Disassemble RVC instructions based on XLEN
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include "gdbserver.h"
11 #include <cinttypes>
12 #include <cmath>
13 #include <cstdlib>
14 #include <iostream>
15 #include <assert.h>
16 #include <limits.h>
17 #include <stdexcept>
18 #include <algorithm>
19
20 #undef STATE
21 #define STATE state
22
23 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
24 bool halt_on_reset)
25 : debug(false), sim(sim), ext(NULL), id(id), halt_on_reset(halt_on_reset)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87
88 while (*p) {
89 isa |= 1L << (*p - 'a');
90
91 if (auto next = strchr(all_subsets, *p)) {
92 all_subsets = next + 1;
93 p++;
94 } else if (*p == 'x') {
95 const char* ext = p+1, *end = ext;
96 while (islower(*end))
97 end++;
98 register_extension(find_extension(std::string(ext, end - ext).c_str())());
99 p = end;
100 } else {
101 bad_isa_string(str);
102 }
103 }
104
105 if (supports_extension('D') && !supports_extension('F'))
106 bad_isa_string(str);
107
108 // advertise support for supervisor and user modes
109 isa |= 1L << ('s' - 'a');
110 isa |= 1L << ('u' - 'a');
111 }
112
113 void state_t::reset()
114 {
115 memset(this, 0, sizeof(*this));
116 prv = PRV_M;
117 pc = DEFAULT_RSTVEC;
118 mtvec = DEFAULT_MTVEC;
119 load_reservation = -1;
120 }
121
122 void processor_t::set_debug(bool value)
123 {
124 debug = value;
125 if (ext)
126 ext->set_debug(value);
127 }
128
129 void processor_t::set_histogram(bool value)
130 {
131 histogram_enabled = value;
132 #ifndef RISCV_ENABLE_HISTOGRAM
133 if (value) {
134 fprintf(stderr, "PC Histogram support has not been properly enabled;");
135 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
136 }
137 #endif
138 }
139
140 void processor_t::reset()
141 {
142 state.reset();
143 state.dcsr.halt = halt_on_reset;
144 halt_on_reset = false;
145 set_csr(CSR_MSTATUS, state.mstatus);
146
147 if (ext)
148 ext->reset(); // reset the extension
149 }
150
151 void processor_t::raise_interrupt(reg_t which)
152 {
153 throw trap_t(((reg_t)1 << (max_xlen-1)) | which);
154 }
155
156 static int ctz(reg_t val)
157 {
158 int res = 0;
159 if (val)
160 while ((val & 1) == 0)
161 val >>= 1, res++;
162 return res;
163 }
164
165 void processor_t::take_interrupt()
166 {
167 reg_t pending_interrupts = state.mip & state.mie;
168
169 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
170 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
171 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
172
173 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
174 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
175 enabled_interrupts |= pending_interrupts & state.mideleg & -s_enabled;
176
177 if (enabled_interrupts)
178 raise_interrupt(ctz(enabled_interrupts));
179 }
180
181 static bool validate_priv(reg_t priv)
182 {
183 return priv == PRV_U || priv == PRV_S || priv == PRV_M;
184 }
185
186 void processor_t::set_privilege(reg_t prv)
187 {
188 assert(validate_priv(prv));
189 mmu->flush_tlb();
190 state.prv = prv;
191 }
192
193 void processor_t::enter_debug_mode(uint8_t cause)
194 {
195 state.dcsr.cause = cause;
196 state.dcsr.prv = state.prv;
197 set_privilege(PRV_M);
198 state.dpc = state.pc;
199 state.pc = DEBUG_ROM_START;
200 //debug = true; // TODO
201 }
202
203 void processor_t::take_trap(trap_t& t, reg_t epc)
204 {
205 if (debug) {
206 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
207 id, t.name(), epc);
208 if (t.has_badaddr())
209 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
210 t.get_badaddr());
211 }
212
213 if (t.cause() == CAUSE_BREAKPOINT && (
214 (state.prv == PRV_M && state.dcsr.ebreakm) ||
215 (state.prv == PRV_H && state.dcsr.ebreakh) ||
216 (state.prv == PRV_S && state.dcsr.ebreaks) ||
217 (state.prv == PRV_U && state.dcsr.ebreaku))) {
218 enter_debug_mode(DCSR_CAUSE_SWBP);
219 return;
220 }
221
222 if (state.dcsr.cause) {
223 state.pc = DEBUG_ROM_EXCEPTION;
224 return;
225 }
226
227 // by default, trap to M-mode, unless delegated to S-mode
228 reg_t bit = t.cause();
229 reg_t deleg = state.medeleg;
230 if (bit & ((reg_t)1 << (max_xlen-1)))
