Implement vectored interrupt proposal
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include "gdbserver.h"
11 #include <cinttypes>
12 #include <cmath>
13 #include <cstdlib>
14 #include <iostream>
15 #include <assert.h>
16 #include <limits.h>
17 #include <stdexcept>
18 #include <algorithm>
19
20 #undef STATE
21 #define STATE state
22
23 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
24 bool halt_on_reset)
25 : debug(false), sim(sim), ext(NULL), id(id), halt_on_reset(halt_on_reset)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 isa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 // advertise support for supervisor and user modes
110 isa |= 1L << ('s' - 'a');
111 isa |= 1L << ('u' - 'a');
112
113 max_isa = isa;
114 }
115
116 void state_t::reset()
117 {
118 memset(this, 0, sizeof(*this));
119 prv = PRV_M;
120 pc = DEFAULT_RSTVEC;
121 load_reservation = -1;
122 tselect = 0;
123 for (unsigned int i = 0; i < num_triggers; i++)
124 mcontrol[i].type = 2;
125 }
126
127 void processor_t::set_debug(bool value)
128 {
129 debug = value;
130 if (ext)
131 ext->set_debug(value);
132 }
133
134 void processor_t::set_histogram(bool value)
135 {
136 histogram_enabled = value;
137 #ifndef RISCV_ENABLE_HISTOGRAM
138 if (value) {
139 fprintf(stderr, "PC Histogram support has not been properly enabled;");
140 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
141 }
142 #endif
143 }
144
145 void processor_t::reset()
146 {
147 state.reset();
148 state.dcsr.halt = halt_on_reset;
149 halt_on_reset = false;
150 set_csr(CSR_MSTATUS, state.mstatus);
151
152 if (ext)
153 ext->reset(); // reset the extension
154 }
155
156 // Count number of contiguous 0 bits starting from the LSB.
157 static int ctz(reg_t val)
158 {
159 int res = 0;
160 if (val)
161 while ((val & 1) == 0)
162 val >>= 1, res++;
163 return res;
164 }
165
166 void processor_t::take_interrupt(reg_t pending_interrupts)
167 {
168 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
169 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
170 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
171
172 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
173 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
174 if (enabled_interrupts == 0)
175 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
176
177 if (enabled_interrupts)
178 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
179 }
180
181 void processor_t::set_privilege(reg_t prv)
182 {
183 assert(prv <= PRV_M);
184 if (prv == PRV_H)
185 prv = PRV_U;
186 mmu->flush_tlb();
187 state.prv = prv;
188 }
189
190 void processor_t::enter_debug_mode(uint8_t cause)
191 {
192 state.dcsr.cause = cause;
193 state.dcsr.prv = state.prv;
194 set_privilege(PRV_M);
195 state.dpc = state.pc;
196 state.pc = DEBUG_ROM_START;
197 }
198
199 void processor_t::take_trap(trap_t& t, reg_t epc)
200 {
201 if (debug) {
202 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
203 id, t.name(), epc);
204 if (t.has_badaddr())
205 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
206 t.get_badaddr());
207 }
208
209 if (t.cause() == CAUSE_BREAKPOINT && (
210 (state.prv == PRV_M && state.dcsr.ebreakm) ||
211 (state.prv == PRV_H && state.dcsr.ebreakh) ||
212 (state.prv == PRV_S && state.dcsr.ebreaks) ||
213 (state.prv == PRV_U && state.dcsr.ebreaku))) {
214 enter_debug_mode(DCSR_CAUSE_SWBP);
215 return;
216 }
217
218 if (state.dcsr.cause) {
219 state.pc = DEBUG_ROM_EXCEPTION;
220 return;
221 }
222
223 // by default, trap to M-mode, unless delegated to S-mode
224 reg_t bit = t.cause();
225 reg_t deleg = state.medeleg;
226 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
227 if (interrupt)
228 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
229 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
230 // handle the trap in S-mode
231 state.pc = state.stvec;
