Fix a bug caused by moving misa into state_t. (#180)
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, simif_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdqc";
65
66 max_xlen = 64;
67 state.misa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, state.misa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = "imafdc";
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 state.misa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 state.misa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 state.misa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 if (supports_extension('Q') && !supports_extension('D'))
110 bad_isa_string(str);
111
112 if (supports_extension('Q') && max_xlen < 64)
113 bad_isa_string(str);
114
115 max_isa = state.misa;
116 }
117
118 void state_t::reset(reg_t max_isa)
119 {
120 memset(this, 0, sizeof(*this));
121 misa = max_isa;
122 prv = PRV_M;
123 pc = DEFAULT_RSTVEC;
124 load_reservation = -1;
125 tselect = 0;
126 for (unsigned int i = 0; i < num_triggers; i++)
127 mcontrol[i].type = 2;
128 }
129
130 void processor_t::set_debug(bool value)
131 {
132 debug = value;
133 if (ext)
134 ext->set_debug(value);
135 }
136
137 void processor_t::set_histogram(bool value)
138 {
139 histogram_enabled = value;
140 #ifndef RISCV_ENABLE_HISTOGRAM
141 if (value) {
142 fprintf(stderr, "PC Histogram support has not been properly enabled;");
143 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
144 }
145 #endif
146 }
147
148 void processor_t::reset()
149 {
150 state.reset(max_isa);
151 state.dcsr.halt = halt_on_reset;
152 halt_on_reset = false;
153 set_csr(CSR_MSTATUS, state.mstatus);
154
155 if (ext)
156 ext->reset(); // reset the extension
157 }
158
159 // Count number of contiguous 0 bits starting from the LSB.
160 static int ctz(reg_t val)
161 {
162 int res = 0;
163 if (val)
164 while ((val & 1) == 0)
165 val >>= 1, res++;
166 return res;
167 }
168
169 void processor_t::take_interrupt(reg_t pending_interrupts)
170 {
171 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
172 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
173 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
174
175 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
176 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
177 // M-ints have highest priority; consider S-ints only if no M-ints pending
178 if (enabled_interrupts == 0)
179 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
180
181 if (state.dcsr.cause == 0 && enabled_interrupts) {
182 // nonstandard interrupts have highest priority
183 if (enabled_interrupts >> IRQ_M_EXT)
184 enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT;
185 // external interrupts have next-highest priority
186 else if (enabled_interrupts & (MIP_MEIP | MIP_SEIP))
187 enabled_interrupts = enabled_interrupts & (MIP_MEIP | MIP_SEIP);
188 // software interrupts have next-highest priority
189 else if (enabled_interrupts & (MIP_MSIP | MIP_SSIP))
190 enabled_interrupts = enabled_interrupts & (MIP_MSIP | MIP_SSIP);
191 // timer interrupts have next-highest priority
192 else if (enabled_interrupts & (MIP_MTIP | MIP_STIP))
193 enabled_interrupts = enabled_interrupts & (MIP_MTIP | MIP_STIP);
194 else
195 abort();
196
197 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
198 }
199 }
200
201 static int xlen_to_uxl(int xlen)
202 {
203 if (xlen == 32)
204 return 1;
205 if (xlen == 64)
206 return 2;
207 abort();
208 }
209
210 reg_t processor_t::legalize_privilege(reg_t prv)
211 {
212 assert(prv <= PRV_M);
213
214 if (!supports_extension('U'))
215 return PRV_M;
216
217 if (prv == PRV_H || !supports_extension('S'))
218 return PRV_U;
219
220 return prv;
221 }
222
223 void processor_t::set_privilege(reg_t prv)
224 {
225 mmu->flush_tlb();
226 state.prv = legalize_privilege(prv);
227 }
228
229 void processor_t::enter_debug_mode(uint8_t cause)
230 {
231 state.dcsr.cause = cause;
232 state.dcsr.prv = state.prv;
233 set_privilege(PRV_M);
234 state.dpc = state.pc;
