Generate instruction decoder dynamically
[riscv-isa-sim.git] / riscv / mmu.h
1 // See LICENSE for license details.
2
3 #ifndef _RISCV_MMU_H
4 #define _RISCV_MMU_H
5
6 #include "decode.h"
7 #include "trap.h"
8 #include "common.h"
9 #include "config.h"
10 #include "processor.h"
11 #include "memtracer.h"
12 #include <vector>
13
14 // virtual memory configuration
15 typedef reg_t pte_t;
16 const reg_t LEVELS = sizeof(pte_t) == sizeof(uint64_t) ? 3 : 2;
17 const reg_t PGSHIFT = 13;
18 const reg_t PGSIZE = 1 << PGSHIFT;
19 const reg_t PTIDXBITS = PGSHIFT - (sizeof(pte_t) == 8 ? 3 : 2);
20 const reg_t VPN_BITS = PTIDXBITS * LEVELS;
21 const reg_t PPN_BITS = 8*sizeof(reg_t) - PGSHIFT;
22 const reg_t VA_BITS = VPN_BITS + PGSHIFT;
23
24 // page table entry (PTE) fields
25 #define PTE_T 0x001 // Entry is a page Table descriptor
26 #define PTE_E 0x002 // Entry is a page table Entry
27 #define PTE_R 0x004 // Referenced
28 #define PTE_D 0x008 // Dirty
29 #define PTE_UX 0x010 // User eXecute permission
30 #define PTE_UW 0x020 // User Read permission
31 #define PTE_UR 0x040 // User Write permission
32 #define PTE_SX 0x080 // Supervisor eXecute permission
33 #define PTE_SW 0x100 // Supervisor Read permission
34 #define PTE_SR 0x200 // Supervisor Write permission
35 #define PTE_PERM (PTE_SR | PTE_SW | PTE_SX | PTE_UR | PTE_UW | PTE_UX)
36 #define PTE_PPN_SHIFT 13 // LSB of physical page number in the PTE
37
38 // this class implements a processor's port into the virtual memory system.
39 // an MMU and instruction cache are maintained for simulator performance.
40 class mmu_t
41 {
42 public:
43 mmu_t(char* _mem, size_t _memsz);
44 ~mmu_t();
45
46 // template for functions that load an aligned value from memory
47 #define load_func(type) \
48 type##_t load_##type(reg_t addr) { \
49 if(unlikely(addr % sizeof(type##_t))) \
50 { \
51 badvaddr = addr; \
52 throw trap_load_address_misaligned; \
53 } \
54 reg_t paddr = translate(addr, sizeof(type##_t), false, false); \
55 return *(type##_t*)(mem + paddr); \
56 } \
57 type##_t load_reserved_##type(reg_t addr) { \
58 load_reservation = addr; \
59 return load_##type(addr); \
60 }
61
62 // load value from memory at aligned address; zero extend to register width
63 load_func(uint8)
64 load_func(uint16)
65 load_func(uint32)
66 load_func(uint64)
67
68 // load value from memory at aligned address; sign extend to register width
69 load_func(int8)
70 load_func(int16)
71 load_func(int32)
72 load_func(int64)
73
74 // template for functions that store an aligned value to memory
75 #define store_func(type) \
76 void store_##type(reg_t addr, type##_t val) { \
77 if(unlikely(addr % sizeof(type##_t))) \
78 { \
79 badvaddr = addr; \
80 throw trap_store_address_misaligned; \
81 } \
82 reg_t paddr = translate(addr, sizeof(type##_t), true, false); \
83 *(type##_t*)(mem + paddr) = val; \
84 } \
85 reg_t store_conditional_##type(reg_t addr, type##_t val) { \
86 if (addr == load_reservation) { \
87 store_##type(addr, val); \
88 return 0; \
89 } else return 1; \
90 }
91
92 // store value to memory at aligned address
93 store_func(uint8)
94 store_func(uint16)
95 store_func(uint32)
96 store_func(uint64)
97
98 struct insn_fetch_t
99 {
100 insn_func_t func;
101 insn_t insn;
102 };
103
104 // load instruction from memory at aligned address.
105 // (needed because instruction alignment requirement is variable
106 // if RVC is supported)
107 // returns the instruction at the specified address, given the current
108 // RVC mode. func is set to a pointer to a function that knows how to
109 // execute the returned instruction.