232 state.scause = t.cause();
233 state.sepc = epc;
234 if (t.has_badaddr())
235 state.sbadaddr = t.get_badaddr();
236
237 reg_t s = state.mstatus;
238 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
239 s = set_field(s, MSTATUS_SPP, state.prv);
240 s = set_field(s, MSTATUS_SIE, 0);
241 set_csr(CSR_MSTATUS, s);
242 set_privilege(PRV_S);
243 } else {
244 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
245 state.pc = (state.mtvec & ~(reg_t)1) + vector;
246 state.mepc = epc;
247 state.mcause = t.cause();
248 if (t.has_badaddr())
249 state.mbadaddr = t.get_badaddr();
250
251 reg_t s = state.mstatus;
252 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
253 s = set_field(s, MSTATUS_MPP, state.prv);
254 s = set_field(s, MSTATUS_MIE, 0);
255 set_csr(CSR_MSTATUS, s);
256 set_privilege(PRV_M);
257 }
258
259 yield_load_reservation();
260 }
261
262 void processor_t::disasm(insn_t insn)
263 {
264 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
265 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
266 id, state.pc, bits, disassembler->disassemble(insn).c_str());
267 }
268
269 int processor_t::paddr_bits()
270 {
271 assert(xlen == max_xlen);
272 return max_xlen == 64 ? 50 : 34;
273 }
274
275 void processor_t::set_csr(int which, reg_t val)
276 {
277 val = zext_xlen(val);
278 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
279 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
280 switch (which)
281 {
282 case CSR_FFLAGS:
283 dirty_fp_state;
284 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
285 break;
286 case CSR_FRM:
287 dirty_fp_state;
288 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
289 break;
290 case CSR_FCSR:
291 dirty_fp_state;
292 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
293 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
294 break;
295 case CSR_MSTATUS: {
296 if ((val ^ state.mstatus) &
297 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
298 mmu->flush_tlb();
299
300 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
301 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
302 | MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
303 | MSTATUS_TSR | (ext ? MSTATUS_XS : 0);
304
305 state.mstatus = (state.mstatus & ~mask) | (val & mask);
306
307 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
308 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
309 if (max_xlen == 32)
310 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
311 else
312 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
313
314 // spike supports the notion of xlen < max_xlen, but current priv spec
315 // doesn't provide a mechanism to run RV32 software on an RV64 machine
316 xlen = max_xlen;
317 break;
318 }
319 case CSR_MIP: {
320 reg_t mask = MIP_SSIP | MIP_STIP;
321 state.mip = (state.mip & ~mask) | (val & mask);
322 break;
323 }
324 case CSR_MIE:
325 state.mie = (state.mie & ~all_ints) | (val & all_ints);
326 break;
327 case CSR_MIDELEG:
328 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
329 break;
330 case CSR_MEDELEG: {
331 reg_t mask = 0;
332 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
333 #include "encoding.h"
334 #undef DECLARE_CAUSE
335 state.medeleg = (state.medeleg & ~mask) | (val & mask);
336 break;
337 }
338 case CSR_MINSTRET:
339 case CSR_MCYCLE:
340 if (xlen == 32)
341 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
342 else
343 state.minstret = val;
344 break;
345 case CSR_MINSTRETH:
346 case CSR_MCYCLEH:
347 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
348 break;
349 case CSR_SCOUNTEREN:
350 state.scounteren = val;
351 break;
352 case CSR_MCOUNTEREN:
353 state.mcounteren = val;
354 break;
355 case CSR_SSTATUS: {
356 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
357 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
358 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
