Fix 2 trigger corner cases. (#229)
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "simif.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, simif_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
26 {
27 disassembler = new disassembler_t(max_xlen);
28 parse_isa_string(isa);
29 register_base_instructions();
30
31 mmu = new mmu_t(sim, this);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdqc";
65
66 max_xlen = 64;
67 state.misa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, state.misa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = "imafdc";
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 state.misa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 state.misa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 state.misa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 if (supports_extension('Q') && !supports_extension('D'))
110 bad_isa_string(str);
111
112 if (supports_extension('Q') && max_xlen < 64)
113 bad_isa_string(str);
114
115 max_isa = state.misa;
116 }
117
118 void state_t::reset(reg_t max_isa)
119 {
120 memset(this, 0, sizeof(*this));
121 misa = max_isa;
122 prv = PRV_M;
123 pc = DEFAULT_RSTVEC;
124 tselect = 0;
125 for (unsigned int i = 0; i < num_triggers; i++)
126 mcontrol[i].type = 2;
127 }
128
129 void processor_t::set_debug(bool value)
130 {
131 debug = value;
132 if (ext)
133 ext->set_debug(value);
134 }
135
136 void processor_t::set_histogram(bool value)
137 {
138 histogram_enabled = value;
139 #ifndef RISCV_ENABLE_HISTOGRAM
140 if (value) {
141 fprintf(stderr, "PC Histogram support has not been properly enabled;");
142 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
143 }
144 #endif
145 }
146
147 void processor_t::reset()
148 {
149 state.reset(max_isa);
150 state.dcsr.halt = halt_on_reset;
151 halt_on_reset = false;
152 set_csr(CSR_MSTATUS, state.mstatus);
153
154 if (ext)
155 ext->reset(); // reset the extension
156
157 if (sim)
158 sim->proc_reset(id);
159 }
160
161 // Count number of contiguous 0 bits starting from the LSB.
162 static int ctz(reg_t val)
163 {
164 int res = 0;
165 if (val)
166 while ((val & 1) == 0)
167 val >>= 1, res++;
168 return res;
169 }
170
171 void processor_t::take_interrupt(reg_t pending_interrupts)
172 {
173 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
174 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
175 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
176
177 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
178 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
179 // M-ints have highest priority; consider S-ints only if no M-ints pending
180 if (enabled_interrupts == 0)
181 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
182
183 if (state.dcsr.cause == 0 && enabled_interrupts) {
184 // nonstandard interrupts have highest priority
185 if (enabled_interrupts >> IRQ_M_EXT)
186 enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT;
187 // external interrupts have next-highest priority
188 else if (enabled_interrupts & (MIP_MEIP | MIP_SEIP))
189 enabled_interrupts = enabled_interrupts & (MIP_MEIP | MIP_SEIP);
190 // software interrupts have next-highest priority
191 else if (enabled_interrupts & (MIP_MSIP | MIP_SSIP))
192 enabled_interrupts = enabled_interrupts & (MIP_MSIP | MIP_SSIP);
193 // timer interrupts have next-highest priority
194 else if (enabled_interrupts & (MIP_MTIP | MIP_STIP))
195 enabled_interrupts = enabled_interrupts & (MIP_MTIP | MIP_STIP);
196 else
197 abort();
198
199 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
200 }
201 }
202
203 static int xlen_to_uxl(int xlen)
204 {
205 if (xlen == 32)
206 return 1;
207 if (xlen == 64)
208 return 2;
209 abort();
210 }
211
212 reg_t processor_t::legalize_privilege(reg_t prv)
213 {
214 assert(prv <= PRV_M);
215
216 if (!supports_extension('U'))
217 return PRV_M;
218
219 if (prv == PRV_H || !supports_extension('S'))
220 return PRV_U;
221
222 return prv;
223 }
224
225 void processor_t::set_privilege(reg_t prv)
226 {
227 mmu->flush_tlb();
228 state.prv = legalize_privilege(prv);
229 }
230
231 void processor_t::enter_debug_mode(uint8_t cause)