231 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
232 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
233 // handle the trap in S-mode
234 state.pc = state.stvec;
235 state.scause = t.cause();
236 state.sepc = epc;
237 if (t.has_badaddr())
238 state.sbadaddr = t.get_badaddr();
239
240 reg_t s = state.mstatus;
241 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_UIE << state.prv));
242 s = set_field(s, MSTATUS_SPP, state.prv);
243 s = set_field(s, MSTATUS_SIE, 0);
244 set_csr(CSR_MSTATUS, s);
245 set_privilege(PRV_S);
246 } else {
247 state.pc = state.mtvec;
248 state.mepc = epc;
249 state.mcause = t.cause();
250 if (t.has_badaddr())
251 state.mbadaddr = t.get_badaddr();
252
253 reg_t s = state.mstatus;
254 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_UIE << state.prv));
255 s = set_field(s, MSTATUS_MPP, state.prv);
256 s = set_field(s, MSTATUS_MIE, 0);
257 set_csr(CSR_MSTATUS, s);
258 set_privilege(PRV_M);
259 }
260
261 yield_load_reservation();
262 }
263
264 void processor_t::disasm(insn_t insn)
265 {
266 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
267 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
268 id, state.pc, bits, disassembler->disassemble(insn).c_str());
269 }
270
271 static bool validate_vm(int max_xlen, reg_t vm)
272 {
273 if (max_xlen == 64 && (vm == VM_SV39 || vm == VM_SV48))
274 return true;
275 if (max_xlen == 32 && vm == VM_SV32)
276 return true;
277 return vm == VM_MBARE;
278 }
279
280 int processor_t::paddr_bits()
281 {
282 assert(xlen == max_xlen);
283 return max_xlen == 64 ? 50 : 34;
284 }
285
286 void processor_t::set_csr(int which, reg_t val)
287 {
288 val = zext_xlen(val);
289 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
290 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
291 switch (which)
292 {
293 case CSR_FFLAGS:
294 dirty_fp_state;
295 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
296 break;
297 case CSR_FRM:
298 dirty_fp_state;
299 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
300 break;
301 case CSR_FCSR:
302 dirty_fp_state;
303 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
304 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
305 break;
306 case CSR_MSTATUS: {
307 if ((val ^ state.mstatus) &
308 (MSTATUS_VM | MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_PUM))
309 mmu->flush_tlb();
310
311 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
312 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_PUM
313 | (ext ? MSTATUS_XS : 0);
314
315 if (validate_vm(max_xlen, get_field(val, MSTATUS_VM)))
316 mask |= MSTATUS_VM;
317 if (validate_priv(get_field(val, MSTATUS_MPP)))
318 mask |= MSTATUS_MPP;
319
320 state.mstatus = (state.mstatus & ~mask) | (val & mask);
321
322 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
323 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
324 if (max_xlen == 32)
325 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
326 else
327 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
328
329 // spike supports the notion of xlen < max_xlen, but current priv spec
330 // doesn't provide a mechanism to run RV32 software on an RV64 machine
331 xlen = max_xlen;
332 break;
333 }
334 case CSR_MIP: {
335 reg_t mask = MIP_SSIP | MIP_STIP;
336 state.mip = (state.mip & ~mask) | (val & mask);
337 break;
338 }
339 case CSR_MIE:
340 state.mie = (state.mie & ~all_ints) | (val & all_ints);
341 break;
342 case CSR_MIDELEG:
343 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
344 break;
345 case CSR_MEDELEG: {
346 reg_t mask = 0;
347 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
348 #include "encoding.h"
349 #undef DECLARE_CAUSE
350 state.medeleg = (state.medeleg & ~mask) | (val & mask);
351 break;
352 }
353 case CSR_MUCOUNTEREN:
354 state.mucounteren = val & 7;
355 break;
356 case CSR_MSCOUNTEREN:
357 state.mscounteren = val & 7;
358 break;
359 case CSR_SSTATUS: {
360 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
361 | SSTATUS_XS | SSTATUS_PUM;
362 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
363 }
364 case CSR_SIP:
