Mask medeleg correctly
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset), last_pc(1), executions(1)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdqc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = "imafdc";
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 isa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 if (supports_extension('Q') && !supports_extension('D'))
110 bad_isa_string(str);
111
112 if (supports_extension('Q') && max_xlen < 64)
113 bad_isa_string(str);
114
115 // advertise support for supervisor and user modes
116 isa |= 1L << ('s' - 'a');
117 isa |= 1L << ('u' - 'a');
118
119 max_isa = isa;
120 }
121
122 void state_t::reset()
123 {
124 memset(this, 0, sizeof(*this));
125 prv = PRV_M;
126 pc = DEFAULT_RSTVEC;
127 load_reservation = -1;
128 tselect = 0;
129 for (unsigned int i = 0; i < num_triggers; i++)
130 mcontrol[i].type = 2;
131 }
132
133 void processor_t::set_debug(bool value)
134 {
135 debug = value;
136 if (ext)
137 ext->set_debug(value);
138 }
139
140 void processor_t::set_histogram(bool value)
141 {
142 histogram_enabled = value;
143 #ifndef RISCV_ENABLE_HISTOGRAM
144 if (value) {
145 fprintf(stderr, "PC Histogram support has not been properly enabled;");
146 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
147 }
148 #endif
149 }
150
151 void processor_t::reset()
152 {
153 state.reset();
154 state.dcsr.halt = halt_on_reset;
155 halt_on_reset = false;
156 set_csr(CSR_MSTATUS, state.mstatus);
157
158 if (ext)
159 ext->reset(); // reset the extension
160 }
161
162 // Count number of contiguous 0 bits starting from the LSB.
163 static int ctz(reg_t val)
164 {
165 int res = 0;
166 if (val)
167 while ((val & 1) == 0)
168 val >>= 1, res++;
169 return res;
170 }
171
172 void processor_t::take_interrupt(reg_t pending_interrupts)
173 {
174 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
175 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
176 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
177
178 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
179 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
180 if (enabled_interrupts == 0)
181 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
182
183 if (state.dcsr.cause == 0 && enabled_interrupts)
184 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
185 }
186
187 static int xlen_to_uxl(int xlen)
188 {
189 if (xlen == 32)
190 return 1;
191 if (xlen == 64)
192 return 2;
193 abort();
194 }
195
196 void processor_t::set_privilege(reg_t prv)
197 {
198 assert(prv <= PRV_M);
199 if (prv == PRV_H)
200 prv = PRV_U;
201 mmu->flush_tlb();
202 state.prv = prv;
203 }
204
205 void processor_t::enter_debug_mode(uint8_t cause)
206 {
207 state.dcsr.cause = cause;
208 state.dcsr.prv = state.prv;
209 set_privilege(PRV_M);
210 state.dpc = state.pc;
211 state.pc = DEBUG_ROM_ENTRY;
212 }
213
214 void processor_t::take_trap(trap_t& t, reg_t epc)
215 {
216 if (debug) {
217 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
218 id, t.name(), epc);
219 if (t.has_badaddr())
220 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
221 t.get_badaddr());
222 }
223
224 if (state.dcsr.cause) {
225 if (t.cause() == CAUSE_BREAKPOINT) {
226 state.pc = DEBUG_ROM_ENTRY;
227 } else {
228 state.pc = DEBUG_ROM_TVEC;
229 }
230 return;
231 }
232
233 if (t.cause() == CAUSE_BREAKPOINT && (
234 (state.prv == PRV_M && state.dcsr.ebreakm) ||
235 (state.prv == PRV_H && state.dcsr.ebreakh) ||
236 (state.prv == PRV_S && state.dcsr.ebreaks) ||
237 (state.prv == PRV_U && state.dcsr.ebreaku))) {
238 enter_debug_mode(DCSR_CAUSE_SWBP);
