Support debug system bus access.
[riscv-isa-sim.git] / riscv / sim.cc
1 // See LICENSE for license details.
2
3 #include "sim.h"
4 #include "mmu.h"
5 #include "remote_bitbang.h"
6 #include <map>
7 #include <iostream>
8 #include <sstream>
9 #include <climits>
10 #include <cstdlib>
11 #include <cassert>
12 #include <signal.h>
13 #include <unistd.h>
14 #include <sys/wait.h>
15 #include <sys/types.h>
16
17 volatile bool ctrlc_pressed = false;
18 static void handle_signal(int sig)
19 {
20 if (ctrlc_pressed)
21 exit(-1);
22 ctrlc_pressed = true;
23 signal(sig, &handle_signal);
24 }
25
26 sim_t::sim_t(const char* isa, size_t nprocs, bool halted, reg_t start_pc,
27 std::vector<std::pair<reg_t, mem_t*>> mems,
28 const std::vector<std::string>& args,
29 std::vector<int> const hartids, unsigned progsize)
30 : htif_t(args), mems(mems), procs(std::max(nprocs, size_t(1))),
31 start_pc(start_pc), current_step(0), current_proc(0), debug(false),
32 remote_bitbang(NULL), debug_module(this, progsize)
33 {
34 signal(SIGINT, &handle_signal);
35
36 for (auto& x : mems)
37 bus.add_device(x.first, x.second);
38
39 debug_module.add_device(&bus);
40
41 debug_mmu = new mmu_t(this, NULL);
42
43 if (hartids.size() == 0) {
44 for (size_t i = 0; i < procs.size(); i++) {
45 procs[i] = new processor_t(isa, this, i, halted);
46 }
47 }
48 else {
49 if (hartids.size() != procs.size()) {
50 std::cerr << "Number of specified hartids doesn't match number of processors" << strerror(errno) << std::endl;
51 exit(1);
52 }
53 for (size_t i = 0; i < procs.size(); i++) {
54 procs[i] = new processor_t(isa, this, hartids[i], halted);
55 }
56 }
57
58 clint.reset(new clint_t(procs));
59 bus.add_device(CLINT_BASE, clint.get());
60 }
61
62 sim_t::~sim_t()
63 {
64 for (size_t i = 0; i < procs.size(); i++)
65 delete procs[i];
66 delete debug_mmu;
67 }
68
69 void sim_thread_main(void* arg)
70 {
71 ((sim_t*)arg)->main();
72 }
73
74 void sim_t::main()
75 {
76 if (!debug && log)
77 set_procs_debug(true);
78
79 while (!done())
80 {
81 if (debug || ctrlc_pressed)
82 interactive();
83 else
84 step(INTERLEAVE);
85 if (remote_bitbang) {
86 remote_bitbang->tick();
87 }
88 }
89 }
90
91 int sim_t::run()
92 {
93 host = context_t::current();
94 target.init(sim_thread_main, this);
95 return htif_t::run();
96 }
97
98 void sim_t::step(size_t n)
99 {
100 for (size_t i = 0, steps = 0; i < n; i += steps)
101 {
102 steps = std::min(n - i, INTERLEAVE - current_step);
103 procs[current_proc]->step(steps);
104
105 current_step += steps;
106 if (current_step == INTERLEAVE)
107 {
108 current_step = 0;
109 procs[current_proc]->yield_load_reservation();
110 if (++current_proc == procs.size()) {
111 current_proc = 0;
112 clint->increment(INTERLEAVE / INSNS_PER_RTC_TICK);
113 }
114
115 host->switch_to();
116 }
117 }
118 }
119
120 void sim_t::set_debug(bool value)
121 {
122 debug = value;
123 }
124
125 void sim_t::set_log(bool value)
126 {
127 log = value;
128 }
129
130 void sim_t::set_histogram(bool value)
131 {
132 histogram_enabled = value;