235 state.pc = DEBUG_ROM_ENTRY;
236 }
237
238 void processor_t::take_trap(trap_t& t, reg_t epc)
239 {
240 if (debug) {
241 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
242 id, t.name(), epc);
243 if (t.has_tval())
244 fprintf(stderr, "core %3d: tval 0x%016" PRIx64 "\n", id,
245 t.get_tval());
246 }
247
248 if (state.dcsr.cause) {
249 if (t.cause() == CAUSE_BREAKPOINT) {
250 state.pc = DEBUG_ROM_ENTRY;
251 } else {
252 state.pc = DEBUG_ROM_TVEC;
253 }
254 return;
255 }
256
257 if (t.cause() == CAUSE_BREAKPOINT && (
258 (state.prv == PRV_M && state.dcsr.ebreakm) ||
259 (state.prv == PRV_S && state.dcsr.ebreaks) ||
260 (state.prv == PRV_U && state.dcsr.ebreaku))) {
261 enter_debug_mode(DCSR_CAUSE_SWBP);
262 return;
263 }
264
265 // by default, trap to M-mode, unless delegated to S-mode
266 reg_t bit = t.cause();
267 reg_t deleg = state.medeleg;
268 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
269 if (interrupt)
270 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
271 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
272 // handle the trap in S-mode
273 state.pc = state.stvec;
274 state.scause = t.cause();
275 state.sepc = epc;
276 state.stval = t.get_tval();
277
278 reg_t s = state.mstatus;
279 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
280 s = set_field(s, MSTATUS_SPP, state.prv);
281 s = set_field(s, MSTATUS_SIE, 0);
282 set_csr(CSR_MSTATUS, s);
283 set_privilege(PRV_S);
284 } else {
285 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
286 state.pc = (state.mtvec & ~(reg_t)1) + vector;
287 state.mepc = epc;
288 state.mcause = t.cause();
289 state.mtval = t.get_tval();
290
291 reg_t s = state.mstatus;
292 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
293 s = set_field(s, MSTATUS_MPP, state.prv);
294 s = set_field(s, MSTATUS_MIE, 0);
295 set_csr(CSR_MSTATUS, s);
296 set_privilege(PRV_M);
297 }
298
299 yield_load_reservation();
300 }
301
302 void processor_t::disasm(insn_t insn)
303 {
304 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
305 if (last_pc != state.pc || last_bits != bits) {
306 if (executions != 1) {
307 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
308 }
309
310 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
311 id, state.pc, bits, disassembler->disassemble(insn).c_str());
312 last_pc = state.pc;
313 last_bits = bits;
314 executions = 1;
315 } else {
316 executions++;
317 }
318 }
319
320 int processor_t::paddr_bits()
321 {
322 assert(xlen == max_xlen);
323 return max_xlen == 64 ? 50 : 34;
324 }
325
326 void processor_t::set_csr(int which, reg_t val)
327 {
328 val = zext_xlen(val);
329 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
330 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
331 switch (which)
332 {
333 case CSR_FFLAGS:
334 dirty_fp_state;
335 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
336 break;
337 case CSR_FRM:
338 dirty_fp_state;
339 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
340 break;
341 case CSR_FCSR:
342 dirty_fp_state;
343 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
344 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
345 break;
346 case CSR_MSTATUS: {
347 if ((val ^ state.mstatus) &
348 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
349 mmu->flush_tlb();
350
351 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
352 | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
353 | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
354 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
355 (ext ? MSTATUS_XS : 0);
356
357 reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP));
358 state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp);
359 if (supports_extension('S'))
360 mask |= MSTATUS_SPP;
361
362 state.mstatus = (state.mstatus & ~mask) | (val & mask);
363
364 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
365 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
366 if (max_xlen == 32)
367 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
368 else
