Implement mstatus.TW, mstatus.TVM, and mstatus.TSR
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include "gdbserver.h"
11 #include <cinttypes>
12 #include <cmath>
13 #include <cstdlib>
14 #include <iostream>
15 #include <assert.h>
16 #include <limits.h>
17 #include <stdexcept>
18 #include <algorithm>
19
20 #undef STATE
21 #define STATE state
22
23 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
24 bool halt_on_reset)
25 : debug(false), sim(sim), ext(NULL), id(id), halt_on_reset(halt_on_reset)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 isa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 // advertise support for supervisor and user modes
110 isa |= 1L << ('s' - 'a');
111 isa |= 1L << ('u' - 'a');
112
113 max_isa = isa;
114 }
115
116 void state_t::reset()
117 {
118 memset(this, 0, sizeof(*this));
119 prv = PRV_M;
120 pc = DEFAULT_RSTVEC;
121 mtvec = DEFAULT_MTVEC;
122 load_reservation = -1;
123 tselect = 0;
124 for (unsigned int i = 0; i < num_triggers; i++)
125 mcontrol[i].type = 2;
126 }
127
128 void processor_t::set_debug(bool value)
129 {
130 debug = value;
131 if (ext)
132 ext->set_debug(value);
133 }
134
135 void processor_t::set_histogram(bool value)
136 {
137 histogram_enabled = value;
138 #ifndef RISCV_ENABLE_HISTOGRAM
139 if (value) {
140 fprintf(stderr, "PC Histogram support has not been properly enabled;");
141 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
142 }
143 #endif
144 }
145
146 void processor_t::reset()
147 {
148 state.reset();
149 state.dcsr.halt = halt_on_reset;
150 halt_on_reset = false;
151 set_csr(CSR_MSTATUS, state.mstatus);
152
153 if (ext)
154 ext->reset(); // reset the extension
155 }
156
157 // Count number of contiguous 0 bits starting from the LSB.
158 static int ctz(reg_t val)
159 {
160 int res = 0;
161 if (val)
162 while ((val & 1) == 0)
163 val >>= 1, res++;
164 return res;
165 }
166
167 void processor_t::take_interrupt(reg_t pending_interrupts)
168 {
169 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
170 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
171 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
172
173 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
174 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
175 if (enabled_interrupts == 0)
176 enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled;
177
178 if (enabled_interrupts)
179 throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts));
180 }
181
182 void processor_t::set_privilege(reg_t prv)
183 {
184 assert(prv <= PRV_M);
185 if (prv == PRV_H)
186 prv = PRV_U;
187 mmu->flush_tlb();
188 state.prv = prv;
189 }
190
191 void processor_t::enter_debug_mode(uint8_t cause)
192 {
193 state.dcsr.cause = cause;
194 state.dcsr.prv = state.prv;
195 set_privilege(PRV_M);
196 state.dpc = state.pc;
197 state.pc = DEBUG_ROM_START;
198 }
199
200 void processor_t::take_trap(trap_t& t, reg_t epc)
201 {
202 if (debug) {
203 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
204 id, t.name(), epc);
205 if (t.has_badaddr())
206 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
207 t.get_badaddr());
208 }
209
210 if (t.cause() == CAUSE_BREAKPOINT && (
211 (state.prv == PRV_M && state.dcsr.ebreakm) ||
212 (state.prv == PRV_H && state.dcsr.ebreakh) ||
213 (state.prv == PRV_S && state.dcsr.ebreaks) ||
214 (state.prv == PRV_U && state.dcsr.ebreaku))) {
215 enter_debug_mode(DCSR_CAUSE_SWBP);
216 return;
217 }
218
219 if (state.dcsr.cause) {
220 state.pc = DEBUG_ROM_EXCEPTION;
221 return;
222 }
223
224 // by default, trap to M-mode, unless delegated to S-mode
225 reg_t bit = t.cause();
226 reg_t deleg = state.medeleg;
227 if (bit & ((reg_t)1 << (max_xlen-1)))
228 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
229 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
230 // handle the trap in S-mode
231 state.pc = state.stvec;
232 state.scause = t.cause();
233 state.sepc = epc;
234 if (t.has_badaddr())
235 state.sbadaddr = t.get_badaddr();
236
237 reg_t s = state.mstatus;