232 {
233 state.dcsr.cause = cause;
234 state.dcsr.prv = state.prv;
235 set_privilege(PRV_M);
236 state.dpc = state.pc;
237 state.pc = DEBUG_ROM_ENTRY;
238 }
239
240 void processor_t::take_trap(trap_t& t, reg_t epc)
241 {
242 if (debug) {
243 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
244 id, t.name(), epc);
245 if (t.has_tval())
246 fprintf(stderr, "core %3d: tval 0x%016" PRIx64 "\n", id,
247 t.get_tval());
248 }
249
250 if (state.dcsr.cause) {
251 if (t.cause() == CAUSE_BREAKPOINT) {
252 state.pc = DEBUG_ROM_ENTRY;
253 } else {
254 state.pc = DEBUG_ROM_TVEC;
255 }
256 return;
257 }
258
259 if (t.cause() == CAUSE_BREAKPOINT && (
260 (state.prv == PRV_M && state.dcsr.ebreakm) ||
261 (state.prv == PRV_S && state.dcsr.ebreaks) ||
262 (state.prv == PRV_U && state.dcsr.ebreaku))) {
263 enter_debug_mode(DCSR_CAUSE_SWBP);
264 return;
265 }
266
267 // by default, trap to M-mode, unless delegated to S-mode
268 reg_t bit = t.cause();
269 reg_t deleg = state.medeleg;
270 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
271 if (interrupt)
272 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
273 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
274 // handle the trap in S-mode
275 state.pc = state.stvec;
276 state.scause = t.cause();
277 state.sepc = epc;
278 state.stval = t.get_tval();
279
280 reg_t s = state.mstatus;
281 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
282 s = set_field(s, MSTATUS_SPP, state.prv);
283 s = set_field(s, MSTATUS_SIE, 0);
284 set_csr(CSR_MSTATUS, s);
285 set_privilege(PRV_S);
286 } else {
287 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
288 state.pc = (state.mtvec & ~(reg_t)1) + vector;
289 state.mepc = epc;
290 state.mcause = t.cause();
291 state.mtval = t.get_tval();
292
293 reg_t s = state.mstatus;
294 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
295 s = set_field(s, MSTATUS_MPP, state.prv);
296 s = set_field(s, MSTATUS_MIE, 0);
297 set_csr(CSR_MSTATUS, s);
298 set_privilege(PRV_M);
299 }
300 }
301
302 void processor_t::disasm(insn_t insn)
303 {
304 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
305 if (last_pc != state.pc || last_bits != bits) {
306 if (executions != 1) {
307 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
308 }
309
310 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
311 id, state.pc, bits, disassembler->disassemble(insn).c_str());
312 last_pc = state.pc;
313 last_bits = bits;
314 executions = 1;
315 } else {
316 executions++;
317 }
318 }
319
320 int processor_t::paddr_bits()
321 {
322 assert(xlen == max_xlen);
323 return max_xlen == 64 ? 50 : 34;
324 }
325
326 void processor_t::set_csr(int which, reg_t val)
327 {
328 val = zext_xlen(val);
329 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
330 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
331 switch (which)
332 {
333 case CSR_FFLAGS:
334 dirty_fp_state;
335 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
336 break;
337 case CSR_FRM:
338 dirty_fp_state;
339 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
340 break;
341 case CSR_FCSR:
342 dirty_fp_state;
343 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
344 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
345 break;
346 case CSR_MSTATUS: {
347 if ((val ^ state.mstatus) &
348 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
349 mmu->flush_tlb();
350
351 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
352 | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
353 | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
354 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
355 (ext ? MSTATUS_XS : 0);
356
357 reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP));
358 state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp);
359 if (supports_extension('S'))
360 mask |= MSTATUS_SPP;
361
362 state.mstatus = (state.mstatus & ~mask) | (val & mask);
363
364 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
365 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
366 if (max_xlen == 32)
367 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
368 else
