Put simif_t declaration in its own file. (#209)
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "simif.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, simif_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdqc";
65
66 max_xlen = 64;
67 state.misa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, state.misa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = "imafdc";
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 state.misa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 state.misa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 state.misa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 if (supports_extension('Q') && !supports_extension('D'))
110 bad_isa_string(str);
111
112 if (supports_extension('Q') && max_xlen < 64)
113 bad_isa_string(str);
114
115 max_isa = state.misa;
116 }
117
118 void state_t::reset(reg_t max_isa)
119 {
120 memset(this, 0, sizeof(*this));
121 misa = max_isa;
122 prv = PRV_M;
123 pc = DEFAULT_RSTVEC;
124 load_reservation = -1;
125 tselect = 0;
126 for (unsigned int i = 0; i < num_triggers; i++)
127 mcontrol[i].type = 2;
128 }
129
130 void processor_t::set_debug(bool value)
131 {
132 debug = value;
133 if (ext)
134 ext->set_debug(value);
135 }
136
137 void processor_t::set_histogram(bool value)
138 {
139 histogram_enabled = value;
140 #ifndef RISCV_ENABLE_HISTOGRAM
141 if (value) {
142 fprintf(stderr, "PC Histogram support has not been properly enabled;");
143 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
144 }
145 #endif
146 }
147
148 void processor_t::reset()
149 {
150 state.reset(max_isa);
151 state.dcsr.halt = halt_on_reset;
152 halt_on_reset = false;
153 set_csr(CSR_MSTATUS, state.mstatus);
154
155 if (ext)
156 ext->reset(); // reset the extension
157
158 if (sim)
159 sim->proc_reset(id);
160 }
161
162 // Count number of contiguous 0 bits starting from the LSB.
163 static int ctz(reg_t val)
164 {
165 int res = 0;
166 if (val)
167 while ((val & 1) == 0)
168 val >>= 1, res++;
169 return res;
170 }
171
172 void processor_t::take_interrupt(reg_t pending_interrupts)
173 {
174 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
175 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
176 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
177
178 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
179 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
180 // M-ints have highest priority; consider S-ints only if no M-ints pending
181 if (enabled_interrupts == 0)
182 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
183
184 if (state.dcsr.cause == 0 && enabled_interrupts) {
185 // nonstandard interrupts have highest priority
186 if (enabled_interrupts >> IRQ_M_EXT)
187 enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT;
188 // external interrupts have next-highest priority
189 else if (enabled_interrupts & (MIP_MEIP | MIP_SEIP))
190 enabled_interrupts = enabled_interrupts & (MIP_MEIP | MIP_SEIP);
191 // software interrupts have next-highest priority
192 else if (enabled_interrupts & (MIP_MSIP | MIP_SSIP))
193 enabled_interrupts = enabled_interrupts & (MIP_MSIP | MIP_SSIP);
194 // timer interrupts have next-highest priority
195 else if (enabled_interrupts & (MIP_MTIP | MIP_STIP))
196 enabled_interrupts = enabled_interrupts & (MIP_MTIP | MIP_STIP);
197 else
198 abort();
199
200 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
201 }
202 }
203
204 static int xlen_to_uxl(int xlen)
205 {
206 if (xlen == 32)
207 return 1;
208 if (xlen == 64)
209 return 2;
210 abort();
211 }
212
213 reg_t processor_t::legalize_privilege(reg_t prv)
214 {
215 assert(prv <= PRV_M);
216
217 if (!supports_extension('U'))
218 return PRV_M;
219
220 if (prv == PRV_H || !supports_extension('S'))
221 return PRV_U;
222
223 return prv;
224 }
225
226 void processor_t::set_privilege(reg_t prv)
227 {
228 mmu->flush_tlb();
229 state.prv = legalize_privilege(prv);
230 }
231
232 void processor_t::enter_debug_mode(uint8_t cause)
233 {
234 state.dcsr.cause = cause;
235 state.dcsr.prv = state.prv;
236 set_privilege(PRV_M);
237 state.dpc = state.pc;
