Implement priv-1.11 interrupt-priority scheme (#161)
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdqc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = "imafdc";
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 isa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 if (supports_extension('Q') && !supports_extension('D'))
110 bad_isa_string(str);
111
112 if (supports_extension('Q') && max_xlen < 64)
113 bad_isa_string(str);
114
115 max_isa = isa;
116 }
117
118 void state_t::reset()
119 {
120 memset(this, 0, sizeof(*this));
121 prv = PRV_M;
122 pc = DEFAULT_RSTVEC;
123 load_reservation = -1;
124 tselect = 0;
125 for (unsigned int i = 0; i < num_triggers; i++)
126 mcontrol[i].type = 2;
127 }
128
129 void processor_t::set_debug(bool value)
130 {
131 debug = value;
132 if (ext)
133 ext->set_debug(value);
134 }
135
136 void processor_t::set_histogram(bool value)
137 {
138 histogram_enabled = value;
139 #ifndef RISCV_ENABLE_HISTOGRAM
140 if (value) {
141 fprintf(stderr, "PC Histogram support has not been properly enabled;");
142 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
143 }
144 #endif
145 }
146
147 void processor_t::reset()
148 {
149 state.reset();
150 state.dcsr.halt = halt_on_reset;
151 halt_on_reset = false;
152 set_csr(CSR_MSTATUS, state.mstatus);
153
154 if (ext)
155 ext->reset(); // reset the extension
156 }
157
158 // Count number of contiguous 0 bits starting from the LSB.
159 static int ctz(reg_t val)
160 {
161 int res = 0;
162 if (val)
163 while ((val & 1) == 0)
164 val >>= 1, res++;
165 return res;
166 }
167
168 void processor_t::take_interrupt(reg_t pending_interrupts)
169 {
170 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
171 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
172 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
173
174 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
175 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
176 // M-ints have highest priority; consider S-ints only if no M-ints pending
177 if (enabled_interrupts == 0)
178 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
179
180 if (state.dcsr.cause == 0 && enabled_interrupts) {
181 // nonstandard interrupts have highest priority
182 if (enabled_interrupts >> IRQ_M_EXT)
183 enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT;
184 // external interrupts have next-highest priority
185 else if (enabled_interrupts & (MIP_MEIP | MIP_SEIP))
186 enabled_interrupts = enabled_interrupts & (MIP_MEIP | MIP_SEIP);
187 // software interrupts have next-highest priority
188 else if (enabled_interrupts & (MIP_MSIP | MIP_SSIP))
189 enabled_interrupts = enabled_interrupts & (MIP_MSIP | MIP_SSIP);
190 // timer interrupts have next-highest priority
191 else if (enabled_interrupts & (MIP_MTIP | MIP_STIP))
192 enabled_interrupts = enabled_interrupts & (MIP_MTIP | MIP_STIP);
193 else
194 abort();
195
196 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
197 }
198 }
199
200 static int xlen_to_uxl(int xlen)
201 {
202 if (xlen == 32)
203 return 1;
204 if (xlen == 64)
205 return 2;
206 abort();
207 }
208
209 reg_t processor_t::legalize_privilege(reg_t prv)
210 {
211 assert(prv <= PRV_M);
212
213 if (!supports_extension('U'))
214 return PRV_M;
215
216 if (prv == PRV_H || !supports_extension('S'))
217 return PRV_U;
218
219 return prv;
220 }
221
222 void processor_t::set_privilege(reg_t prv)
223 {
224 mmu->flush_tlb();
225 state.prv = legalize_privilege(prv);
226 }
227
228 void processor_t::enter_debug_mode(uint8_t cause)
229 {
230 state.dcsr.cause = cause;
231 state.dcsr.prv = state.prv;
232 set_privilege(PRV_M);
233 state.dpc = state.pc;
234 state.pc = DEBUG_ROM_ENTRY;
235 }
236
237 void processor_t::take_trap(trap_t& t, reg_t epc)
238 {
239 if (debug) {
240 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
241 id, t.name(), epc);
242 if (t.has_badaddr())
243 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