369 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
370
371 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
372 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
373 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
374 // U-XLEN == S-XLEN == M-XLEN
375 xlen = max_xlen;
376 break;
377 }
378 case CSR_MIP: {
379 reg_t mask = MIP_SSIP | MIP_STIP;
380 state.mip = (state.mip & ~mask) | (val & mask);
381 break;
382 }
383 case CSR_MIE:
384 state.mie = (state.mie & ~all_ints) | (val & all_ints);
385 break;
386 case CSR_MIDELEG:
387 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
388 break;
389 case CSR_MEDELEG: {
390 reg_t mask =
391 (1 << CAUSE_MISALIGNED_FETCH) |
392 (1 << CAUSE_BREAKPOINT) |
393 (1 << CAUSE_USER_ECALL) |
394 (1 << CAUSE_FETCH_PAGE_FAULT) |
395 (1 << CAUSE_LOAD_PAGE_FAULT) |
396 (1 << CAUSE_STORE_PAGE_FAULT);
397 state.medeleg = (state.medeleg & ~mask) | (val & mask);
398 break;
399 }
400 case CSR_MINSTRET:
401 case CSR_MCYCLE:
402 if (xlen == 32)
403 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
404 else
405 state.minstret = val;
406 break;
407 case CSR_MINSTRETH:
408 case CSR_MCYCLEH:
409 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
410 break;
411 case CSR_SCOUNTEREN:
412 state.scounteren = val;
413 break;
414 case CSR_MCOUNTEREN:
415 state.mcounteren = val;
416 break;
417 case CSR_SSTATUS: {
418 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
419 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
420 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
421 }
422 case CSR_SIP: {
423 reg_t mask = MIP_SSIP & state.mideleg;
424 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
425 }
426 case CSR_SIE:
427 return set_csr(CSR_MIE,
428 (state.mie & ~state.mideleg) | (val & state.mideleg));
429 case CSR_SATP: {
430 mmu->flush_tlb();
431 if (max_xlen == 32)
432 state.satp = val & (SATP32_PPN | SATP32_MODE);
433 if (max_xlen == 64 && (get_field(val, SATP64_MODE) == SATP_MODE_OFF ||
434 get_field(val, SATP64_MODE) == SATP_MODE_SV39 ||
435 get_field(val, SATP64_MODE) == SATP_MODE_SV48))
436 state.satp = val & (SATP64_PPN | SATP64_MODE);
437 break;
438 }
439 case CSR_SEPC: state.sepc = val & ~(reg_t)1; break;
440 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
441 case CSR_SSCRATCH: state.sscratch = val; break;
442 case CSR_SCAUSE: state.scause = val; break;
443 case CSR_STVAL: state.stval = val; break;
444 case CSR_MEPC: state.mepc = val & ~(reg_t)1; break;
445 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
446 case CSR_MSCRATCH: state.mscratch = val; break;
447 case CSR_MCAUSE: state.mcause = val; break;
448 case CSR_MTVAL: state.mtval = val; break;
449 case CSR_MISA: {
450 if (!(val & (1L << ('F' - 'A'))))
451 val &= ~(1L << ('D' - 'A'));
452
453 // allow MAFDC bits in MISA to be modified
454 reg_t mask = 0;
455 mask |= 1L << ('M' - 'A');
456 mask |= 1L << ('A' - 'A');
457 mask |= 1L << ('F' - 'A');
458 mask |= 1L << ('D' - 'A');
459 mask |= 1L << ('C' - 'A');
460 mask &= max_isa;
461
462 state.misa = (val & mask) | (state.misa & ~mask);
463 break;
464 }
465 case CSR_TSELECT:
466 if (val < state.num_triggers) {
467 state.tselect = val;
468 }
469 break;
470 case CSR_TDATA1:
471 {
472 mcontrol_t *mc = &state.mcontrol[state.tselect];
473 if (mc->dmode && !state.dcsr.cause) {
474 break;
475 }
476 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
477 mc->select = get_field(val, MCONTROL_SELECT);
478 mc->timing = get_field(val, MCONTROL_TIMING);
479 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
480 mc->chain = get_field(val, MCONTROL_CHAIN);
481 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
482 mc->m = get_field(val, MCONTROL_M);
483 mc->h = get_field(val, MCONTROL_H);
484 mc->s = get_field(val, MCONTROL_S);
485 mc->u = get_field(val, MCONTROL_U);
486 mc->execute = get_field(val, MCONTROL_EXECUTE);
487 mc->store = get_field(val, MCONTROL_STORE);
488 mc->load = get_field(val, MCONTROL_LOAD);
489 // Assume we're here because of csrw.