238 state.pc = DEBUG_ROM_ENTRY;
239 }
240
241 void processor_t::take_trap(trap_t& t, reg_t epc)
242 {
243 if (debug) {
244 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
245 id, t.name(), epc);
246 if (t.has_tval())
247 fprintf(stderr, "core %3d: tval 0x%016" PRIx64 "\n", id,
248 t.get_tval());
249 }
250
251 if (state.dcsr.cause) {
252 if (t.cause() == CAUSE_BREAKPOINT) {
253 state.pc = DEBUG_ROM_ENTRY;
254 } else {
255 state.pc = DEBUG_ROM_TVEC;
256 }
257 return;
258 }
259
260 if (t.cause() == CAUSE_BREAKPOINT && (
261 (state.prv == PRV_M && state.dcsr.ebreakm) ||
262 (state.prv == PRV_S && state.dcsr.ebreaks) ||
263 (state.prv == PRV_U && state.dcsr.ebreaku))) {
264 enter_debug_mode(DCSR_CAUSE_SWBP);
265 return;
266 }
267
268 // by default, trap to M-mode, unless delegated to S-mode
269 reg_t bit = t.cause();
270 reg_t deleg = state.medeleg;
271 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
272 if (interrupt)
273 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
274 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
275 // handle the trap in S-mode
276 state.pc = state.stvec;
277 state.scause = t.cause();
278 state.sepc = epc;
279 state.stval = t.get_tval();
280
281 reg_t s = state.mstatus;
282 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
283 s = set_field(s, MSTATUS_SPP, state.prv);
284 s = set_field(s, MSTATUS_SIE, 0);
285 set_csr(CSR_MSTATUS, s);
286 set_privilege(PRV_S);
287 } else {
288 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
289 state.pc = (state.mtvec & ~(reg_t)1) + vector;
290 state.mepc = epc;
291 state.mcause = t.cause();
292 state.mtval = t.get_tval();
293
294 reg_t s = state.mstatus;
295 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
296 s = set_field(s, MSTATUS_MPP, state.prv);
297 s = set_field(s, MSTATUS_MIE, 0);
298 set_csr(CSR_MSTATUS, s);
299 set_privilege(PRV_M);
300 }
301
302 yield_load_reservation();
303 }
304
305 void processor_t::disasm(insn_t insn)
306 {
307 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
308 if (last_pc != state.pc || last_bits != bits) {
309 if (executions != 1) {
310 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
311 }
312
313 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
314 id, state.pc, bits, disassembler->disassemble(insn).c_str());
315 last_pc = state.pc;
316 last_bits = bits;
317 executions = 1;
318 } else {
319 executions++;
320 }
321 }
322
323 int processor_t::paddr_bits()
324 {
325 assert(xlen == max_xlen);
326 return max_xlen == 64 ? 50 : 34;
327 }
328
329 void processor_t::set_csr(int which, reg_t val)
330 {
331 val = zext_xlen(val);
332 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
333 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
334 switch (which)
335 {
336 case CSR_FFLAGS:
337 dirty_fp_state;
338 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
339 break;
340 case CSR_FRM:
341 dirty_fp_state;
342 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
343 break;
344 case CSR_FCSR:
345 dirty_fp_state;
346 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
347 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
348 break;
349 case CSR_MSTATUS: {
350 if ((val ^ state.mstatus) &
351 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
352 mmu->flush_tlb();
353
354 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
355 | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
356 | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
357 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
358 (ext ? MSTATUS_XS : 0);
359
360 reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP));
361 state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp);
362 if (supports_extension('S'))
363 mask |= MSTATUS_SPP;
364
365 state.mstatus = (state.mstatus & ~mask) | (val & mask);
366
367 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
368 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
369 if (max_xlen == 32)
370 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
371 else
372 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
373