133 for (size_t i = 0; i < procs.size(); i++) {
134 procs[i]->set_histogram(histogram_enabled);
135 }
136 }
137
138 void sim_t::set_procs_debug(bool value)
139 {
140 for (size_t i=0; i< procs.size(); i++)
141 procs[i]->set_debug(value);
142 }
143
144 bool sim_t::mmio_load(reg_t addr, size_t len, uint8_t* bytes)
145 {
146 if (addr + len < addr)
147 return false;
148 return bus.load(addr, len, bytes);
149 }
150
151 bool sim_t::mmio_store(reg_t addr, size_t len, const uint8_t* bytes)
152 {
153 if (addr + len < addr)
154 return false;
155 return bus.store(addr, len, bytes);
156 }
157
158 static std::string dts_compile(const std::string& dts)
159 {
160 // Convert the DTS to DTB
161 int dts_pipe[2];
162 pid_t dts_pid;
163
164 if (pipe(dts_pipe) != 0 || (dts_pid = fork()) < 0) {
165 std::cerr << "Failed to fork dts child: " << strerror(errno) << std::endl;
166 exit(1);
167 }
168
169 // Child process to output dts
170 if (dts_pid == 0) {
171 close(dts_pipe[0]);
172 int step, len = dts.length();
173 const char *buf = dts.c_str();
174 for (int done = 0; done < len; done += step) {
175 step = write(dts_pipe[1], buf+done, len-done);
176 if (step == -1) {
177 std::cerr << "Failed to write dts: " << strerror(errno) << std::endl;
178 exit(1);
179 }
180 }
181 close(dts_pipe[1]);
182 exit(0);
183 }
184
185 pid_t dtb_pid;
186 int dtb_pipe[2];
187 if (pipe(dtb_pipe) != 0 || (dtb_pid = fork()) < 0) {
188 std::cerr << "Failed to fork dtb child: " << strerror(errno) << std::endl;
189 exit(1);
190 }
191
192 // Child process to output dtb
193 if (dtb_pid == 0) {
194 dup2(dts_pipe[0], 0);
195 dup2(dtb_pipe[1], 1);
196 close(dts_pipe[0]);
197 close(dts_pipe[1]);
198 close(dtb_pipe[0]);
199 close(dtb_pipe[1]);
200 execl(DTC, DTC, "-O", "dtb", 0);
201 std::cerr << "Failed to run " DTC ": " << strerror(errno) << std::endl;
202 exit(1);
203 }
204
205 close(dts_pipe[1]);
206 close(dts_pipe[0]);
207 close(dtb_pipe[1]);
208
209 // Read-out dtb
210 std::stringstream dtb;
211
212 int got;
213 char buf[4096];
214 while ((got = read(dtb_pipe[0], buf, sizeof(buf))) > 0) {
215 dtb.write(buf, got);
216 }
217 if (got == -1) {
218 std::cerr << "Failed to read dtb: " << strerror(errno) << std::endl;
219 exit(1);
220 }
221 close(dtb_pipe[0]);
222
223 // Reap children
224 int status;
225 waitpid(dts_pid, &status, 0);
226 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
227 std::cerr << "Child dts process failed" << std::endl;
228 exit(1);
229 }
230 waitpid(dtb_pid, &status, 0);
231 if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
232 std::cerr << "Child dtb process failed" << std::endl;
233 exit(1);
234 }
235
236 return dtb.str();
237 }
238
239 void sim_t::make_dtb()
240 {
241 const int reset_vec_size = 8;
242
243 start_pc = start_pc == reg_t(-1) ? get_entry_point() : start_pc;
244
245 uint32_t reset_vec[reset_vec_size] = {
246 0x297, // auipc t0,0x0
247 0x28593 + (reset_vec_size * 4 << 20), // addi a1, t0, &dtb
248 0xf1402573, // csrr a0, mhartid
249 get_core(0)->xlen == 32 ?