244 t.get_badaddr());
245 }
246
247 if (state.dcsr.cause) {
248 if (t.cause() == CAUSE_BREAKPOINT) {
249 state.pc = DEBUG_ROM_ENTRY;
250 } else {
251 state.pc = DEBUG_ROM_TVEC;
252 }
253 return;
254 }
255
256 if (t.cause() == CAUSE_BREAKPOINT && (
257 (state.prv == PRV_M && state.dcsr.ebreakm) ||
258 (state.prv == PRV_S && state.dcsr.ebreaks) ||
259 (state.prv == PRV_U && state.dcsr.ebreaku))) {
260 enter_debug_mode(DCSR_CAUSE_SWBP);
261 return;
262 }
263
264 // by default, trap to M-mode, unless delegated to S-mode
265 reg_t bit = t.cause();
266 reg_t deleg = state.medeleg;
267 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
268 if (interrupt)
269 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
270 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
271 // handle the trap in S-mode
272 state.pc = state.stvec;
273 state.scause = t.cause();
274 state.sepc = epc;
275 if (t.has_badaddr())
276 state.sbadaddr = t.get_badaddr();
277
278 reg_t s = state.mstatus;
279 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
280 s = set_field(s, MSTATUS_SPP, state.prv);
281 s = set_field(s, MSTATUS_SIE, 0);
282 set_csr(CSR_MSTATUS, s);
283 set_privilege(PRV_S);
284 } else {
285 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
286 state.pc = (state.mtvec & ~(reg_t)1) + vector;
287 state.mepc = epc;
288 state.mcause = t.cause();
289 if (t.has_badaddr())
290 state.mbadaddr = t.get_badaddr();
291
292 reg_t s = state.mstatus;
293 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
294 s = set_field(s, MSTATUS_MPP, state.prv);
295 s = set_field(s, MSTATUS_MIE, 0);
296 set_csr(CSR_MSTATUS, s);
297 set_privilege(PRV_M);
298 }
299
300 yield_load_reservation();
301 }
302
303 void processor_t::disasm(insn_t insn)
304 {
305 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
306 if (last_pc != state.pc || last_bits != bits) {
307 if (executions != 1) {
308 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
309 }
310
311 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
312 id, state.pc, bits, disassembler->disassemble(insn).c_str());
313 last_pc = state.pc;
314 last_bits = bits;
315 executions = 1;
316 } else {
317 executions++;
318 }
319 }
320
321 int processor_t::paddr_bits()
322 {
323 assert(xlen == max_xlen);
324 return max_xlen == 64 ? 50 : 34;
325 }
326
327 void processor_t::set_csr(int which, reg_t val)
328 {
329 val = zext_xlen(val);
330 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
331 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
332 switch (which)
333 {
334 case CSR_FFLAGS:
335 dirty_fp_state;
336 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
337 break;
338 case CSR_FRM:
339 dirty_fp_state;
340 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
341 break;
342 case CSR_FCSR:
343 dirty_fp_state;
344 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
345 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
346 break;
347 case CSR_MSTATUS: {
348 if ((val ^ state.mstatus) &
349 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
350 mmu->flush_tlb();
351
352 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
353 | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
354 | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
355 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
356 (ext ? MSTATUS_XS : 0);
357
358 reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP));
359 state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp);
360 if (supports_extension('S'))
361 mask |= MSTATUS_SPP;
362
363 state.mstatus = (state.mstatus & ~mask) | (val & mask);
364
365 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
366 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
367 if (max_xlen == 32)
368 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
369 else
370 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
371
372 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
