PGSHIFT};
340 default: abort();
341 }
342 } else {
343 abort();
344 }
345 }
346
347 #endif