490 if (mc->execute)
491 mc->timing = 0;
492 trigger_updated();
493 }
494 break;
495 case CSR_TDATA2:
496 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
497 break;
498 }
499 if (state.tselect < state.num_triggers) {
500 state.tdata2[state.tselect] = val;
501 }
502 break;
503 case CSR_DCSR:
504 state.dcsr.prv = get_field(val, DCSR_PRV);
505 state.dcsr.step = get_field(val, DCSR_STEP);
506 // TODO: ndreset and fullreset
507 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
508 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
509 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
510 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
511 state.dcsr.halt = get_field(val, DCSR_HALT);
512 break;
513 case CSR_DPC:
514 state.dpc = val & ~(reg_t)1;
515 break;
516 case CSR_DSCRATCH:
517 state.dscratch = val;
518 break;
519 }
520 }
521
522 reg_t processor_t::get_csr(int which)
523 {
524 uint32_t ctr_en = -1;
525 if (state.prv < PRV_M)
526 ctr_en &= state.mcounteren;
527 if (state.prv < PRV_S)
528 ctr_en &= state.scounteren;
529 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
530
531 if (ctr_ok) {
532 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
533 return 0;
534 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
535 return 0;
536 }
537 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
538 return 0;
539 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
540 return 0;
541 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
542 return 0;
543
544 switch (which)
545 {
546 case CSR_FFLAGS:
547 require_fp;
548 if (!supports_extension('F'))
549 break;
550 return state.fflags;
551 case CSR_FRM:
552 require_fp;
553 if (!supports_extension('F'))
554 break;
555 return state.frm;
556 case CSR_FCSR:
557 require_fp;
558 if (!supports_extension('F'))
559 break;
560 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
561 case CSR_INSTRET:
562 case CSR_CYCLE:
563 if (ctr_ok)
564 return state.minstret;
565 break;
566 case CSR_MINSTRET:
567 case CSR_MCYCLE:
568 return state.minstret;
569 case CSR_INSTRETH:
570 case CSR_CYCLEH:
571 if (ctr_ok && xlen == 32)
572 return state.minstret >> 32;
573 break;
574 case CSR_MINSTRETH:
575 case CSR_MCYCLEH:
576 if (xlen == 32)
577 return state.minstret >> 32;
578 break;
579 case CSR_SCOUNTEREN: return state.scounteren;
580 case CSR_MCOUNTEREN: return state.mcounteren;
581 case CSR_SSTATUS: {
582 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
583 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_UXL;
584 reg_t sstatus = state.mstatus & mask;
585 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
586 (sstatus & SSTATUS_XS) == SSTATUS_XS)
587 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
588 return sstatus;
589 }
590 case CSR_SIP: return state.mip & state.mideleg;
591 case CSR_SIE: return state.mie & state.mideleg;
592 case CSR_SEPC: return state.sepc;
593 case CSR_STVAL: return state.stval;
594 case CSR_STVEC: return state.stvec;
595 case CSR_SCAUSE:
596 if (max_xlen > xlen)
597 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
598 return state.scause;
599 case CSR_SATP:
600 if (get_field(state.mstatus, MSTATUS_TVM))
601 require_privilege(PRV_M);
602 return state.satp;
603 case CSR_SSCRATCH: return state.sscratch;
604 case CSR_MSTATUS: return state.mstatus;
605 case CSR_MIP: return state.mip;
606 case CSR_MIE: return state.mie;
607 case CSR_MEPC: return state.mepc;
608 case CSR_MSCRATCH: return state.mscratch;
609 case CSR_MCAUSE: return state.mcause;
610 case CSR_MTVAL: return state.mtval;
611 case CSR_MISA: return state.misa;
612 case CSR_MARCHID: return 0;
613 case CSR_MIMPID: return 0;
614 case CSR_MVENDORID: return 0;
615 case CSR_MHARTID: return id;
616 case CSR_MTVEC: return state.mtvec;
617 case CSR_MEDELEG: return state.medeleg;
618 case CSR_MIDELEG: return state.mideleg;
619 case CSR_TSELECT: return state.tselect;
620 case CSR_TDATA1:
621 if (state.tselect < state.num_triggers) {
622 reg_t v = 0;
623 mcontrol_t *mc = &state.mcontrol[state.tselect];
624 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
625 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
626 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
627 v = set_field(v, MCONTROL_SELECT, mc->select);
628 v = set_field(v, MCONTROL_TIMING, mc->timing);
629 v = set_field(v, MCONTROL_ACTION, mc->action);
630 v = set_field(v, MCONTROL_CHAIN, mc->chain);
631 v = set_field(v, MCONTROL_MATCH, mc->match);
632 v = set_field(v, MCONTROL_M, mc->m);
633 v = set_field(v, MCONTROL_H, mc->h);