373 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
374 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
375 // U-XLEN == S-XLEN == M-XLEN
376 xlen = max_xlen;
377 break;
378 }
379 case CSR_MIP: {
380 reg_t mask = MIP_SSIP | MIP_STIP;
381 state.mip = (state.mip & ~mask) | (val & mask);
382 break;
383 }
384 case CSR_MIE:
385 state.mie = (state.mie & ~all_ints) | (val & all_ints);
386 break;
387 case CSR_MIDELEG:
388 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
389 break;
390 case CSR_MEDELEG: {
391 reg_t mask =
392 (1 << CAUSE_MISALIGNED_FETCH) |
393 (1 << CAUSE_BREAKPOINT) |
394 (1 << CAUSE_USER_ECALL) |
395 (1 << CAUSE_FETCH_PAGE_FAULT) |
396 (1 << CAUSE_LOAD_PAGE_FAULT) |
397 (1 << CAUSE_STORE_PAGE_FAULT);
398 state.medeleg = (state.medeleg & ~mask) | (val & mask);
399 break;
400 }
401 case CSR_MINSTRET:
402 case CSR_MCYCLE:
403 if (xlen == 32)
404 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
405 else
406 state.minstret = val;
407 break;
408 case CSR_MINSTRETH:
409 case CSR_MCYCLEH:
410 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
411 break;
412 case CSR_SCOUNTEREN:
413 state.scounteren = val;
414 break;
415 case CSR_MCOUNTEREN:
416 state.mcounteren = val;
417 break;
418 case CSR_SSTATUS: {
419 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
420 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
421 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
422 }
423 case CSR_SIP: {
424 reg_t mask = MIP_SSIP & state.mideleg;
425 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
426 }
427 case CSR_SIE:
428 return set_csr(CSR_MIE,
429 (state.mie & ~state.mideleg) | (val & state.mideleg));
430 case CSR_SPTBR: {
431 mmu->flush_tlb();
432 if (max_xlen == 32)
433 state.sptbr = val & (SPTBR32_PPN | SPTBR32_MODE);
434 if (max_xlen == 64 && (get_field(val, SPTBR64_MODE) == SPTBR_MODE_OFF ||
435 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV39 ||
436 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV48))
437 state.sptbr = val & (SPTBR64_PPN | SPTBR64_MODE);
438 break;
439 }
440 case CSR_SEPC: state.sepc = val; break;
441 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
442 case CSR_SSCRATCH: state.sscratch = val; break;
443 case CSR_SCAUSE: state.scause = val; break;
444 case CSR_SBADADDR: state.sbadaddr = val; break;
445 case CSR_MEPC: state.mepc = val; break;
446 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
447 case CSR_MSCRATCH: state.mscratch = val; break;
448 case CSR_MCAUSE: state.mcause = val; break;
449 case CSR_MBADADDR: state.mbadaddr = val; break;
450 case CSR_MISA: {
451 if (!(val & (1L << ('F' - 'A'))))
452 val &= ~(1L << ('D' - 'A'));
453
454 // allow MAFDC bits in MISA to be modified
455 reg_t mask = 0;
456 mask |= 1L << ('M' - 'A');
457 mask |= 1L << ('A' - 'A');
458 mask |= 1L << ('F' - 'A');
459 mask |= 1L << ('D' - 'A');
460 mask |= 1L << ('C' - 'A');
461 mask &= max_isa;
462
463 isa = (val & mask) | (isa & ~mask);
464 break;
465 }
466 case CSR_TSELECT:
467 if (val < state.num_triggers) {
468 state.tselect = val;
469 }
470 break;
471 case CSR_TDATA1:
472 {
473 mcontrol_t *mc = &state.mcontrol[state.tselect];
474 if (mc->dmode && !state.dcsr.cause) {
475 break;
476 }
477 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
478 mc->select = get_field(val, MCONTROL_SELECT);
479 mc->timing = get_field(val, MCONTROL_TIMING);
480 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
481 mc->chain = get_field(val, MCONTROL_CHAIN);
482 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
483 mc->m = get_field(val, MCONTROL_M);
484 mc->h = get_field(val, MCONTROL_H);
485 mc->s = get_field(val, MCONTROL_S);
486 mc->u = get_field(val, MCONTROL_U);
487 mc->execute = get_field(val, MCONTROL_EXECUTE);
488 mc->store = get_field(val, MCONTROL_STORE);
489 mc->load = get_field(val, MCONTROL_LOAD);
490 // Assume we're here because of csrw.