238 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_UIE << state.prv));
239 s = set_field(s, MSTATUS_SPP, state.prv);
240 s = set_field(s, MSTATUS_SIE, 0);
241 set_csr(CSR_MSTATUS, s);
242 set_privilege(PRV_S);
243 } else {
244 state.pc = state.mtvec;
245 state.mepc = epc;
246 state.mcause = t.cause();
247 if (t.has_badaddr())
248 state.mbadaddr = t.get_badaddr();
249
250 reg_t s = state.mstatus;
251 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_UIE << state.prv));
252 s = set_field(s, MSTATUS_MPP, state.prv);
253 s = set_field(s, MSTATUS_MIE, 0);
254 set_csr(CSR_MSTATUS, s);
255 set_privilege(PRV_M);
256 }
257
258 yield_load_reservation();
259 }
260
261 void processor_t::disasm(insn_t insn)
262 {
263 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
264 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
265 id, state.pc, bits, disassembler->disassemble(insn).c_str());
266 }
267
268 int processor_t::paddr_bits()
269 {
270 assert(xlen == max_xlen);
271 return max_xlen == 64 ? 50 : 34;
272 }
273
274 void processor_t::set_csr(int which, reg_t val)
275 {
276 val = zext_xlen(val);
277 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
278 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
279 switch (which)
280 {
281 case CSR_FFLAGS:
282 dirty_fp_state;
283 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
284 break;
285 case CSR_FRM:
286 dirty_fp_state;
287 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
288 break;
289 case CSR_FCSR:
290 dirty_fp_state;
291 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
292 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
293 break;
294 case CSR_MSTATUS: {
295 if ((val ^ state.mstatus) &
296 (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_PUM | MSTATUS_MXR))
297 mmu->flush_tlb();
298
299 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
300 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_PUM
301 | MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM
302 | MSTATUS_TSR | (ext ? MSTATUS_XS : 0);
303
304 state.mstatus = (state.mstatus & ~mask) | (val & mask);
305
306 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
307 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
308 if (max_xlen == 32)
309 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
310 else
311 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
312
313 // spike supports the notion of xlen < max_xlen, but current priv spec
314 // doesn't provide a mechanism to run RV32 software on an RV64 machine
315 xlen = max_xlen;
316 break;
317 }
318 case CSR_MIP: {
319 reg_t mask = MIP_SSIP | MIP_STIP;
320 state.mip = (state.mip & ~mask) | (val & mask);
321 break;
322 }
323 case CSR_MIE:
324 state.mie = (state.mie & ~all_ints) | (val & all_ints);
325 break;
326 case CSR_MIDELEG:
327 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
328 break;
329 case CSR_MEDELEG: {
330 reg_t mask = 0;
331 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
332 #include "encoding.h"
333 #undef DECLARE_CAUSE
334 state.medeleg = (state.medeleg & ~mask) | (val & mask);
335 break;
336 }
337 case CSR_MINSTRET:
338 case CSR_MCYCLE:
339 if (xlen == 32)
340 state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU);
341 else
342 state.minstret = val;
343 break;
344 case CSR_MINSTRETH:
345 case CSR_MCYCLEH:
346 state.minstret = (val << 32) | (state.minstret << 32 >> 32);
347 break;
348 case CSR_SCOUNTEREN:
349 state.scounteren = val;
350 break;
351 case CSR_MCOUNTEREN:
352 state.mcounteren = val;
353 break;
354 case CSR_SSTATUS: {
355 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
356 | SSTATUS_XS | SSTATUS_PUM;
357 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
358 }
359 case CSR_SIP: {
360 reg_t mask = MIP_SSIP & state.mideleg;
361 return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask));
362 }
363 case CSR_SIE:
364 return set_csr(CSR_MIE,
365 (state.mie & ~state.mideleg) | (val & state.mideleg));
366 case CSR_SPTBR: {
367 mmu->flush_tlb();
368 if (max_xlen == 32)
369 state.sptbr = val & (SPTBR32_PPN | SPTBR32_MODE);