365 return set_csr(CSR_MIP,
366 (state.mip & ~state.mideleg) | (val & state.mideleg));
367 case CSR_SIE:
368 return set_csr(CSR_MIE,
369 (state.mie & ~state.mideleg) | (val & state.mideleg));
370 case CSR_SPTBR: {
371 // upper bits of sptbr are the ASID; we only support ASID = 0
372 state.sptbr = val & (((reg_t)1 << (paddr_bits() - PGSHIFT)) - 1);
373 break;
374 }
375 case CSR_SEPC: state.sepc = val; break;
376 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
377 case CSR_SSCRATCH: state.sscratch = val; break;
378 case CSR_SCAUSE: state.scause = val; break;
379 case CSR_SBADADDR: state.sbadaddr = val; break;
380 case CSR_MEPC: state.mepc = val; break;
381 case CSR_MTVEC: state.mtvec = val >> 2 << 2; break;
382 case CSR_MSCRATCH: state.mscratch = val; break;
383 case CSR_MCAUSE: state.mcause = val; break;
384 case CSR_MBADADDR: state.mbadaddr = val; break;
385 case CSR_DCSR:
386 state.dcsr.prv = get_field(val, DCSR_PRV);
387 state.dcsr.step = get_field(val, DCSR_STEP);
388 // TODO: ndreset and fullreset
389 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
390 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
391 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
392 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
393 state.dcsr.halt = get_field(val, DCSR_HALT);
394 break;
395 case CSR_DPC:
396 state.dpc = val;
397 break;
398 case CSR_DSCRATCH:
399 state.dscratch = val;
400 break;
401 }
402 }
403
404 reg_t processor_t::get_csr(int which)
405 {
406 switch (which)
407 {
408 case CSR_FFLAGS:
409 require_fp;
410 if (!supports_extension('F'))
411 break;
412 return state.fflags;
413 case CSR_FRM:
414 require_fp;
415 if (!supports_extension('F'))
416 break;
417 return state.frm;
418 case CSR_FCSR:
419 require_fp;
420 if (!supports_extension('F'))
421 break;
422 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
423 case CSR_TIME:
424 case CSR_INSTRET:
425 case CSR_CYCLE:
426 if ((state.mucounteren >> (which & (xlen-1))) & 1)
427 return get_csr(which + (CSR_MCYCLE - CSR_CYCLE));
428 break;
429 case CSR_STIME:
430 case CSR_SINSTRET:
431 case CSR_SCYCLE:
432 if ((state.mscounteren >> (which & (xlen-1))) & 1)
433 return get_csr(which + (CSR_MCYCLE - CSR_SCYCLE));
434 break;
435 case CSR_MUCOUNTEREN: return state.mucounteren;
436 case CSR_MSCOUNTEREN: return state.mscounteren;
437 case CSR_MUCYCLE_DELTA: return 0;
438 case CSR_MUTIME_DELTA: return 0;
439 case CSR_MUINSTRET_DELTA: return 0;
440 case CSR_MSCYCLE_DELTA: return 0;
441 case CSR_MSTIME_DELTA: return 0;
442 case CSR_MSINSTRET_DELTA: return 0;
443 case CSR_MUCYCLE_DELTAH: if (xlen > 32) break; else return 0;
444 case CSR_MUTIME_DELTAH: if (xlen > 32) break; else return 0;
445 case CSR_MUINSTRET_DELTAH: if (xlen > 32) break; else return 0;
446 case CSR_MSCYCLE_DELTAH: if (xlen > 32) break; else return 0;
447 case CSR_MSTIME_DELTAH: if (xlen > 32) break; else return 0;
448 case CSR_MSINSTRET_DELTAH: if (xlen > 32) break; else return 0;
449 case CSR_MCYCLE: return state.minstret;
450 case CSR_MINSTRET: return state.minstret;
451 case CSR_MCYCLEH: if (xlen > 32) break; else return state.minstret >> 32;
452 case CSR_MINSTRETH: if (xlen > 32) break; else return state.minstret >> 32;
453 case CSR_SSTATUS: {
454 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
455 | SSTATUS_XS | SSTATUS_PUM;
456 reg_t sstatus = state.mstatus & mask;
457 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
458 (sstatus & SSTATUS_XS) == SSTATUS_XS)
459 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
460 return sstatus;
461 }
462 case CSR_SIP: return state.mip & state.mideleg;
463 case CSR_SIE: return state.mie & state.mideleg;
464 case CSR_SEPC: return state.sepc;
465 case CSR_SBADADDR: return state.sbadaddr;
466 case CSR_STVEC: return state.stvec;
467 case CSR_SCAUSE:
468 if (max_xlen > xlen)
469 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
470 return state.scause;
471 case CSR_SPTBR: return state.sptbr;
472 case CSR_SSCRATCH: return state.sscratch;
473 case CSR_MSTATUS: return state.mstatus;
474 case CSR_MIP: return state.mip;
475 case CSR_MIE: return state.mie;
