debug: Move things around, but addresses now conflict with ROM.
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include <cinttypes>
11 #include <cmath>
12 #include <cstdlib>
13 #include <iostream>
14 #include <assert.h>
15 #include <limits.h>
16 #include <stdexcept>
17 #include <algorithm>
18
19 #undef STATE
20 #define STATE state
21
22 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
23 bool halt_on_reset)
24 : debug(false), halt_request(false), sim(sim), ext(NULL), id(id),
25 halt_on_reset(halt_on_reset)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 isa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 // advertise support for supervisor and user modes
110 isa |= 1L << ('s' - 'a');
111 isa |= 1L << ('u' - 'a');
112
113 max_isa = isa;
114 }
115
116 void state_t::reset()
117 {
118 memset(this, 0, sizeof(*this));
119 prv = PRV_M;
120 pc = DEFAULT_RSTVEC;
121 load_reservation = -1;
122 tselect = 0;
123 for (unsigned int i = 0; i < num_triggers; i++)
124 mcontrol[i].type = 2;
125 }
126
127 void processor_t::set_debug(bool value)
128 {
129 debug = value;
130 if (ext)
131 ext->set_debug(value);
132 }
133
134 void processor_t::set_histogram(bool value)
135 {
136 histogram_enabled = value;
137 #ifndef RISCV_ENABLE_HISTOGRAM
138 if (value) {
139 fprintf(stderr, "PC Histogram support has not been properly enabled;");
140 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
141 }
142 #endif
143 }
144
145 void processor_t::reset()
146 {
147 state.reset();
148 state.dcsr.halt = halt_on_reset;
149 halt_on_reset = false;
150 set_csr(CSR_MSTATUS, state.mstatus);
151
152 if (ext)
153 ext->reset(); // reset the extension
154 }
155
156 // Count number of contiguous 0 bits starting from the LSB.
157 static int ctz(reg_t val)
158 {
159 int res = 0;
160 if (val)
161 while ((val & 1) == 0)
162 val >>= 1, res++;
163 return res;
164 }
165
166 void processor_t::take_interrupt(reg_t pending_interrupts)
167 {
168 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
169 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
170 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
171
172 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
173 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
174 if (enabled_interrupts == 0)
175 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
176
177 if (enabled_interrupts)
178 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
179 }
180
181 void processor_t::set_privilege(reg_t prv)
182 {
183 assert(prv <= PRV_M);
184 if (prv == PRV_H)
185 prv = PRV_U;
186 mmu->flush_tlb();
187 state.prv = prv;
188 }
189
190 void processor_t::enter_debug_mode(uint8_t cause)
191 {
192 fprintf(stderr, "Entering debug mode because of cause %d", cause);
193 state.dcsr.cause = cause;
194 state.dcsr.prv = state.prv;
195 set_privilege(PRV_M);
196 state.dpc = state.pc;
197 state.pc = debug_rom_entry();
198 }
199
200 void processor_t::take_trap(trap_t& t, reg_t epc)
201 {
202 if (debug) {
203 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
204 id, t.name(), epc);
205 if (t.has_badaddr())
206 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
207 t.get_badaddr());
208 }
209
210 if (state.dcsr.cause) {
211 if (t.cause() == CAUSE_BREAKPOINT) {
212 state.pc = debug_rom_entry();
213 fprintf(stderr, "Breakpoint.");
214 } else {
215 fprintf(stderr, "WE ARE IN DEBUG MODE, DEBUG_ROM_EXCEPTION\n");
216 state.pc = DEBUG_ROM_EXCEPTION;
217 }
218 return;
219 }
220
221 if (t.cause() == CAUSE_BREAKPOINT && (
222 (state.prv == PRV_M && state.dcsr.ebreakm) ||
223 (state.prv == PRV_H && state.dcsr.ebreakh) ||