491 if (mc->execute)
492 mc->timing = 0;
493 trigger_updated();
494 }
495 break;
496 case CSR_TDATA2:
497 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
498 break;
499 }
500 if (state.tselect < state.num_triggers) {
501 state.tdata2[state.tselect] = val;
502 }
503 break;
504 case CSR_DCSR:
505 state.dcsr.prv = get_field(val, DCSR_PRV);
506 state.dcsr.step = get_field(val, DCSR_STEP);
507 // TODO: ndreset and fullreset
508 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
509 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
510 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
511 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
512 state.dcsr.halt = get_field(val, DCSR_HALT);
513 break;
514 case CSR_DPC:
515 state.dpc = val;
516 break;
517 case CSR_DSCRATCH:
518 state.dscratch = val;
519 break;
520 }
521 }
522
523 reg_t processor_t::get_csr(int which)
524 {
525 uint32_t ctr_en = -1;
526 if (state.prv < PRV_M)
527 ctr_en &= state.mcounteren;
528 if (state.prv < PRV_S)
529 ctr_en &= state.scounteren;
530 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
531
532 if (ctr_ok) {
533 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
534 return 0;
535 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
536 return 0;
537 }
538 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
539 return 0;
540 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
541 return 0;
542 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
543 return 0;
544
545 switch (which)
546 {
547 case CSR_FFLAGS:
548 require_fp;
549 if (!supports_extension('F'))
550 break;
551 return state.fflags;
552 case CSR_FRM:
553 require_fp;
554 if (!supports_extension('F'))
555 break;
556 return state.frm;
557 case CSR_FCSR:
558 require_fp;
559 if (!supports_extension('F'))
560 break;
561 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
562 case CSR_INSTRET:
563 case CSR_CYCLE:
564 if (ctr_ok)
565 return state.minstret;
566 break;
567 case CSR_MINSTRET:
568 case CSR_MCYCLE:
569 return state.minstret;
570 case CSR_MINSTRETH:
571 case CSR_MCYCLEH:
572 if (xlen == 32)
573 return state.minstret >> 32;
574 break;
575 case CSR_SCOUNTEREN: return state.scounteren;
576 case CSR_MCOUNTEREN: return state.mcounteren;
577 case CSR_SSTATUS: {
578 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
579 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_UXL;
580 reg_t sstatus = state.mstatus & mask;
581 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
582 (sstatus & SSTATUS_XS) == SSTATUS_XS)
583 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
584 return sstatus;
585 }
586 case CSR_SIP: return state.mip & state.mideleg;
587 case CSR_SIE: return state.mie & state.mideleg;
588 case CSR_SEPC: return state.sepc;
589 case CSR_SBADADDR: return state.sbadaddr;
590 case CSR_STVEC: return state.stvec;
591 case CSR_SCAUSE:
592 if (max_xlen > xlen)
593 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
594 return state.scause;
595 case CSR_SPTBR:
596 if (get_field(state.mstatus, MSTATUS_TVM))
597 require_privilege(PRV_M);
598 return state.sptbr;
599 case CSR_SSCRATCH: return state.sscratch;
600 case CSR_MSTATUS: return state.mstatus;
601 case CSR_MIP: return state.mip;
602 case CSR_MIE: return state.mie;
603 case CSR_MEPC: return state.mepc;
604 case CSR_MSCRATCH: return state.mscratch;
605 case CSR_MCAUSE: return state.mcause;
606 case CSR_MBADADDR: return state.mbadaddr;
607 case CSR_MISA: return isa;
608 case CSR_MARCHID: return 0;
609 case CSR_MIMPID: return 0;
610 case CSR_MVENDORID: return 0;
611 case CSR_MHARTID: return id;
612 case CSR_MTVEC: return state.mtvec;
613 case CSR_MEDELEG: return state.medeleg;
614 case CSR_MIDELEG: return state.mideleg;
615 case CSR_TSELECT: return state.tselect;
616 case CSR_TDATA1:
617 if (state.tselect < state.num_triggers) {
618 reg_t v = 0;
619 mcontrol_t *mc = &state.mcontrol[state.tselect];
620 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
621 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
622 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
623 v = set_field(v, MCONTROL_SELECT, mc->select);
624 v = set_field(v, MCONTROL_TIMING, mc->timing);
625 v = set_field(v, MCONTROL_ACTION, mc->action);
626 v = set_field(v, MCONTROL_CHAIN, mc->chain);
627 v = set_field(v, MCONTROL_MATCH, mc->match);
628 v = set_field(v, MCONTROL_M, mc->m);
629 v = set_field(v, MCONTROL_H, mc->h);
630 v = set_field(v, MCONTROL_S, mc->s);