239 return;
240 }
241
242 // by default, trap to M-mode, unless delegated to S-mode
243 reg_t bit = t.cause();
244 reg_t deleg = state.medeleg;
245 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
246 if (interrupt)
247 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
248 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
249 // handle the trap in S-mode
250 state.pc = state.stvec;
251 state.scause = t.cause();
252 state.sepc = epc;
253 if (t.has_badaddr())
254 state.sbadaddr = t.get_badaddr();
255
256 reg_t s = state.mstatus;
257 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
258 s = set_field(s, MSTATUS_SPP, state.prv);
259 s = set_field(s, MSTATUS_SIE, 0);
260 set_csr(CSR_MSTATUS, s);
261 set_privilege(PRV_S);
262 } else {
263 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
264 state.pc = (state.mtvec & ~(reg_t)1) + vector;
265 state.mepc = epc;
266 state.mcause = t.cause();
267 if (t.has_badaddr())
268 state.mbadaddr = t.get_badaddr();
269
270 reg_t s = state.mstatus;
271 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
272 s = set_field(s, MSTATUS_MPP, state.prv);
273 s = set_field(s, MSTATUS_MIE, 0);
274 set_csr(CSR_MSTATUS, s);
275 set_privilege(PRV_M);
276 }
277
278 yield_load_reservation();
279 }
280
281 void processor_t::disasm(insn_t insn)
282 {
283 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
284 if (last_pc != state.pc || last_bits != bits) {
285 if (executions != 1) {
286 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
287 }
288
289 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
290 id, state.pc, bits, disassembler->disassemble(insn).c_str());
291 last_pc = state.pc;
292 last_bits = bits;
293 executions = 1;
294 } else {
295 executions++;
296 }
297 }
298
299 int processor_t::paddr_bits()
300 {
301 assert(xlen == max_xlen);
302 return max_xlen == 64 ? 50 : 34;
303 }
304
305 void processor_t::set_csr(int which, reg_t val)
306 {
307 val = zext_xlen(val);
308 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
309 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
310 switch (which)
311 {
312 case CSR_FFLAGS:
313 dirty_fp_state;
314 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
315 break;
316 case CSR_FRM:
317 dirty_fp_state;
318 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
319 break;
320 case CSR_FCSR:
321 dirty_fp_state;
322 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
323 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
324 break;
325 case CSR_MSTATUS: {
326 if ((val ^ state.mstatus) &
327 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
328 mmu->flush_tlb();
329
330 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
331 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
332 | MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
333 | MSTATUS_TSR | MSTATUS_UXL | MSTATUS_SXL |
334 (ext ? MSTATUS_XS : 0);
335
336 state.mstatus = (state.mstatus & ~mask) | (val & mask);
337
338 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
339 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
340 if (max_xlen == 32)
341 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
342 else
343 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
344
345 state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen));
346 state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen));
347 // U-XLEN == S-XLEN == M-XLEN
348 xlen = max_xlen;
349 break;
350 }
351 case CSR_MIP: {
352 reg_t mask = MIP_SSIP | MIP_STIP;
353 state.mip = (state.mip & ~mask) | (val & mask);
354 break;
355 }