224 (state.prv == PRV_S && state.dcsr.ebreaks) ||
225 (state.prv == PRV_U && state.dcsr.ebreaku))) {
226 enter_debug_mode(DCSR_CAUSE_SWBP);
227 return;
228 }
229
230 // by default, trap to M-mode, unless delegated to S-mode
231 reg_t bit = t.cause();
232 reg_t deleg = state.medeleg;
233 bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0;
234 if (interrupt)
235 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
236 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
237 // handle the trap in S-mode
238 state.pc = state.stvec;
239 state.scause = t.cause();
240 state.sepc = epc;
241 if (t.has_badaddr())
242 state.sbadaddr = t.get_badaddr();
243
244 reg_t s = state.mstatus;
245 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
246 s = set_field(s, MSTATUS_SPP, state.prv);
247 s = set_field(s, MSTATUS_SIE, 0);
248 set_csr(CSR_MSTATUS, s);
249 set_privilege(PRV_S);
250 } else {
251 reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0;
252 state.pc = (state.mtvec & ~(reg_t)1) + vector;
253 state.mepc = epc;
254 state.mcause = t.cause();
255 if (t.has_badaddr())
256 state.mbadaddr = t.get_badaddr();
257
258 reg_t s = state.mstatus;
259 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
260 s = set_field(s, MSTATUS_MPP, state.prv);
261 s = set_field(s, MSTATUS_MIE, 0);
262 set_csr(CSR_MSTATUS, s);
263 set_privilege(PRV_M);
264 }
265
266 yield_load_reservation();
267 }
268
269 void processor_t::disasm(insn_t insn)
270 {
271 static uint64_t last_pc = 1, last_bits;
272 static uint64_t executions = 1;
273
274 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
275 if (last_pc != state.pc || last_bits != bits) {
276 if (executions != 1) {
277 fprintf(stderr, "core %3d: Executed %" PRIx64 " times\n", id, executions);
278 }
279
280 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
281 id, state.pc, bits, disassembler->disassemble(insn).c_str());
282 last_pc = state.pc;
283 last_bits = bits;
284 executions = 1;
285 } else {
286 executions++;
287 }
288 }
289
290 int processor_t::paddr_bits()
291 {
292 assert(xlen == max_xlen);
293 return max_xlen == 64 ? 50 : 34;
294 }
295
296 void processor_t::set_csr(int which, reg_t val)
297 {
298 val = zext_xlen(val);
299 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
300 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
301 switch (which)
302 {
303 case CSR_FFLAGS:
304 dirty_fp_state;
305 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
306 break;
307 case CSR_FRM:
308 dirty_fp_state;
309 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
310 break;
311 case CSR_FCSR:
312 dirty_fp_state;
313 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
314 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
315 break;
316 case CSR_MSTATUS: {
317 if ((val ^ state.mstatus) &
318 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR))
319 mmu->flush_tlb();
320
321 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
322 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM
323 | MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
324 | MSTATUS_TSR | (ext ? MSTATUS_XS : 0);
325
326 state.mstatus = (state.mstatus & ~mask) | (val & mask);
327
328 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
329 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
330 if (max_xlen == 32)
331 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
332 else
333 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
334
335 // spike supports the notion of xlen < max_xlen, but current priv spec
336 // doesn't provide a mechanism to run RV32 software on an RV64 machine
337 xlen = max_xlen;
338 break;
339 }