634 v = set_field(v, MCONTROL_S, mc->s);
635 v = set_field(v, MCONTROL_U, mc->u);
636 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
637 v = set_field(v, MCONTROL_STORE, mc->store);
638 v = set_field(v, MCONTROL_LOAD, mc->load);
639 return v;
640 } else {
641 return 0;
642 }
643 break;
644 case CSR_TDATA2:
645 if (state.tselect < state.num_triggers) {
646 return state.tdata2[state.tselect];
647 } else {
648 return 0;
649 }
650 break;
651 case CSR_TDATA3: return 0;
652 case CSR_DCSR:
653 {
654 uint32_t v = 0;
655 v = set_field(v, DCSR_XDEBUGVER, 1);
656 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
657 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
658 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
659 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
660 v = set_field(v, DCSR_STOPCYCLE, 0);
661 v = set_field(v, DCSR_STOPTIME, 0);
662 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
663 v = set_field(v, DCSR_STEP, state.dcsr.step);
664 v = set_field(v, DCSR_PRV, state.dcsr.prv);
665 return v;
666 }
667 case CSR_DPC:
668 return state.dpc;
669 case CSR_DSCRATCH:
670 return state.dscratch;
671 }
672 throw trap_illegal_instruction(0);
673 }
674
675 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
676 {
677 throw trap_illegal_instruction(0);
678 }
679
680 insn_func_t processor_t::decode_insn(insn_t insn)
681 {
682 // look up opcode in hash table
683 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
684 insn_desc_t desc = opcode_cache[idx];
685
686 if (unlikely(insn.bits() != desc.match)) {
687 // fall back to linear search
688 insn_desc_t* p = &instructions[0];
689 while ((insn.bits() & p->mask) != p->match)
690 p++;
691 desc = *p;
692
693 if (p->mask != 0 && p > &instructions[0]) {
694 if (p->match != (p-1)->match && p->match != (p+1)->match) {
695 // move to front of opcode list to reduce miss penalty
696 while (--p >= &instructions[0])
697 *(p+1) = *p;
698 instructions[0] = desc;
699 }
700 }
701
702 opcode_cache[idx] = desc;
703 opcode_cache[idx].match = insn.bits();
704 }
705
706 return xlen == 64 ? desc.rv64 : desc.rv32;
707 }
708
709 void processor_t::register_insn(insn_desc_t desc)
710 {
711 instructions.push_back(desc);
712 }
713
714 void processor_t::build_opcode_map()
715 {
716 struct cmp {
717 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
718 if (lhs.match == rhs.match)
719 return lhs.mask > rhs.mask;
720 return lhs.match > rhs.match;
721 }
722 };
723 std::sort(instructions.begin(), instructions.end(), cmp());
724
725 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
726 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
727 }
728
729 void processor_t::register_extension(extension_t* x)
730 {
731 for (auto insn : x->get_instructions())
732 register_insn(insn);
733 build_opcode_map();
734 for (auto disasm_insn : x->get_disasms())
735 disassembler->add_insn(disasm_insn);
736 if (ext != NULL)
737 throw std::logic_error("only one extension may be registered");
738 ext = x;
739 x->set_processor(this);
740 }
741
742 void processor_t::register_base_instructions()
743 {
744 #define DECLARE_INSN(name, match, mask) \
745 insn_bits_t name##_match = (match), name##_mask = (mask);
746 #include "encoding.h"
747 #undef DECLARE_INSN
748
749 #define DEFINE_INSN(name) \
750 REGISTER_INSN(this, name, name##_match, name##_mask)
751 #include "insn_list.h"
752 #undef DEFINE_INSN
753
754 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
755 build_opcode_map();
756 }
757
758 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
759 {
760 switch (addr)
761 {
762 case 0:
763 if (len <= 4) {
764 memset(bytes, 0, len);
765 bytes[0] = get_field(state.mip, MIP_MSIP);
766 return true;
767 }
768 break;
769 }
770
771 return false;
772 }
773
774 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
775 {
776 switch (addr)
777 {
778 case 0:
779 if (len <= 4) {
780 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
781 return true;
782 }
783 break;
784 }
785
786 return false;
787 }
788
789 void processor_t::trigger_updated()
790 {
791 mmu->flush_tlb();
792 mmu->check_triggers_fetch = false;
793 mmu->check_triggers_load = false;
794 mmu->check_triggers_store = false;
795
796 for (unsigned i = 0; i < state.num_triggers; i++) {
797 if (state.mcontrol[i].execute) {
798 mmu->check_triggers_fetch = true;
799 }
800 if (state.mcontrol[i].load) {
801 mmu->check_triggers_load = true;
802 }
803 if (state.mcontrol[i].store) {
804 mmu->check_triggers_store = true;
805 }
806 }
807 }