356 case CSR_MIE:
357 state.mie = (state.mie & ~all_ints) | (val & all_ints);
358 break;
359 case CSR_MIDELEG:
360 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
361 break;
362 case CSR_MEDELEG: {
363 reg_t mask =
364 (1 << CAUSE_MISALIGNED_FETCH) |
365 (1 << CAUSE_BREAKPOINT) |
366 (1 << CAUSE_USER_ECALL) |
367 (1 << CAUSE_FETCH_PAGE_FAULT) |
368 (1 << CAUSE_LOAD_PAGE_FAULT) |
369 (1 << CAUSE_STORE_PAGE_FAULT);
370 state.medeleg = (state.medeleg & ~mask) | (val & mask);
371 break;
372 }
373 case CSR_MINSTRET:
374 case CSR_MCYCLE:
375 if (xlen == 32)
376 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
377 else
378 state.minstret = val;
379 break;
380 case CSR_MINSTRETH:
381 case CSR_MCYCLEH:
382 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
383 break;
384 case CSR_SCOUNTEREN:
385 state.scounteren = val;
386 break;
387 case CSR_MCOUNTEREN:
388 state.mcounteren = val;
389 break;
390 case CSR_SSTATUS: {
391 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
392 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
393 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
394 }
395 case CSR_SIP: {
396 reg_t mask = MIP_SSIP & state.mideleg;
397 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
398 }
399 case CSR_SIE:
400 return set_csr(CSR_MIE,
401 (state.mie & ~state.mideleg) | (val & state.mideleg));
402 case CSR_SPTBR: {
403 mmu->flush_tlb();
404 if (max_xlen == 32)
405 state.sptbr = val & (SPTBR32_PPN | SPTBR32_MODE);
406 if (max_xlen == 64 && (get_field(val, SPTBR64_MODE) == SPTBR_MODE_OFF ||
407 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV39 ||
408 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV48))
409 state.sptbr = val & (SPTBR64_PPN | SPTBR64_MODE);
410 break;
411 }
412 case CSR_SEPC: state.sepc = val; break;
413 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
414 case CSR_SSCRATCH: state.sscratch = val; break;
415 case CSR_SCAUSE: state.scause = val; break;
416 case CSR_SBADADDR: state.sbadaddr = val; break;
417 case CSR_MEPC: state.mepc = val; break;
418 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
419 case CSR_MSCRATCH: state.mscratch = val; break;
420 case CSR_MCAUSE: state.mcause = val; break;
421 case CSR_MBADADDR: state.mbadaddr = val; break;
422 case CSR_MISA: {
423 if (!(val & (1L << ('F' - 'A'))))
424 val &= ~(1L << ('D' - 'A'));
425
426 // allow MAFDC bits in MISA to be modified
427 reg_t mask = 0;
428 mask |= 1L << ('M' - 'A');
429 mask |= 1L << ('A' - 'A');
430 mask |= 1L << ('F' - 'A');
431 mask |= 1L << ('D' - 'A');
432 mask |= 1L << ('C' - 'A');
433 mask &= max_isa;
434
435 isa = (val & mask) | (isa & ~mask);
436 break;
437 }
438 case CSR_TSELECT:
439 if (val < state.num_triggers) {
440 state.tselect = val;
441 }
442 break;
443 case CSR_TDATA1:
444 {
445 mcontrol_t *mc = &state.mcontrol[state.tselect];
446 if (mc->dmode && !state.dcsr.cause) {
447 break;
448 }
449 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
450 mc->select = get_field(val, MCONTROL_SELECT);
451 mc->timing = get_field(val, MCONTROL_TIMING);
452 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
453 mc->chain = get_field(val, MCONTROL_CHAIN);
454 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
455 mc->m = get_field(val, MCONTROL_M);
456 mc->h = get_field(val, MCONTROL_H);
457 mc->s = get_field(val, MCONTROL_S);
458 mc->u = get_field(val, MCONTROL_U);
459 mc->execute = get_field(val, MCONTROL_EXECUTE);
460 mc->store = get_field(val, MCONTROL_STORE);
461 mc->load = get_field(val, MCONTROL_LOAD);
462 // Assume we're here because of csrw.