374 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
375 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
376 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
377 // U-XLEN == S-XLEN == M-XLEN
378 xlen = max_xlen;
379 break;
380 }
381 case CSR_MIP: {
382 reg_t mask = MIP_SSIP | MIP_STIP;
383 state.mip = (state.mip & ~mask) | (val & mask);
384 break;
385 }
386 case CSR_MIE:
387 state.mie = (state.mie & ~all_ints) | (val & all_ints);
388 break;
389 case CSR_MIDELEG:
390 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
391 break;
392 case CSR_MEDELEG: {
393 reg_t mask =
394 (1 << CAUSE_MISALIGNED_FETCH) |
395 (1 << CAUSE_BREAKPOINT) |
396 (1 << CAUSE_USER_ECALL) |
397 (1 << CAUSE_FETCH_PAGE_FAULT) |
398 (1 << CAUSE_LOAD_PAGE_FAULT) |
399 (1 << CAUSE_STORE_PAGE_FAULT);
400 state.medeleg = (state.medeleg & ~mask) | (val & mask);
401 break;
402 }
403 case CSR_MINSTRET:
404 case CSR_MCYCLE:
405 if (xlen == 32)
406 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
407 else
408 state.minstret = val;
409 break;
410 case CSR_MINSTRETH:
411 case CSR_MCYCLEH:
412 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
413 break;
414 case CSR_SCOUNTEREN:
415 state.scounteren = val;
416 break;
417 case CSR_MCOUNTEREN:
418 state.mcounteren = val;
419 break;
420 case CSR_SSTATUS: {
421 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
422 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
423 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
424 }
425 case CSR_SIP: {
426 reg_t mask = MIP_SSIP & state.mideleg;
427 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
428 }
429 case CSR_SIE:
430 return set_csr(CSR_MIE,
431 (state.mie & ~state.mideleg) | (val & state.mideleg));
432 case CSR_SATP: {
433 mmu->flush_tlb();
434 if (max_xlen == 32)
435 state.satp = val & (SATP32_PPN | SATP32_MODE);
436 if (max_xlen == 64 && (get_field(val, SATP64_MODE) == SATP_MODE_OFF ||
437 get_field(val, SATP64_MODE) == SATP_MODE_SV39 ||
438 get_field(val, SATP64_MODE) == SATP_MODE_SV48))
439 state.satp = val & (SATP64_PPN | SATP64_MODE);
440 break;
441 }
442 case CSR_SEPC: state.sepc = val & ~(reg_t)1; break;
443 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
444 case CSR_SSCRATCH: state.sscratch = val; break;
445 case CSR_SCAUSE: state.scause = val; break;
446 case CSR_STVAL: state.stval = val; break;
447 case CSR_MEPC: state.mepc = val & ~(reg_t)1; break;
448 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
449 case CSR_MSCRATCH: state.mscratch = val; break;
450 case CSR_MCAUSE: state.mcause = val; break;
451 case CSR_MTVAL: state.mtval = val; break;
452 case CSR_MISA: {
453 // the write is ignored if increasing IALIGN would misalign the PC
454 if (!(val & (1L << ('C' - 'A'))) && (state.pc & 2))
455 break;
456
457 if (!(val & (1L << ('F' - 'A'))))
458 val &= ~(1L << ('D' - 'A'));
459
460 // allow MAFDC bits in MISA to be modified
461 reg_t mask = 0;
462 mask |= 1L << ('M' - 'A');
463 mask |= 1L << ('A' - 'A');
464 mask |= 1L << ('F' - 'A');
465 mask |= 1L << ('D' - 'A');
466 mask |= 1L << ('C' - 'A');
467 mask &= max_isa;
468
469 state.misa = (val & mask) | (state.misa & ~mask);
470 break;
471 }
472 case CSR_TSELECT:
473 if (val < state.num_triggers) {
474 state.tselect = val;
475 }
476 break;
477 case CSR_TDATA1:
478 {
479 mcontrol_t *mc = &state.mcontrol[state.tselect];
480 if (mc->dmode && !state.dcsr.cause) {
481 break;
482 }
483 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
484 mc->select = get_field(val, MCONTROL_SELECT);
485 mc->timing = get_field(val, MCONTROL_TIMING);
486 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
487 mc->chain = get_field(val, MCONTROL_CHAIN);
488 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
489 mc->m = get_field(val, MCONTROL_M);
490 mc->h = get_field(val, MCONTROL_H);
491 mc->s = get_field(val, MCONTROL_S);
492 mc->u = get_field(val, MCONTROL_U);
493 mc->execute = get_field(val, MCONTROL_EXECUTE);
494 mc->store = get_field(val, MCONTROL_STORE);
495 mc->load = get_field(val, MCONTROL_LOAD);
496 // Assume we're here because of csrw.