476 case CSR_MEPC: return state.mepc;
477 case CSR_MSCRATCH: return state.mscratch;
478 case CSR_MCAUSE: return state.mcause;
479 case CSR_MBADADDR: return state.mbadaddr;
480 case CSR_MISA: return isa;
481 case CSR_MARCHID: return 0;
482 case CSR_MIMPID: return 0;
483 case CSR_MVENDORID: return 0;
484 case CSR_MHARTID: return id;
485 case CSR_MTVEC: return state.mtvec;
486 case CSR_MEDELEG: return state.medeleg;
487 case CSR_MIDELEG: return state.mideleg;
488 case CSR_TDRSELECT: return 0;
489 case CSR_DCSR:
490 {
491 uint32_t v = 0;
492 v = set_field(v, DCSR_XDEBUGVER, 1);
493 v = set_field(v, DCSR_HWBPCOUNT, 0);
494 v = set_field(v, DCSR_NDRESET, 0);
495 v = set_field(v, DCSR_FULLRESET, 0);
496 v = set_field(v, DCSR_PRV, state.dcsr.prv);
497 v = set_field(v, DCSR_STEP, state.dcsr.step);
498 v = set_field(v, DCSR_DEBUGINT, sim->debug_module.get_interrupt(id));
499 v = set_field(v, DCSR_STOPCYCLE, 0);
500 v = set_field(v, DCSR_STOPTIME, 0);
501 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
502 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
503 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
504 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
505 v = set_field(v, DCSR_HALT, state.dcsr.halt);
506 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
507 return v;
508 }
509 case CSR_DPC:
510 return state.dpc;
511 case CSR_DSCRATCH:
512 return state.dscratch;
513 }
514 throw trap_illegal_instruction();
515 }
516
517 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
518 {
519 throw trap_illegal_instruction();
520 }
521
522 insn_func_t processor_t::decode_insn(insn_t insn)
523 {
524 // look up opcode in hash table
525 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
526 insn_desc_t desc = opcode_cache[idx];
527
528 if (unlikely(insn.bits() != desc.match)) {
529 // fall back to linear search
530 insn_desc_t* p = &instructions[0];
531 while ((insn.bits() & p->mask) != p->match)
532 p++;
533 desc = *p;
534
535 if (p->mask != 0 && p > &instructions[0]) {
536 if (p->match != (p-1)->match && p->match != (p+1)->match) {
537 // move to front of opcode list to reduce miss penalty
538 while (--p >= &instructions[0])
539 *(p+1) = *p;
540 instructions[0] = desc;
541 }
542 }
543
544 opcode_cache[idx] = desc;
545 opcode_cache[idx].match = insn.bits();
546 }
547
548 return xlen == 64 ? desc.rv64 : desc.rv32;
549 }
550
551 void processor_t::register_insn(insn_desc_t desc)
552 {
553 instructions.push_back(desc);
554 }
555
556 void processor_t::build_opcode_map()
557 {
558 struct cmp {
559 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
560 if (lhs.match == rhs.match)
561 return lhs.mask > rhs.mask;
562 return lhs.match > rhs.match;
563 }
564 };
565 std::sort(instructions.begin(), instructions.end(), cmp());
566
567 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
568 opcode_cache[i] = {1, 0, &illegal_instruction, &illegal_instruction};
569 }
570
571 void processor_t::register_extension(extension_t* x)
572 {
573 for (auto insn : x->get_instructions())
574 register_insn(insn);
575 build_opcode_map();
576 for (auto disasm_insn : x->get_disasms())
577 disassembler->add_insn(disasm_insn);
578 if (ext != NULL)
579 throw std::logic_error("only one extension may be registered");
580 ext = x;
581 x->set_processor(this);
582 }
583
584 void processor_t::register_base_instructions()
585 {
586 #define DECLARE_INSN(name, match, mask) \
587 insn_bits_t name##_match = (match), name##_mask = (mask);
588 #include "encoding.h"
589 #undef DECLARE_INSN
590
591 #define DEFINE_INSN(name) \
592 REGISTER_INSN(this, name, name##_match, name##_mask)
593 #include "insn_list.h"
594 #undef DEFINE_INSN
595
596 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
597 build_opcode_map();
598 }
599
600 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
601 {
602 return false;
603 }
604
605 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
606 {
607 switch (addr)
608 {
609 case 0:
610 state.mip &= ~MIP_MSIP;
611 if (bytes[0] & 1)
612 state.mip |= MIP_MSIP;
613 return true;
614
615 default:
616 return false;
617 }
618 }