631 v = set_field(v, MCONTROL_U, mc->u);
632 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
633 v = set_field(v, MCONTROL_STORE, mc->store);
634 v = set_field(v, MCONTROL_LOAD, mc->load);
635 return v;
636 } else {
637 return 0;
638 }
639 break;
640 case CSR_TDATA2:
641 if (state.tselect < state.num_triggers) {
642 return state.tdata2[state.tselect];
643 } else {
644 return 0;
645 }
646 break;
647 case CSR_TDATA3: return 0;
648 case CSR_DCSR:
649 {
650 uint32_t v = 0;
651 v = set_field(v, DCSR_XDEBUGVER, 1);
652 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
653 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
654 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
655 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
656 v = set_field(v, DCSR_STOPCYCLE, 0);
657 v = set_field(v, DCSR_STOPTIME, 0);
658 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
659 v = set_field(v, DCSR_STEP, state.dcsr.step);
660 v = set_field(v, DCSR_PRV, state.dcsr.prv);
661 return v;
662 }
663 case CSR_DPC:
664 return state.dpc;
665 case CSR_DSCRATCH:
666 return state.dscratch;
667 }
668 throw trap_illegal_instruction(0);
669 }
670
671 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
672 {
673 throw trap_illegal_instruction(0);
674 }
675
676 insn_func_t processor_t::decode_insn(insn_t insn)
677 {
678 // look up opcode in hash table
679 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
680 insn_desc_t desc = opcode_cache[idx];
681
682 if (unlikely(insn.bits() != desc.match)) {
683 // fall back to linear search
684 insn_desc_t* p = &instructions[0];
685 while ((insn.bits() & p->mask) != p->match)
686 p++;
687 desc = *p;
688
689 if (p->mask != 0 && p > &instructions[0]) {
690 if (p->match != (p-1)->match && p->match != (p+1)->match) {
691 // move to front of opcode list to reduce miss penalty
692 while (--p >= &instructions[0])
693 *(p+1) = *p;
694 instructions[0] = desc;
695 }
696 }
697
698 opcode_cache[idx] = desc;
699 opcode_cache[idx].match = insn.bits();
700 }
701
702 return xlen == 64 ? desc.rv64 : desc.rv32;
703 }
704
705 void processor_t::register_insn(insn_desc_t desc)
706 {
707 instructions.push_back(desc);
708 }
709
710 void processor_t::build_opcode_map()
711 {
712 struct cmp {
713 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
714 if (lhs.match == rhs.match)
715 return lhs.mask > rhs.mask;
716 return lhs.match > rhs.match;
717 }
718 };
719 std::sort(instructions.begin(), instructions.end(), cmp());
720
721 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
722 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
723 }
724
725 void processor_t::register_extension(extension_t* x)
726 {
727 for (auto insn : x->get_instructions())
728 register_insn(insn);
729 build_opcode_map();
730 for (auto disasm_insn : x->get_disasms())
731 disassembler->add_insn(disasm_insn);
732 if (ext != NULL)
733 throw std::logic_error("only one extension may be registered");
734 ext = x;
735 x->set_processor(this);
736 }
737
738 void processor_t::register_base_instructions()
739 {
740 #define DECLARE_INSN(name, match, mask) \
741 insn_bits_t name##_match = (match), name##_mask = (mask);
742 #include "encoding.h"
743 #undef DECLARE_INSN
744
745 #define DEFINE_INSN(name) \
746 REGISTER_INSN(this, name, name##_match, name##_mask)
747 #include "insn_list.h"
748 #undef DEFINE_INSN
749
750 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
751 build_opcode_map();
752 }
753
754 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
755 {
756 switch (addr)
757 {
758 case 0:
759 if (len <= 4) {
760 memset(bytes, 0, len);
761 bytes[0] = get_field(state.mip, MIP_MSIP);
762 return true;
763 }
764 break;
765 }
766
767 return false;
768 }
769
770 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
771 {
772 switch (addr)
773 {
774 case 0:
775 if (len <= 4) {
776 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
777 return true;
778 }
779 break;
780 }
781
782 return false;
783 }
784
785 void processor_t::trigger_updated()
786 {
787 mmu->flush_tlb();
788 mmu->check_triggers_fetch = false;
789 mmu->check_triggers_load = false;
790 mmu->check_triggers_store = false;
791
792 for (unsigned i = 0; i < state.num_triggers; i++) {
793 if (state.mcontrol[i].execute) {
794 mmu->check_triggers_fetch = true;
795 }
796 if (state.mcontrol[i].load) {
797 mmu->check_triggers_load = true;
798 }
799 if (state.mcontrol[i].store) {
800 mmu->check_triggers_store = true;
801 }
802 }
803 }