497 if (mc->execute)
498 mc->timing = 0;
499 trigger_updated();
500 }
501 break;
502 case CSR_TDATA2:
503 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
504 break;
505 }
506 if (state.tselect < state.num_triggers) {
507 state.tdata2[state.tselect] = val;
508 }
509 break;
510 case CSR_DCSR:
511 state.dcsr.prv = get_field(val, DCSR_PRV);
512 state.dcsr.step = get_field(val, DCSR_STEP);
513 // TODO: ndreset and fullreset
514 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
515 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
516 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
517 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
518 state.dcsr.halt = get_field(val, DCSR_HALT);
519 break;
520 case CSR_DPC:
521 state.dpc = val & ~(reg_t)1;
522 break;
523 case CSR_DSCRATCH:
524 state.dscratch = val;
525 break;
526 }
527 }
528
529 reg_t processor_t::get_csr(int which)
530 {
531 uint32_t ctr_en = -1;
532 if (state.prv < PRV_M)
533 ctr_en &= state.mcounteren;
534 if (state.prv < PRV_S)
535 ctr_en &= state.scounteren;
536 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
537
538 if (ctr_ok) {
539 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
540 return 0;
541 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
542 return 0;
543 }
544 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
545 return 0;
546 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
547 return 0;
548 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
549 return 0;
550
551 switch (which)
552 {
553 case CSR_FFLAGS:
554 require_fp;
555 if (!supports_extension('F'))
556 break;
557 return state.fflags;
558 case CSR_FRM:
559 require_fp;
560 if (!supports_extension('F'))
561 break;
562 return state.frm;
563 case CSR_FCSR:
564 require_fp;
565 if (!supports_extension('F'))
566 break;
567 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
568 case CSR_INSTRET:
569 case CSR_CYCLE:
570 if (ctr_ok)
571 return state.minstret;
572 break;
573 case CSR_MINSTRET:
574 case CSR_MCYCLE:
575 return state.minstret;
576 case CSR_INSTRETH:
577 case CSR_CYCLEH:
578 if (ctr_ok && xlen == 32)
579 return state.minstret >> 32;
580 break;
581 case CSR_MINSTRETH:
582 case CSR_MCYCLEH:
583 if (xlen == 32)
584 return state.minstret >> 32;
585 break;
586 case CSR_SCOUNTEREN: return state.scounteren;
587 case CSR_MCOUNTEREN: return state.mcounteren;
588 case CSR_SSTATUS: {
589 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
590 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_UXL;
591 reg_t sstatus = state.mstatus & mask;
592 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
593 (sstatus & SSTATUS_XS) == SSTATUS_XS)
594 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
595 return sstatus;
596 }
597 case CSR_SIP: return state.mip & state.mideleg;
598 case CSR_SIE: return state.mie & state.mideleg;
599 case CSR_SEPC: return state.sepc & pc_alignment_mask();
600 case CSR_STVAL: return state.stval;
601 case CSR_STVEC: return state.stvec;
602 case CSR_SCAUSE:
603 if (max_xlen > xlen)
604 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
605 return state.scause;
606 case CSR_SATP:
607 if (get_field(state.mstatus, MSTATUS_TVM))
608 require_privilege(PRV_M);
609 return state.satp;
610 case CSR_SSCRATCH: return state.sscratch;
611 case CSR_MSTATUS: return state.mstatus;
612 case CSR_MIP: return state.mip;
613 case CSR_MIE: return state.mie;
614 case CSR_MEPC: return state.mepc & pc_alignment_mask();
615 case CSR_MSCRATCH: return state.mscratch;
616 case CSR_MCAUSE: return state.mcause;
617 case CSR_MTVAL: return state.mtval;
618 case CSR_MISA: return state.misa;
619 case CSR_MARCHID: return 0;
620 case CSR_MIMPID: return 0;
621 case CSR_MVENDORID: return 0;
622 case CSR_MHARTID: return id;
623 case CSR_MTVEC: return state.mtvec;
624 case CSR_MEDELEG: return state.medeleg;
625 case CSR_MIDELEG: return state.mideleg;
626 case CSR_TSELECT: return state.tselect;
627 case CSR_TDATA1:
628 if (state.tselect < state.num_triggers) {
629 reg_t v = 0;
630 mcontrol_t *mc = &state.mcontrol[state.tselect];
631 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
632 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
633 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
634 v = set_field(v, MCONTROL_SELECT, mc->select);
635 v = set_field(v, MCONTROL_TIMING, mc->timing);
636 v = set_field(v, MCONTROL_ACTION, mc->action);
637 v = set_field(v, MCONTROL_CHAIN, mc->chain);
638 v = set_field(v, MCONTROL_MATCH, mc->match);
639 v = set_field(v, MCONTROL_M, mc->m);