340 case CSR_MIP: {
341 reg_t mask = MIP_SSIP | MIP_STIP;
342 state.mip = (state.mip & ~mask) | (val & mask);
343 break;
344 }
345 case CSR_MIE:
346 state.mie = (state.mie & ~all_ints) | (val & all_ints);
347 break;
348 case CSR_MIDELEG:
349 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
350 break;
351 case CSR_MEDELEG: {
352 reg_t mask = 0;
353 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
354 #include "encoding.h"
355 #undef DECLARE_CAUSE
356 state.medeleg = (state.medeleg & ~mask) | (val & mask);
357 break;
358 }
359 case CSR_MINSTRET:
360 case CSR_MCYCLE:
361 if (xlen == 32)
362 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
363 else
364 state.minstret = val;
365 break;
366 case CSR_MINSTRETH:
367 case CSR_MCYCLEH:
368 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
369 break;
370 case CSR_SCOUNTEREN:
371 state.scounteren = val;
372 break;
373 case CSR_MCOUNTEREN:
374 state.mcounteren = val;
375 break;
376 case CSR_SSTATUS: {
377 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
378 | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR;
379 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
380 }
381 case CSR_SIP: {
382 reg_t mask = MIP_SSIP & state.mideleg;
383 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
384 }
385 case CSR_SIE:
386 return set_csr(CSR_MIE,
387 (state.mie & ~state.mideleg) | (val & state.mideleg));
388 case CSR_SPTBR: {
389 mmu->flush_tlb();
390 if (max_xlen == 32)
391 state.sptbr = val & (SPTBR32_PPN | SPTBR32_MODE);
392 if (max_xlen == 64 && (get_field(val, SPTBR64_MODE) == SPTBR_MODE_OFF ||
393 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV39 ||
394 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV48))
395 state.sptbr = val & (SPTBR64_PPN | SPTBR64_MODE);
396 break;
397 }
398 case CSR_SEPC: state.sepc = val; break;
399 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
400 case CSR_SSCRATCH: state.sscratch = val; break;
401 case CSR_SCAUSE: state.scause = val; break;
402 case CSR_SBADADDR: state.sbadaddr = val; break;
403 case CSR_MEPC: state.mepc = val; break;
404 case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break;
405 case CSR_MSCRATCH: state.mscratch = val; break;
406 case CSR_MCAUSE: state.mcause = val; break;
407 case CSR_MBADADDR: state.mbadaddr = val; break;
408 case CSR_MISA: {
409 if (!(val & (1L << ('F' - 'A'))))
410 val &= ~(1L << ('D' - 'A'));
411
412 // allow MAFDC bits in MISA to be modified
413 reg_t mask = 0;
414 mask |= 1L << ('M' - 'A');
415 mask |= 1L << ('A' - 'A');
416 mask |= 1L << ('F' - 'A');
417 mask |= 1L << ('D' - 'A');
418 mask |= 1L << ('C' - 'A');
419 mask &= max_isa;
420
421 isa = (val & mask) | (isa & ~mask);
422 break;
423 }
424 case CSR_TSELECT:
425 if (val < state.num_triggers) {
426 state.tselect = val;
427 }
428 break;
429 case CSR_TDATA1:
430 {
431 mcontrol_t *mc = &state.mcontrol[state.tselect];
432 if (mc->dmode && !state.dcsr.cause) {
433 break;
434 }
435 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
436 mc->select = get_field(val, MCONTROL_SELECT);
437 mc->timing = get_field(val, MCONTROL_TIMING);
438 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
439 mc->chain = get_field(val, MCONTROL_CHAIN);
440 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
441 mc->m = get_field(val, MCONTROL_M);
442 mc->h = get_field(val, MCONTROL_H);
443 mc->s = get_field(val, MCONTROL_S);
444 mc->u = get_field(val, MCONTROL_U);
445 mc->execute = get_field(val, MCONTROL_EXECUTE);
446 mc->store = get_field(val, MCONTROL_STORE);
447 mc->load = get_field(val, MCONTROL_LOAD);
448 // Assume we're here because of csrw.