110 inline insn_fetch_t load_insn(reg_t addr, bool rvc)
111 {
112 #ifdef RISCV_ENABLE_RVC
113 if(addr % 4 == 2 && rvc) // fetch across word boundary
114 {
115 reg_t addr_lo = translate(addr, 2, false, true);
116 insn_fetch_t fetch;
117 fetch.insn.bits = *(uint16_t*)(mem + addr_lo);
118 fetch.func = proc->decode_insn(fetch.insn);
119
120 if(!INSN_IS_RVC(fetch.insn.bits))
121 {
122 reg_t addr_hi = translate(addr+2, 2, false, true);
123 fetch.insn.bits |= (uint32_t)*(uint16_t*)(mem + addr_hi) << 16;
124 }
125 return fetch;
126 }
127 else
128 #endif
129 {
130 reg_t idx = (addr/sizeof(insn_t::itype)) % ICACHE_ENTRIES;
131 insn_fetch_t fetch;
132 if (unlikely(icache_tag[idx] != addr))
133 {
134 reg_t paddr = translate(addr, sizeof(insn_t::itype), false, true);
135 fetch.insn.itype = *(decltype(insn_t::itype)*)(mem + paddr);
136 fetch.func = proc->decode_insn(fetch.insn);
137
138 reg_t idx = (paddr/sizeof(insn_t::itype)) % ICACHE_ENTRIES;
139 icache_tag[idx] = addr;
140 icache_data[idx] = fetch.insn;
141 icache_func[idx] = fetch.func;
142
143 if (tracer.interested_in_range(paddr, paddr + sizeof(insn_t::itype), false, true))
144 {
145 icache_tag[idx] = -1;
146 tracer.trace(paddr, sizeof(insn_t::itype), false, true);
147 }
148 }
149 fetch.insn = icache_data[idx];
150 fetch.func = icache_func[idx];
151 return fetch;
152 }
153 }
154
155 reg_t get_badvaddr() { return badvaddr; }
156 reg_t get_ptbr() { return ptbr; }
157 void set_ptbr(reg_t addr) { ptbr = addr & ~(PGSIZE-1); flush_tlb(); }
158 void set_processor(processor_t* p) { proc = p; flush_tlb(); }
159
160 void flush_tlb();
161 void flush_icache();
162 void yield_load_reservation() { load_reservation = -1; }
163
164 void register_memtracer(memtracer_t*);
165
166 private:
167 char* mem;
168 size_t memsz;
169 reg_t load_reservation;
170 reg_t badvaddr;
171 reg_t ptbr;
172 processor_t* proc;
173 memtracer_list_t tracer;
174
175 // implement an instruction cache for simulator performance
176 static const reg_t ICACHE_ENTRIES = 256;
177 insn_t icache_data[ICACHE_ENTRIES];
178 insn_func_t icache_func[ICACHE_ENTRIES];
179
180 // implement a TLB for simulator performance
181 static const reg_t TLB_ENTRIES = 256;
182 reg_t tlb_data[TLB_ENTRIES];
183 reg_t tlb_insn_tag[TLB_ENTRIES];
184 reg_t tlb_load_tag[TLB_ENTRIES];
185 reg_t tlb_store_tag[TLB_ENTRIES];
186 reg_t icache_tag[ICACHE_ENTRIES];
187
188 // finish translation on a TLB miss and upate the TLB
189 reg_t refill_tlb(reg_t addr, reg_t bytes, bool store, bool fetch);
190
191 // perform a page table walk for a given virtual address
192 pte_t walk(reg_t addr);
193
194 // translate a virtual address to a physical address
195 reg_t translate(reg_t addr, reg_t bytes, bool store, bool fetch)
196 {
197 reg_t idx = (addr >> PGSHIFT) % TLB_ENTRIES;
198
199 reg_t* tlb_tag = fetch ? tlb_insn_tag : store ? tlb_store_tag :tlb_load_tag;
200 reg_t expected_tag = addr & ~(PGSIZE-1);
201 if(likely(tlb_tag[idx] == expected_tag))
202 return ((uintptr_t)addr & (PGSIZE-1)) + tlb_data[idx];
203
204 return refill_tlb(addr, bytes, store, fetch);
205 }
206
207 friend class processor_t;
208 };
209
210 #endif