369 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
370
371 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
372 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
373 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
374 // U-XLEN == S-XLEN == M-XLEN
375 xlen = max_xlen;
376 break;
377 }
378 case CSR_MIP: {
379 reg_t mask = MIP_SSIP | MIP_STIP;
380 state.mip = (state.mip & ~mask) | (val & mask);
381 break;
382 }
383 case CSR_MIE:
384 state.mie = (state.mie & ~all_ints) | (val & all_ints);
385 break;
386 case CSR_MIDELEG:
387 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
388 break;
389 case CSR_MEDELEG: {
390 reg_t mask =
391 (1 << CAUSE_MISALIGNED_FETCH) |
392 (1 << CAUSE_BREAKPOINT) |
393 (1 << CAUSE_USER_ECALL) |
394 (1 << CAUSE_FETCH_PAGE_FAULT) |
395 (1 << CAUSE_LOAD_PAGE_FAULT) |
396 (1 << CAUSE_STORE_PAGE_FAULT);
397 state.medeleg = (state.medeleg & ~mask) | (val & mask);
398 break;
399 }
400 case CSR_MINSTRET:
401 case CSR_MCYCLE:
402 if (xlen == 32)
403 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
404 else
405 state.minstret = val;
406 break;
407 case CSR_MINSTRETH:
408 case CSR_MCYCLEH:
409 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
410 break;
411 case CSR_SCOUNTEREN:
412 state.scounteren = val;
413 break;
414 case CSR_MCOUNTEREN:
415 state.mcounteren = val;
416 break;
417 case CSR_SSTATUS: {
418 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
419 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
420 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
421 }
422 case CSR_SIP: {
423 reg_t mask = MIP_SSIP & state.mideleg;
424 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
425 }
426 case CSR_SIE:
427 return set_csr(CSR_MIE,
428 (state.mie & ~state.mideleg) | (val & state.mideleg));
429 case CSR_SATP: {
430 mmu->flush_tlb();
431 if (max_xlen == 32)
432 state.satp = val & (SATP32_PPN | SATP32_MODE);
433 if (max_xlen == 64 && (get_field(val, SATP64_MODE) == SATP_MODE_OFF ||
434 get_field(val, SATP64_MODE) == SATP_MODE_SV39 ||
435 get_field(val, SATP64_MODE) == SATP_MODE_SV48))
436 state.satp = val & (SATP64_PPN | SATP64_MODE);
437 break;
438 }
439 case CSR_SEPC: state.sepc = val & ~(reg_t)1; break;
440 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
441 case CSR_SSCRATCH: state.sscratch = val; break;
442 case CSR_SCAUSE: state.scause = val; break;
443 case CSR_STVAL: state.stval = val; break;
444 case CSR_MEPC: state.mepc = val & ~(reg_t)1; break;
445 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
446 case CSR_MSCRATCH: state.mscratch = val; break;
447 case CSR_MCAUSE: state.mcause = val; break;
448 case CSR_MTVAL: state.mtval = val; break;
449 case CSR_MISA: {
450 // the write is ignored if increasing IALIGN would misalign the PC
451 if (!(val & (1L << ('C' - 'A'))) && (state.pc & 2))
452 break;
453
454 if (!(val & (1L << ('F' - 'A'))))
455 val &= ~(1L << ('D' - 'A'));
456
457 // allow MAFDC bits in MISA to be modified
458 reg_t mask = 0;
459 mask |= 1L << ('M' - 'A');
460 mask |= 1L << ('A' - 'A');
461 mask |= 1L << ('F' - 'A');
462 mask |= 1L << ('D' - 'A');
463 mask |= 1L << ('C' - 'A');
464 mask &= max_isa;
465
466 state.misa = (val & mask) | (state.misa & ~mask);
467 break;
468 }
469 case CSR_TSELECT:
470 if (val < state.num_triggers) {
471 state.tselect = val;
472 }
473 break;
474 case CSR_TDATA1:
475 {
476 mcontrol_t *mc = &state.mcontrol[state.tselect];
477 if (mc->dmode && !state.dcsr.cause) {
478 break;
479 }
480 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
481 mc->select = get_field(val, MCONTROL_SELECT);
482 mc->timing = get_field(val, MCONTROL_TIMING);
483 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
484 mc->chain = get_field(val, MCONTROL_CHAIN);
485 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
486 mc->m = get_field(val, MCONTROL_M);
487 mc->h = get_field(val, MCONTROL_H);
488 mc->s = get_field(val, MCONTROL_S);
489 mc->u = get_field(val, MCONTROL_U);
490 mc->execute = get_field(val, MCONTROL_EXECUTE);
491 mc->store = get_field(val, MCONTROL_STORE);
492 mc->load = get_field(val, MCONTROL_LOAD);
493 // Assume we're here because of csrw.