463 if (mc->execute)
464 mc->timing = 0;
465 trigger_updated();
466 }
467 break;
468 case CSR_TDATA2:
469 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
470 break;
471 }
472 if (state.tselect < state.num_triggers) {
473 state.tdata2[state.tselect] = val;
474 }
475 break;
476 case CSR_DCSR:
477 state.dcsr.prv = get_field(val, DCSR_PRV);
478 state.dcsr.step = get_field(val, DCSR_STEP);
479 // TODO: ndreset and fullreset
480 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
481 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
482 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
483 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
484 state.dcsr.halt = get_field(val, DCSR_HALT);
485 break;
486 case CSR_DPC:
487 state.dpc = val;
488 break;
489 case CSR_DSCRATCH:
490 state.dscratch = val;
491 break;
492 }
493 }
494
495 reg_t processor_t::get_csr(int which)
496 {
497 uint32_t ctr_en = -1;
498 if (state.prv < PRV_M)
499 ctr_en &= state.mcounteren;
500 if (state.prv < PRV_S)
501 ctr_en &= state.scounteren;
502 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
503
504 if (ctr_ok) {
505 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
506 return 0;
507 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
508 return 0;
509 }
510 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
511 return 0;
512 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
513 return 0;
514 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
515 return 0;
516
517 switch (which)
518 {
519 case CSR_FFLAGS:
520 require_fp;
521 if (!supports_extension('F'))
522 break;
523 return state.fflags;
524 case CSR_FRM:
525 require_fp;
526 if (!supports_extension('F'))
527 break;
528 return state.frm;
529 case CSR_FCSR:
530 require_fp;
531 if (!supports_extension('F'))
532 break;
533 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
534 case CSR_INSTRET:
535 case CSR_CYCLE:
536 if (ctr_ok)
537 return state.minstret;
538 break;
539 case CSR_MINSTRET:
540 case CSR_MCYCLE:
541 return state.minstret;
542 case CSR_MINSTRETH:
543 case CSR_MCYCLEH:
544 if (xlen == 32)
545 return state.minstret >> 32;
546 break;
547 case CSR_SCOUNTEREN: return state.scounteren;
548 case CSR_MCOUNTEREN: return state.mcounteren;
549 case CSR_SSTATUS: {
550 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
551 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_UXL;
552 reg_t sstatus = state.mstatus & mask;
553 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
554 (sstatus & SSTATUS_XS) == SSTATUS_XS)
555 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
556 return sstatus;
557 }
558 case CSR_SIP: return state.mip & state.mideleg;
559 case CSR_SIE: return state.mie & state.mideleg;
560 case CSR_SEPC: return state.sepc;
561 case CSR_SBADADDR: return state.sbadaddr;
562 case CSR_STVEC: return state.stvec;
563 case CSR_SCAUSE:
564 if (max_xlen > xlen)
565 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
566 return state.scause;
567 case CSR_SPTBR:
568 if (get_field(state.mstatus, MSTATUS_TVM))
569 require_privilege(PRV_M);
570 return state.sptbr;
571 case CSR_SSCRATCH: return state.sscratch;
572 case CSR_MSTATUS: return state.mstatus;
573 case CSR_MIP: return state.mip;
574 case CSR_MIE: return state.mie;
575 case CSR_MEPC: return state.mepc;
576 case CSR_MSCRATCH: return state.mscratch;
577 case CSR_MCAUSE: return state.mcause;
578 case CSR_MBADADDR: return state.mbadaddr;
579 case CSR_MISA: return isa;
580 case CSR_MARCHID: return 0;
581 case CSR_MIMPID: return 0;
582 case CSR_MVENDORID: return 0;
583 case CSR_MHARTID: return id;
584 case CSR_MTVEC: return state.mtvec;
585 case CSR_MEDELEG: return state.medeleg;
586 case CSR_MIDELEG: return state.mideleg;
587 case CSR_TSELECT: return state.tselect;
588 case CSR_TDATA1:
589 if (state.tselect < state.num_triggers) {
590 reg_t v = 0;
591 mcontrol_t *mc = &state.mcontrol[state.tselect];
592 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
593 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
594 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
595 v = set_field(v, MCONTROL_SELECT, mc->select);
596 v = set_field(v, MCONTROL_TIMING, mc->timing);
597 v = set_field(v, MCONTROL_ACTION, mc->action);
598 v = set_field(v, MCONTROL_CHAIN, mc->chain);
599 v = set_field(v, MCONTROL_MATCH, mc->match);
600 v = set_field(v, MCONTROL_M, mc->m);
601 v = set_field(v, MCONTROL_H, mc->h);
602 v = set_field(v, MCONTROL_S, mc->s);