359 }
360 case CSR_SIP: {
361 reg_t mask = MIP_SSIP & state.mideleg;
362 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
363 }
364 case CSR_SIE:
365 return set_csr(CSR_MIE,
366 (state.mie & ~state.mideleg) | (val & state.mideleg));
367 case CSR_SPTBR: {
368 mmu->flush_tlb();
369 if (max_xlen == 32)
370 state.sptbr = val & (SPTBR32_PPN | SPTBR32_MODE);
371 if (max_xlen == 64 && (get_field(val, SPTBR64_MODE) == SPTBR_MODE_OFF ||
372 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV39 ||
373 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV48))
374 state.sptbr = val & (SPTBR64_PPN | SPTBR64_MODE);
375 break;
376 }
377 case CSR_SEPC: state.sepc = val; break;
378 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
379 case CSR_SSCRATCH: state.sscratch = val; break;
380 case CSR_SCAUSE: state.scause = val; break;
381 case CSR_SBADADDR: state.sbadaddr = val; break;
382 case CSR_MEPC: state.mepc = val; break;
383 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
384 case CSR_MSCRATCH: state.mscratch = val; break;
385 case CSR_MCAUSE: state.mcause = val; break;
386 case CSR_MBADADDR: state.mbadaddr = val; break;
387 case CSR_MISA: {
388 if (!(val & (1L << ('F' - 'A'))))
389 val &= ~(1L << ('D' - 'A'));
390
391 // allow MAFDC bits in MISA to be modified
392 reg_t mask = 0;
393 mask |= 1L << ('M' - 'A');
394 mask |= 1L << ('A' - 'A');
395 mask |= 1L << ('F' - 'A');
396 mask |= 1L << ('D' - 'A');
397 mask |= 1L << ('C' - 'A');
398 mask &= max_isa;
399
400 isa = (val & mask) | (isa & ~mask);
401 break;
402 }
403 case CSR_TSELECT:
404 if (val < state.num_triggers) {
405 state.tselect = val;
406 }
407 break;
408 case CSR_TDATA1:
409 {
410 mcontrol_t *mc = &state.mcontrol[state.tselect];
411 if (mc->dmode && !state.dcsr.cause) {
412 break;
413 }
414 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
415 mc->select = get_field(val, MCONTROL_SELECT);
416 mc->timing = get_field(val, MCONTROL_TIMING);
417 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
418 mc->chain = get_field(val, MCONTROL_CHAIN);
419 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
420 mc->m = get_field(val, MCONTROL_M);
421 mc->h = get_field(val, MCONTROL_H);
422 mc->s = get_field(val, MCONTROL_S);
423 mc->u = get_field(val, MCONTROL_U);
424 mc->execute = get_field(val, MCONTROL_EXECUTE);
425 mc->store = get_field(val, MCONTROL_STORE);
426 mc->load = get_field(val, MCONTROL_LOAD);
427 // Assume we're here because of csrw.
428 if (mc->execute)
429 mc->timing = 0;
430 trigger_updated();
431 }
432 break;
433 case CSR_TDATA2:
434 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
435 break;
436 }
437 if (state.tselect < state.num_triggers) {
438 state.tdata2[state.tselect] = val;
439 }
440 break;
441 case CSR_DCSR:
442 state.dcsr.prv = get_field(val, DCSR_PRV);
443 state.dcsr.step = get_field(val, DCSR_STEP);
444 // TODO: ndreset and fullreset
445 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
446 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
447 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
448 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
449 state.dcsr.halt = get_field(val, DCSR_HALT);
450 break;
451 case CSR_DPC:
452 state.dpc = val;
453 break;
454 case CSR_DSCRATCH:
455 state.dscratch = val;
456 break;
457 }
458 }
459
460 reg_t processor_t::get_csr(int which)
461 {
462 uint32_t ctr_en = -1;
463 if (state.prv < PRV_M)
464 ctr_en &= state.mcounteren;
465 if (state.prv < PRV_S)
466 ctr_en &= state.scounteren;
467 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
468
469 if (ctr_ok) {
470 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
471 return 0;
472 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
473 return 0;
474 }
475 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
476 return 0;
477 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