449 if (mc->execute)
450 mc->timing = 0;
451 trigger_updated();
452 }
453 break;
454 case CSR_TDATA2:
455 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
456 break;
457 }
458 if (state.tselect < state.num_triggers) {
459 state.tdata2[state.tselect] = val;
460 }
461 break;
462 case CSR_DCSR:
463 state.dcsr.prv = get_field(val, DCSR_PRV);
464 state.dcsr.step = get_field(val, DCSR_STEP);
465 // TODO: ndreset and fullreset
466 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
467 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
468 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
469 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
470 state.dcsr.halt = get_field(val, DCSR_HALT);
471 break;
472 case CSR_DPC:
473 state.dpc = val;
474 break;
475 case CSR_DSCRATCH:
476 state.dscratch = val;
477 break;
478 }
479 }
480
481 reg_t processor_t::get_csr(int which)
482 {
483 uint32_t ctr_en = -1;
484 if (state.prv < PRV_M)
485 ctr_en &= state.mcounteren;
486 if (state.prv < PRV_S)
487 ctr_en &= state.scounteren;
488 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
489
490 if (ctr_ok) {
491 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
492 return 0;
493 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
494 return 0;
495 }
496 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
497 return 0;
498 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
499 return 0;
500 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
501 return 0;
502
503 switch (which)
504 {
505 case CSR_FFLAGS:
506 require_fp;
507 if (!supports_extension('F'))
508 break;
509 return state.fflags;
510 case CSR_FRM:
511 require_fp;
512 if (!supports_extension('F'))
513 break;
514 return state.frm;
515 case CSR_FCSR:
516 require_fp;
517 if (!supports_extension('F'))
518 break;
519 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
520 case CSR_INSTRET:
521 case CSR_CYCLE:
522 if (ctr_ok)
523 return state.minstret;
524 break;
525 case CSR_MINSTRET:
526 case CSR_MCYCLE:
527 return state.minstret;
528 case CSR_MINSTRETH:
529 case CSR_MCYCLEH:
530 if (xlen == 32)
531 return state.minstret >> 32;
532 break;
533 case CSR_SCOUNTEREN: return state.scounteren;
534 case CSR_MCOUNTEREN: return state.mcounteren;
535 case CSR_SSTATUS: {
536 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
537 | SSTATUS_XS | SSTATUS_SUM;
538 reg_t sstatus = state.mstatus & mask;
539 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
540 (sstatus & SSTATUS_XS) == SSTATUS_XS)
541 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
542 return sstatus;
543 }
544 case CSR_SIP: return state.mip & state.mideleg;
545 case CSR_SIE: return state.mie & state.mideleg;
546 case CSR_SEPC: return state.sepc;
547 case CSR_SBADADDR: return state.sbadaddr;
548 case CSR_STVEC: return state.stvec;
549 case CSR_SCAUSE:
550 if (max_xlen > xlen)
551 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
552 return state.scause;
553 case CSR_SPTBR:
554 if (get_field(state.mstatus, MSTATUS_TVM))
555 require_privilege(PRV_M);
556 return state.sptbr;
557 case CSR_SSCRATCH: return state.sscratch;
558 case CSR_MSTATUS: return state.mstatus;
559 case CSR_MIP: return state.mip;
560 case CSR_MIE: return state.mie;
561 case CSR_MEPC: return state.mepc;
562 case CSR_MSCRATCH: return state.mscratch;
563 case CSR_MCAUSE: return state.mcause;
564 case CSR_MBADADDR: return state.mbadaddr;
565 case CSR_MISA: return isa;
566 case CSR_MARCHID: return 0;
567 case CSR_MIMPID: return 0;
568 case CSR_MVENDORID: return 0;
569 case CSR_MHARTID: return id;
570 case CSR_MTVEC: return state.mtvec;
571 case CSR_MEDELEG: return state.medeleg;
572 case CSR_MIDELEG: return state.mideleg;
573 case CSR_TSELECT: return state.tselect;
574 case CSR_TDATA1:
575 if (state.tselect < state.num_triggers) {
576 reg_t v = 0;
577 mcontrol_t *mc = &state.mcontrol[state.tselect];
578 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
579 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
580 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
581 v = set_field(v, MCONTROL_SELECT, mc->select);
582 v = set_field(v, MCONTROL_TIMING, mc->timing);
583 v = set_field(v, MCONTROL_ACTION, mc->action);
584 v = set_field(v, MCONTROL_CHAIN, mc->chain);
585 v = set_field(v, MCONTROL_MATCH, mc->match);
586 v = set_field(v, MCONTROL_M, mc->m);
587 v = set_field(v, MCONTROL_H, mc->h);
588 v = set_field(v, MCONTROL_S, mc->s);