494 if (mc->execute)
495 mc->timing = 0;
496 trigger_updated();
497 }
498 break;
499 case CSR_TDATA2:
500 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
501 break;
502 }
503 if (state.tselect < state.num_triggers) {
504 state.tdata2[state.tselect] = val;
505 }
506 break;
507 case CSR_DCSR:
508 state.dcsr.prv = get_field(val, DCSR_PRV);
509 state.dcsr.step = get_field(val, DCSR_STEP);
510 // TODO: ndreset and fullreset
511 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
512 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
513 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
514 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
515 state.dcsr.halt = get_field(val, DCSR_HALT);
516 break;
517 case CSR_DPC:
518 state.dpc = val & ~(reg_t)1;
519 break;
520 case CSR_DSCRATCH:
521 state.dscratch = val;
522 break;
523 }
524 }
525
526 reg_t processor_t::get_csr(int which)
527 {
528 uint32_t ctr_en = -1;
529 if (state.prv < PRV_M)
530 ctr_en &= state.mcounteren;
531 if (state.prv < PRV_S)
532 ctr_en &= state.scounteren;
533 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
534
535 if (ctr_ok) {
536 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
537 return 0;
538 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
539 return 0;
540 }
541 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
542 return 0;
543 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
544 return 0;
545 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
546 return 0;
547
548 switch (which)
549 {
550 case CSR_FFLAGS:
551 require_fp;
552 if (!supports_extension('F'))
553 break;
554 return state.fflags;
555 case CSR_FRM:
556 require_fp;
557 if (!supports_extension('F'))
558 break;
559 return state.frm;
560 case CSR_FCSR:
561 require_fp;
562 if (!supports_extension('F'))
563 break;
564 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
565 case CSR_INSTRET:
566 case CSR_CYCLE:
567 if (ctr_ok)
568 return state.minstret;
569 break;
570 case CSR_MINSTRET:
571 case CSR_MCYCLE:
572 return state.minstret;
573 case CSR_INSTRETH:
574 case CSR_CYCLEH:
575 if (ctr_ok && xlen == 32)
576 return state.minstret >> 32;
577 break;
578 case CSR_MINSTRETH:
579 case CSR_MCYCLEH:
580 if (xlen == 32)
581 return state.minstret >> 32;
582 break;
583 case CSR_SCOUNTEREN: return state.scounteren;
584 case CSR_MCOUNTEREN: return state.mcounteren;
585 case CSR_SSTATUS: {
586 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
587 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR | SSTATUS_UXL;
588 reg_t sstatus = state.mstatus & mask;
589 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
590 (sstatus & SSTATUS_XS) == SSTATUS_XS)
591 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
592 return sstatus;
593 }
594 case CSR_SIP: return state.mip & state.mideleg;
595 case CSR_SIE: return state.mie & state.mideleg;
596 case CSR_SEPC: return state.sepc & pc_alignment_mask();
597 case CSR_STVAL: return state.stval;
598 case CSR_STVEC: return state.stvec;
599 case CSR_SCAUSE:
600 if (max_xlen > xlen)
601 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
602 return state.scause;
603 case CSR_SATP:
604 if (get_field(state.mstatus, MSTATUS_TVM))
605 require_privilege(PRV_M);
606 return state.satp;
607 case CSR_SSCRATCH: return state.sscratch;
608 case CSR_MSTATUS: return state.mstatus;
609 case CSR_MIP: return state.mip;
610 case CSR_MIE: return state.mie;
611 case CSR_MEPC: return state.mepc & pc_alignment_mask();
612 case CSR_MSCRATCH: return state.mscratch;
613 case CSR_MCAUSE: return state.mcause;
614 case CSR_MTVAL: return state.mtval;
615 case CSR_MISA: return state.misa;
616 case CSR_MARCHID: return 0;
617 case CSR_MIMPID: return 0;
618 case CSR_MVENDORID: return 0;
619 case CSR_MHARTID: return id;
620 case CSR_MTVEC: return state.mtvec;
621 case CSR_MEDELEG: return state.medeleg;
622 case CSR_MIDELEG: return state.mideleg;
623 case CSR_TSELECT: return state.tselect;
624 case CSR_TDATA1:
625 if (state.tselect < state.num_triggers) {
626 reg_t v = 0;
627 mcontrol_t *mc = &state.mcontrol[state.tselect];
628 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
629 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
630 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
631 v = set_field(v, MCONTROL_SELECT, mc->select);
632 v = set_field(v, MCONTROL_TIMING, mc->timing);
633 v = set_field(v, MCONTROL_ACTION, mc->action);
634 v = set_field(v, MCONTROL_CHAIN, mc->chain);
635 v = set_field(v, MCONTROL_MATCH, mc->match);
636 v = set_field(v, MCONTROL_M, mc->m);