478 return 0;
479 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
480 return 0;
481
482 switch (which)
483 {
484 case CSR_FFLAGS:
485 require_fp;
486 if (!supports_extension('F'))
487 break;
488 return state.fflags;
489 case CSR_FRM:
490 require_fp;
491 if (!supports_extension('F'))
492 break;
493 return state.frm;
494 case CSR_FCSR:
495 require_fp;
496 if (!supports_extension('F'))
497 break;
498 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
499 case CSR_INSTRET:
500 case CSR_CYCLE:
501 if (ctr_ok)
502 return state.minstret;
503 break;
504 case CSR_MINSTRET:
505 case CSR_MCYCLE:
506 return state.minstret;
507 case CSR_MINSTRETH:
508 case CSR_MCYCLEH:
509 if (xlen == 32)
510 return state.minstret >> 32;
511 break;
512 case CSR_SCOUNTEREN: return state.scounteren;
513 case CSR_MCOUNTEREN: return state.mcounteren;
514 case CSR_SSTATUS: {
515 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
516 | SSTATUS_XS | SSTATUS_SUM;
517 reg_t sstatus = state.mstatus & mask;
518 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
519 (sstatus & SSTATUS_XS) == SSTATUS_XS)
520 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
521 return sstatus;
522 }
523 case CSR_SIP: return state.mip & state.mideleg;
524 case CSR_SIE: return state.mie & state.mideleg;
525 case CSR_SEPC: return state.sepc;
526 case CSR_SBADADDR: return state.sbadaddr;
527 case CSR_STVEC: return state.stvec;
528 case CSR_SCAUSE:
529 if (max_xlen > xlen)
530 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
531 return state.scause;
532 case CSR_SPTBR:
533 if (get_field(state.mstatus, MSTATUS_TVM))
534 require_privilege(PRV_M);
535 return state.sptbr;
536 case CSR_SSCRATCH: return state.sscratch;
537 case CSR_MSTATUS: return state.mstatus;
538 case CSR_MIP: return state.mip;
539 case CSR_MIE: return state.mie;
540 case CSR_MEPC: return state.mepc;
541 case CSR_MSCRATCH: return state.mscratch;
542 case CSR_MCAUSE: return state.mcause;
543 case CSR_MBADADDR: return state.mbadaddr;
544 case CSR_MISA: return isa;
545 case CSR_MARCHID: return 0;
546 case CSR_MIMPID: return 0;
547 case CSR_MVENDORID: return 0;
548 case CSR_MHARTID: return id;
549 case CSR_MTVEC: return state.mtvec;
550 case CSR_MEDELEG: return state.medeleg;
551 case CSR_MIDELEG: return state.mideleg;
552 case CSR_TSELECT: return state.tselect;
553 case CSR_TDATA1:
554 if (state.tselect < state.num_triggers) {
555 reg_t v = 0;
556 mcontrol_t *mc = &state.mcontrol[state.tselect];
557 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
558 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
559 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
560 v = set_field(v, MCONTROL_SELECT, mc->select);
561 v = set_field(v, MCONTROL_TIMING, mc->timing);
562 v = set_field(v, MCONTROL_ACTION, mc->action);
563 v = set_field(v, MCONTROL_CHAIN, mc->chain);
564 v = set_field(v, MCONTROL_MATCH, mc->match);
565 v = set_field(v, MCONTROL_M, mc->m);
566 v = set_field(v, MCONTROL_H, mc->h);
567 v = set_field(v, MCONTROL_S, mc->s);
568 v = set_field(v, MCONTROL_U, mc->u);
569 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
570 v = set_field(v, MCONTROL_STORE, mc->store);
571 v = set_field(v, MCONTROL_LOAD, mc->load);
572 return v;
573 } else {
574 return 0;
575 }
576 break;
577 case CSR_TDATA2:
578 if (state.tselect < state.num_triggers) {
579 return state.tdata2[state.tselect];
580 } else {
581 return 0;
582 }
583 break;
584 case CSR_TDATA3: return 0;
585 case CSR_DCSR:
586 {
587 uint32_t v = 0;
588 v = set_field(v, DCSR_XDEBUGVER, 1);
589 v = set_field(v, DCSR_NDRESET, 0);
590 v = set_field(v, DCSR_FULLRESET, 0);
591 v = set_field(v, DCSR_PRV, state.dcsr.prv);
592 v = set_field(v, DCSR_STEP, state.dcsr.step);
593 v = set_field(v, DCSR_DEBUGINT, sim->debug_module.get_interrupt(id));
594 v = set_field(v, DCSR_STOPCYCLE, 0);