603 v = set_field(v, MCONTROL_U, mc->u);
604 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
605 v = set_field(v, MCONTROL_STORE, mc->store);
606 v = set_field(v, MCONTROL_LOAD, mc->load);
607 return v;
608 } else {
609 return 0;
610 }
611 break;
612 case CSR_TDATA2:
613 if (state.tselect < state.num_triggers) {
614 return state.tdata2[state.tselect];
615 } else {
616 return 0;
617 }
618 break;
619 case CSR_TDATA3: return 0;
620 case CSR_DCSR:
621 {
622 uint32_t v = 0;
623 v = set_field(v, DCSR_XDEBUGVER, 1);
624 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
625 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
626 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
627 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
628 v = set_field(v, DCSR_STOPCYCLE, 0);
629 v = set_field(v, DCSR_STOPTIME, 0);
630 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
631 v = set_field(v, DCSR_STEP, state.dcsr.step);
632 v = set_field(v, DCSR_PRV, state.dcsr.prv);
633 return v;
634 }
635 case CSR_DPC:
636 return state.dpc;
637 case CSR_DSCRATCH:
638 return state.dscratch;
639 }
640 throw trap_illegal_instruction(0);
641 }
642
643 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
644 {
645 throw trap_illegal_instruction(0);
646 }
647
648 insn_func_t processor_t::decode_insn(insn_t insn)
649 {
650 // look up opcode in hash table
651 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
652 insn_desc_t desc = opcode_cache[idx];
653
654 if (unlikely(insn.bits() != desc.match)) {
655 // fall back to linear search
656 insn_desc_t* p = &instructions[0];
657 while ((insn.bits() & p->mask) != p->match)
658 p++;
659 desc = *p;
660
661 if (p->mask != 0 && p > &instructions[0]) {
662 if (p->match != (p-1)->match && p->match != (p+1)->match) {
663 // move to front of opcode list to reduce miss penalty
664 while (--p >= &instructions[0])
665 *(p+1) = *p;
666 instructions[0] = desc;
667 }
668 }
669
670 opcode_cache[idx] = desc;
671 opcode_cache[idx].match = insn.bits();
672 }
673
674 return xlen == 64 ? desc.rv64 : desc.rv32;
675 }
676
677 void processor_t::register_insn(insn_desc_t desc)
678 {
679 instructions.push_back(desc);
680 }
681
682 void processor_t::build_opcode_map()
683 {
684 struct cmp {
685 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
686 if (lhs.match == rhs.match)
687 return lhs.mask > rhs.mask;
688 return lhs.match > rhs.match;
689 }
690 };
691 std::sort(instructions.begin(), instructions.end(), cmp());
692
693 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
694 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
695 }
696
697 void processor_t::register_extension(extension_t* x)
698 {
699 for (auto insn : x->get_instructions())
700 register_insn(insn);
701 build_opcode_map();
702 for (auto disasm_insn : x->get_disasms())
703 disassembler->add_insn(disasm_insn);
704 if (ext != NULL)
705 throw std::logic_error("only one extension may be registered");
706 ext = x;
707 x->set_processor(this);
708 }
709
710 void processor_t::register_base_instructions()
711 {
712 #define DECLARE_INSN(name, match, mask) \
713 insn_bits_t name##_match = (match), name##_mask = (mask);
714 #include "encoding.h"
715 #undef DECLARE_INSN
716
717 #define DEFINE_INSN(name) \
718 REGISTER_INSN(this, name, name##_match, name##_mask)
719 #include "insn_list.h"
720 #undef DEFINE_INSN
721
722 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
723 build_opcode_map();
724 }
725
726 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
727 {
728 switch (addr)
729 {
730 case 0:
731 if (len <= 4) {
732 memset(bytes, 0, len);
733 bytes[0] = get_field(state.mip, MIP_MSIP);
734 return true;
735 }
736 break;
737 }
738
739 return false;
740 }
741
742 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
743 {
744 switch (addr)
745 {
746 case 0:
747 if (len <= 4) {
748 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
749 return true;
750 }
751 break;
752 }
753
754 return false;
755 }
756
757 void processor_t::trigger_updated()
758 {
759 mmu->flush_tlb();
760 mmu->check_triggers_fetch = false;
761 mmu->check_triggers_load = false;
762 mmu->check_triggers_store = false;
763
764 for (unsigned i = 0; i < state.num_triggers; i++) {
765 if (state.mcontrol[i].execute) {
766 mmu->check_triggers_fetch = true;
767 }
768 if (state.mcontrol[i].load) {
769 mmu->check_triggers_load = true;
770 }
771 if (state.mcontrol[i].store) {
772 mmu->check_triggers_store = true;
773 }
774 }
775 }