589 v = set_field(v, MCONTROL_U, mc->u);
590 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
591 v = set_field(v, MCONTROL_STORE, mc->store);
592 v = set_field(v, MCONTROL_LOAD, mc->load);
593 return v;
594 } else {
595 return 0;
596 }
597 break;
598 case CSR_TDATA2:
599 if (state.tselect < state.num_triggers) {
600 return state.tdata2[state.tselect];
601 } else {
602 return 0;
603 }
604 break;
605 case CSR_TDATA3: return 0;
606 case CSR_DCSR:
607 {
608 uint32_t v = 0;
609 v = set_field(v, DCSR_XDEBUGVER, 1);
610 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
611 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
612 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
613 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
614 v = set_field(v, DCSR_STOPCYCLE, 0);
615 v = set_field(v, DCSR_STOPTIME, 0);
616 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
617 v = set_field(v, DCSR_STEP, state.dcsr.step);
618 v = set_field(v, DCSR_PRV, state.dcsr.prv);
619 return v;
620 }
621 case CSR_DPC:
622 return state.dpc;
623 case CSR_DSCRATCH:
624 return state.dscratch;
625 }
626 throw trap_illegal_instruction(0);
627 }
628
629 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
630 {
631 throw trap_illegal_instruction(0);
632 }
633
634 insn_func_t processor_t::decode_insn(insn_t insn)
635 {
636 // look up opcode in hash table
637 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
638 insn_desc_t desc = opcode_cache[idx];
639
640 if (unlikely(insn.bits() != desc.match)) {
641 // fall back to linear search
642 insn_desc_t* p = &instructions[0];
643 while ((insn.bits() & p->mask) != p->match)
644 p++;
645 desc = *p;
646
647 if (p->mask != 0 && p > &instructions[0]) {
648 if (p->match != (p-1)->match && p->match != (p+1)->match) {
649 // move to front of opcode list to reduce miss penalty
650 while (--p >= &instructions[0])
651 *(p+1) = *p;
652 instructions[0] = desc;
653 }
654 }
655
656 opcode_cache[idx] = desc;
657 opcode_cache[idx].match = insn.bits();
658 }
659
660 return xlen == 64 ? desc.rv64 : desc.rv32;
661 }
662
663 void processor_t::register_insn(insn_desc_t desc)
664 {
665 instructions.push_back(desc);
666 }
667
668 void processor_t::build_opcode_map()
669 {
670 struct cmp {
671 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
672 if (lhs.match == rhs.match)
673 return lhs.mask > rhs.mask;
674 return lhs.match > rhs.match;
675 }
676 };
677 std::sort(instructions.begin(), instructions.end(), cmp());
678
679 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
680 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
681 }
682
683 void processor_t::register_extension(extension_t* x)
684 {
685 for (auto insn : x->get_instructions())
686 register_insn(insn);
687 build_opcode_map();
688 for (auto disasm_insn : x->get_disasms())
689 disassembler->add_insn(disasm_insn);
690 if (ext != NULL)
691 throw std::logic_error("only one extension may be registered");
692 ext = x;
693 x->set_processor(this);
694 }
695
696 void processor_t::register_base_instructions()
697 {
698 #define DECLARE_INSN(name, match, mask) \
699 insn_bits_t name##_match = (match), name##_mask = (mask);
700 #include "encoding.h"
701 #undef DECLARE_INSN
702
703 #define DEFINE_INSN(name) \
704 REGISTER_INSN(this, name, name##_match, name##_mask)
705 #include "insn_list.h"
706 #undef DEFINE_INSN
707
708 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
709 build_opcode_map();
710 }
711
712 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
713 {
714 switch (addr)
715 {
716 case 0:
717 if (len <= 4) {
718 memset(bytes, 0, len);
719 bytes[0] = get_field(state.mip, MIP_MSIP);
720 return true;
721 }
722 break;
723 }
724
725 return false;
726 }
727
728 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
729 {
730 switch (addr)
731 {
732 case 0:
733 if (len <= 4) {
734 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
735 return true;
736 }
737 break;
738 }
739
740 return false;
741 }
742
743 void processor_t::trigger_updated()
744 {
745 mmu->flush_tlb();
746 mmu->check_triggers_fetch = false;
747 mmu->check_triggers_load = false;
748 mmu->check_triggers_store = false;
749
750 for (unsigned i = 0; i < state.num_triggers; i++) {
751 if (state.mcontrol[i].execute) {
752 mmu->check_triggers_fetch = true;
753 }
754 if (state.mcontrol[i].load) {
755 mmu->check_triggers_load = true;
756 }
757 if (state.mcontrol[i].store) {
758 mmu->check_triggers_store = true;
759 }
760 }
761 }