595 v = set_field(v, DCSR_STOPTIME, 0);
596 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
597 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
598 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
599 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
600 v = set_field(v, DCSR_HALT, state.dcsr.halt);
601 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
602 return v;
603 }
604 case CSR_DPC:
605 return state.dpc;
606 case CSR_DSCRATCH:
607 return state.dscratch;
608 }
609 throw trap_illegal_instruction(0);
610 }
611
612 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
613 {
614 throw trap_illegal_instruction(0);
615 }
616
617 insn_func_t processor_t::decode_insn(insn_t insn)
618 {
619 // look up opcode in hash table
620 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
621 insn_desc_t desc = opcode_cache[idx];
622
623 if (unlikely(insn.bits() != desc.match)) {
624 // fall back to linear search
625 insn_desc_t* p = &instructions[0];
626 while ((insn.bits() & p->mask) != p->match)
627 p++;
628 desc = *p;
629
630 if (p->mask != 0 && p > &instructions[0]) {
631 if (p->match != (p-1)->match && p->match != (p+1)->match) {
632 // move to front of opcode list to reduce miss penalty
633 while (--p >= &instructions[0])
634 *(p+1) = *p;
635 instructions[0] = desc;
636 }
637 }
638
639 opcode_cache[idx] = desc;
640 opcode_cache[idx].match = insn.bits();
641 }
642
643 return xlen == 64 ? desc.rv64 : desc.rv32;
644 }
645
646 void processor_t::register_insn(insn_desc_t desc)
647 {
648 instructions.push_back(desc);
649 }
650
651 void processor_t::build_opcode_map()
652 {
653 struct cmp {
654 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
655 if (lhs.match == rhs.match)
656 return lhs.mask > rhs.mask;
657 return lhs.match > rhs.match;
658 }
659 };
660 std::sort(instructions.begin(), instructions.end(), cmp());
661
662 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
663 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
664 }
665
666 void processor_t::register_extension(extension_t* x)
667 {
668 for (auto insn : x->get_instructions())
669 register_insn(insn);
670 build_opcode_map();
671 for (auto disasm_insn : x->get_disasms())
672 disassembler->add_insn(disasm_insn);
673 if (ext != NULL)
674 throw std::logic_error("only one extension may be registered");
675 ext = x;
676 x->set_processor(this);
677 }
678
679 void processor_t::register_base_instructions()
680 {
681 #define DECLARE_INSN(name, match, mask) \
682 insn_bits_t name##_match = (match), name##_mask = (mask);
683 #include "encoding.h"
684 #undef DECLARE_INSN
685
686 #define DEFINE_INSN(name) \
687 REGISTER_INSN(this, name, name##_match, name##_mask)
688 #include "insn_list.h"
689 #undef DEFINE_INSN
690
691 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
692 build_opcode_map();
693 }
694
695 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
696 {
697 switch (addr)
698 {
699 case 0:
700 if (len <= 4) {
701 memset(bytes, 0, len);
702 bytes[0] = get_field(state.mip, MIP_MSIP);
703 return true;
704 }
705 break;
706 }
707
708 return false;
709 }
710
711 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
712 {
713 switch (addr)
714 {
715 case 0:
716 if (len <= 4) {
717 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
718 return true;
719 }
720 break;
721 }
722
723 return false;
724 }
725
726 void processor_t::trigger_updated()
727 {
728 mmu->flush_tlb();
729 mmu->check_triggers_fetch = false;
730 mmu->check_triggers_load = false;
731 mmu->check_triggers_store = false;
732
733 for (unsigned i = 0; i < state.num_triggers; i++) {
734 if (state.mcontrol[i].execute) {
735 mmu->check_triggers_fetch = true;
736 }
737 if (state.mcontrol[i].load) {
738 mmu->check_triggers_load = true;
739 }
740 if (state.mcontrol[i].store) {
741 mmu->check_triggers_store = true;
742 }
743 }
744 }