637 v = set_field(v, MCONTROL_H, mc->h);
638 v = set_field(v, MCONTROL_S, mc->s);
639 v = set_field(v, MCONTROL_U, mc->u);
640 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
641 v = set_field(v, MCONTROL_STORE, mc->store);
642 v = set_field(v, MCONTROL_LOAD, mc->load);
643 return v;
644 } else {
645 return 0;
646 }
647 break;
648 case CSR_TDATA2:
649 if (state.tselect < state.num_triggers) {
650 return state.tdata2[state.tselect];
651 } else {
652 return 0;
653 }
654 break;
655 case CSR_TDATA3: return 0;
656 case CSR_DCSR:
657 {
658 uint32_t v = 0;
659 v = set_field(v, DCSR_XDEBUGVER, 1);
660 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
661 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
662 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
663 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
664 v = set_field(v, DCSR_STOPCYCLE, 0);
665 v = set_field(v, DCSR_STOPTIME, 0);
666 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
667 v = set_field(v, DCSR_STEP, state.dcsr.step);
668 v = set_field(v, DCSR_PRV, state.dcsr.prv);
669 return v;
670 }
671 case CSR_DPC:
672 return state.dpc & pc_alignment_mask();
673 case CSR_DSCRATCH:
674 return state.dscratch;
675 }
676 throw trap_illegal_instruction(0);
677 }
678
679 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
680 {
681 throw trap_illegal_instruction(0);
682 }
683
684 insn_func_t processor_t::decode_insn(insn_t insn)
685 {
686 // look up opcode in hash table
687 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
688 insn_desc_t desc = opcode_cache[idx];
689
690 if (unlikely(insn.bits() != desc.match)) {
691 // fall back to linear search
692 insn_desc_t* p = &instructions[0];
693 while ((insn.bits() & p->mask) != p->match)
694 p++;
695 desc = *p;
696
697 if (p->mask != 0 && p > &instructions[0]) {
698 if (p->match != (p-1)->match && p->match != (p+1)->match) {
699 // move to front of opcode list to reduce miss penalty
700 while (--p >= &instructions[0])
701 *(p+1) = *p;
702 instructions[0] = desc;
703 }
704 }
705
706 opcode_cache[idx] = desc;
707 opcode_cache[idx].match = insn.bits();
708 }
709
710 return xlen == 64 ? desc.rv64 : desc.rv32;
711 }
712
713 void processor_t::register_insn(insn_desc_t desc)
714 {
715 instructions.push_back(desc);
716 }
717
718 void processor_t::build_opcode_map()
719 {
720 struct cmp {
721 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
722 if (lhs.match == rhs.match)
723 return lhs.mask > rhs.mask;
724 return lhs.match > rhs.match;
725 }
726 };
727 std::sort(instructions.begin(), instructions.end(), cmp());
728
729 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
730 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
731 }
732
733 void processor_t::register_extension(extension_t* x)
734 {
735 for (auto insn : x->get_instructions())
736 register_insn(insn);
737 build_opcode_map();
738 for (auto disasm_insn : x->get_disasms())
739 disassembler->add_insn(disasm_insn);
740 if (ext != NULL)
741 throw std::logic_error("only one extension may be registered");
742 ext = x;
743 x->set_processor(this);
744 }
745
746 void processor_t::register_base_instructions()
747 {
748 #define DECLARE_INSN(name, match, mask) \
749 insn_bits_t name##_match = (match), name##_mask = (mask);
750 #include "encoding.h"
751 #undef DECLARE_INSN
752
753 #define DEFINE_INSN(name) \
754 REGISTER_INSN(this, name, name##_match, name##_mask)
755 #include "insn_list.h"
756 #undef DEFINE_INSN
757
758 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
759 build_opcode_map();
760 }
761
762 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
763 {
764 switch (addr)
765 {
766 case 0:
767 if (len <= 4) {
768 memset(bytes, 0, len);
769 bytes[0] = get_field(state.mip, MIP_MSIP);
770 return true;
771 }
772 break;
773 }
774
775 return false;
776 }
777
778 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
779 {
780 switch (addr)
781 {
782 case 0:
783 if (len <= 4) {
784 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
785 return true;
786 }
787 break;
788 }
789
790 return false;
791 }
792
793 void processor_t::trigger_updated()
794 {
795 mmu->flush_tlb();
796 mmu->check_triggers_fetch = false;
797 mmu->check_triggers_load = false;
798 mmu->check_triggers_store = false;
799
800 for (unsigned i = 0; i < state.num_triggers; i++) {
801 if (state.mcontrol[i].execute) {
802 mmu->check_triggers_fetch = true;
803 }
804 if (state.mcontrol[i].load) {
805 mmu->check_triggers_load = true;
806 }
807 if (state.mcontrol[i].store) {
808 mmu->check_triggers_store = true;
809 }
810 }
811 }