250 0x0182a283u : // lw t0,24(t0)
251 0x0182b283u, // ld t0,24(t0)
252 0x28067, // jr t0
253 0,
254 (uint32_t) (start_pc & 0xffffffff),
255 (uint32_t) (start_pc >> 32)
256 };
257
258 std::vector<char> rom((char*)reset_vec, (char*)reset_vec + sizeof(reset_vec));
259
260 std::stringstream s;
261 s << std::dec <<
262 "/dts-v1/;\n"
263 "\n"
264 "/ {\n"
265 " #address-cells = <2>;\n"
266 " #size-cells = <2>;\n"
267 " compatible = \"ucbbar,spike-bare-dev\";\n"
268 " model = \"ucbbar,spike-bare\";\n"
269 " cpus {\n"
270 " #address-cells = <1>;\n"
271 " #size-cells = <0>;\n"
272 " timebase-frequency = <" << (CPU_HZ/INSNS_PER_RTC_TICK) << ">;\n";
273 for (size_t i = 0; i < procs.size(); i++) {
274 s << " CPU" << i << ": cpu@" << i << " {\n"
275 " device_type = \"cpu\";\n"
276 " reg = <" << i << ">;\n"
277 " status = \"okay\";\n"
278 " compatible = \"riscv\";\n"
279 " riscv,isa = \"" << procs[i]->isa_string << "\";\n"
280 " mmu-type = \"riscv," << (procs[i]->max_xlen <= 32 ? "sv32" : "sv48") << "\";\n"
281 " clock-frequency = <" << CPU_HZ << ">;\n"
282 " CPU" << i << "_intc: interrupt-controller {\n"
283 " #interrupt-cells = <1>;\n"
284 " interrupt-controller;\n"
285 " compatible = \"riscv,cpu-intc\";\n"
286 " };\n"
287 " };\n";
288 }
289 s << " };\n";
290 for (auto& m : mems) {
291 s << std::hex <<
292 " memory@" << m.first << " {\n"
293 " device_type = \"memory\";\n"
294 " reg = <0x" << (m.first >> 32) << " 0x" << (m.first & (uint32_t)-1) <<
295 " 0x" << (m.second->size() >> 32) << " 0x" << (m.second->size() & (uint32_t)-1) << ">;\n"
296 " };\n";
297 }
298 s << " soc {\n"
299 " #address-cells = <2>;\n"
300 " #size-cells = <2>;\n"
301 " compatible = \"ucbbar,spike-bare-soc\", \"simple-bus\";\n"
302 " ranges;\n"
303 " clint@" << CLINT_BASE << " {\n"
304 " compatible = \"riscv,clint0\";\n"
305 " interrupts-extended = <" << std::dec;
306 for (size_t i = 0; i < procs.size(); i++)
307 s << "&CPU" << i << "_intc 3 &CPU" << i << "_intc 7 ";
308 reg_t clintbs = CLINT_BASE;
309 reg_t clintsz = CLINT_SIZE;
310 s << std::hex << ">;\n"
311 " reg = <0x" << (clintbs >> 32) << " 0x" << (clintbs & (uint32_t)-1) <<
312 " 0x" << (clintsz >> 32) << " 0x" << (clintsz & (uint32_t)-1) << ">;\n"
313 " };\n"
314 " };\n"
315 " htif {\n"
316 " compatible = \"ucb,htif0\";\n"
317 " };\n"
318 "};\n";
319
320 dts = s.str();
321 std::string dtb = dts_compile(dts);
322
323 rom.insert(rom.end(), dtb.begin(), dtb.end());
324 const int align = 0x1000;
325 rom.resize((rom.size() + align - 1) / align * align);
326
327 boot_rom.reset(new rom_device_t(rom));
328 bus.add_device(DEFAULT_RSTVEC, boot_rom.get());
329 }
330
331 char* sim_t::addr_to_mem(reg_t addr) {
332 auto desc = bus.find_device(addr);
333 if (auto mem = dynamic_cast<mem_t*>(desc.second))
334 if (addr - desc.first < mem->size())
335 return mem->contents() + (addr - desc.first);
336 return NULL;
337 }
338
339 // htif
340
341 void sim_t::reset()
342 {
343 make_dtb();
344 }
345
346 void sim_t::idle()
347 {
348 target.switch_to();
349 }
350
351 void sim_t::read_chunk(addr_t taddr, size_t len, void* dst)
352 {
353 assert(len == 8);
354 auto data = debug_mmu->load_uint64(taddr);
355 memcpy(dst, &data, sizeof data);
356 }
357
358 void sim_t::write_chunk(addr_t taddr, size_t len, const void* src)
359 {
360 assert(len == 8);
361 uint64_t data;
362 memcpy(&data, src, sizeof data);
363 debug_mmu->store_uint64(taddr, data);
364 }