640 v = set_field(v, MCONTROL_H, mc->h);
641 v = set_field(v, MCONTROL_S, mc->s);
642 v = set_field(v, MCONTROL_U, mc->u);
643 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
644 v = set_field(v, MCONTROL_STORE, mc->store);
645 v = set_field(v, MCONTROL_LOAD, mc->load);
646 return v;
647 } else {
648 return 0;
649 }
650 break;
651 case CSR_TDATA2:
652 if (state.tselect < state.num_triggers) {
653 return state.tdata2[state.tselect];
654 } else {
655 return 0;
656 }
657 break;
658 case CSR_TDATA3: return 0;
659 case CSR_DCSR:
660 {
661 uint32_t v = 0;
662 v = set_field(v, DCSR_XDEBUGVER, 1);
663 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
664 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
665 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
666 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
667 v = set_field(v, DCSR_STOPCYCLE, 0);
668 v = set_field(v, DCSR_STOPTIME, 0);
669 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
670 v = set_field(v, DCSR_STEP, state.dcsr.step);
671 v = set_field(v, DCSR_PRV, state.dcsr.prv);
672 return v;
673 }
674 case CSR_DPC:
675 return state.dpc & pc_alignment_mask();
676 case CSR_DSCRATCH:
677 return state.dscratch;
678 }
679 throw trap_illegal_instruction(0);
680 }
681
682 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
683 {
684 throw trap_illegal_instruction(0);
685 }
686
687 insn_func_t processor_t::decode_insn(insn_t insn)
688 {
689 // look up opcode in hash table
690 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
691 insn_desc_t desc = opcode_cache[idx];
692
693 if (unlikely(insn.bits() != desc.match)) {
694 // fall back to linear search
695 insn_desc_t* p = &instructions[0];
696 while ((insn.bits() & p->mask) != p->match)
697 p++;
698 desc = *p;
699
700 if (p->mask != 0 && p > &instructions[0]) {
701 if (p->match != (p-1)->match && p->match != (p+1)->match) {
702 // move to front of opcode list to reduce miss penalty
703 while (--p >= &instructions[0])
704 *(p+1) = *p;
705 instructions[0] = desc;
706 }
707 }
708
709 opcode_cache[idx] = desc;
710 opcode_cache[idx].match = insn.bits();
711 }
712
713 return xlen == 64 ? desc.rv64 : desc.rv32;
714 }
715
716 void processor_t::register_insn(insn_desc_t desc)
717 {
718 instructions.push_back(desc);
719 }
720
721 void processor_t::build_opcode_map()
722 {
723 struct cmp {
724 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
725 if (lhs.match == rhs.match)
726 return lhs.mask > rhs.mask;
727 return lhs.match > rhs.match;
728 }
729 };
730 std::sort(instructions.begin(), instructions.end(), cmp());
731
732 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
733 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
734 }
735
736 void processor_t::register_extension(extension_t* x)
737 {
738 for (auto insn : x->get_instructions())
739 register_insn(insn);
740 build_opcode_map();
741 for (auto disasm_insn : x->get_disasms())
742 disassembler->add_insn(disasm_insn);
743 if (ext != NULL)
744 throw std::logic_error("only one extension may be registered");
745 ext = x;
746 x->set_processor(this);
747 }
748
749 void processor_t::register_base_instructions()
750 {
751 #define DECLARE_INSN(name, match, mask) \
752 insn_bits_t name##_match = (match), name##_mask = (mask);
753 #include "encoding.h"
754 #undef DECLARE_INSN
755
756 #define DEFINE_INSN(name) \
757 REGISTER_INSN(this, name, name##_match, name##_mask)
758 #include "insn_list.h"
759 #undef DEFINE_INSN
760
761 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
762 build_opcode_map();
763 }
764
765 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
766 {
767 switch (addr)
768 {
769 case 0:
770 if (len <= 4) {
771 memset(bytes, 0, len);
772 bytes[0] = get_field(state.mip, MIP_MSIP);
773 return true;
774 }
775 break;
776 }
777
778 return false;
779 }
780
781 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
782 {
783 switch (addr)
784 {
785 case 0:
786 if (len <= 4) {
787 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
788 return true;
789 }
790 break;
791 }
792
793 return false;
794 }
795
796 void processor_t::trigger_updated()
797 {
798 mmu->flush_tlb();
799 mmu->check_triggers_fetch = false;
800 mmu->check_triggers_load = false;
801 mmu->check_triggers_store = false;
802
803 for (unsigned i = 0; i < state.num_triggers; i++) {
804 if (state.mcontrol[i].execute) {
805 mmu->check_triggers_fetch = true;
806 }
807 if (state.mcontrol[i].load) {
808 mmu->check_triggers_load = true;
809 }
810 if (state.mcontrol[i].store) {
811 mmu->check_triggers_store = true;
812 }
813 }
814 }