370 if (max_xlen == 64 && (get_field(val, SPTBR64_MODE) == SPTBR_MODE_OFF ||
371 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV39 ||
372 get_field(val, SPTBR64_MODE) == SPTBR_MODE_SV48))
373 state.sptbr = val & (SPTBR64_PPN | SPTBR64_MODE);
374 break;
375 }
376 case CSR_SEPC: state.sepc = val; break;
377 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
378 case CSR_SSCRATCH: state.sscratch = val; break;
379 case CSR_SCAUSE: state.scause = val; break;
380 case CSR_SBADADDR: state.sbadaddr = val; break;
381 case CSR_MEPC: state.mepc = val; break;
382 case CSR_MTVEC: state.mtvec = val >> 2 << 2; break;
383 case CSR_MSCRATCH: state.mscratch = val; break;
384 case CSR_MCAUSE: state.mcause = val; break;
385 case CSR_MBADADDR: state.mbadaddr = val; break;
386 case CSR_MISA: {
387 if (!(val & (1L << ('F' - 'A'))))
388 val &= ~(1L << ('D' - 'A'));
389
390 // allow MAFDC bits in MISA to be modified
391 reg_t mask = 0;
392 mask |= 1L << ('M' - 'A');
393 mask |= 1L << ('A' - 'A');
394 mask |= 1L << ('F' - 'A');
395 mask |= 1L << ('D' - 'A');
396 mask |= 1L << ('C' - 'A');
397 mask &= max_isa;
398
399 isa = (val & mask) | (isa & ~mask);
400 break;
401 }
402 case CSR_TSELECT:
403 if (val < state.num_triggers) {
404 state.tselect = val;
405 }
406 break;
407 case CSR_TDATA1:
408 {
409 mcontrol_t *mc = &state.mcontrol[state.tselect];
410 if (mc->dmode && !state.dcsr.cause) {
411 break;
412 }
413 mc->dmode = get_field(val, MCONTROL_DMODE(xlen));
414 mc->select = get_field(val, MCONTROL_SELECT);
415 mc->timing = get_field(val, MCONTROL_TIMING);
416 mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION);
417 mc->chain = get_field(val, MCONTROL_CHAIN);
418 mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH);
419 mc->m = get_field(val, MCONTROL_M);
420 mc->h = get_field(val, MCONTROL_H);
421 mc->s = get_field(val, MCONTROL_S);
422 mc->u = get_field(val, MCONTROL_U);
423 mc->execute = get_field(val, MCONTROL_EXECUTE);
424 mc->store = get_field(val, MCONTROL_STORE);
425 mc->load = get_field(val, MCONTROL_LOAD);
426 // Assume we're here because of csrw.
427 if (mc->execute)
428 mc->timing = 0;
429 trigger_updated();
430 }
431 break;
432 case CSR_TDATA2:
433 if (state.mcontrol[state.tselect].dmode && !state.dcsr.cause) {
434 break;
435 }
436 if (state.tselect < state.num_triggers) {
437 state.tdata2[state.tselect] = val;
438 }
439 break;
440 case CSR_DCSR:
441 state.dcsr.prv = get_field(val, DCSR_PRV);
442 state.dcsr.step = get_field(val, DCSR_STEP);
443 // TODO: ndreset and fullreset
444 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
445 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
446 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
447 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
448 state.dcsr.halt = get_field(val, DCSR_HALT);
449 break;
450 case CSR_DPC:
451 state.dpc = val;
452 break;
453 case CSR_DSCRATCH:
454 state.dscratch = val;
455 break;
456 }
457 }
458
459 reg_t processor_t::get_csr(int which)
460 {
461 uint32_t ctr_en = -1;
462 if (state.prv < PRV_M)
463 ctr_en &= state.mcounteren;
464 if (state.prv < PRV_S)
465 ctr_en &= state.scounteren;
466 bool ctr_ok = (ctr_en >> (which & 31)) & 1;
467
468 if (ctr_ok) {
469 if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31)
470 return 0;
471 if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H)
472 return 0;
473 }
474 if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31)
475 return 0;
476 if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H)
477 return 0;
478 if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31)
479 return 0;
480
481 switch (which)
482 {
483 case CSR_FFLAGS:
484 require_fp;
485 if (!supports_extension('F'))
486 break;
487 return state.fflags;
488 case CSR_FRM:
489 require_fp;
490 if (!supports_extension('F'))
491 break;
492 return state.frm;
493 case CSR_FCSR:
494 require_fp;
495 if (!supports_extension('F'))
496 break;
497 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
498 case CSR_INSTRET:
499 case CSR_CYCLE:
500 if (ctr_ok)
501 return state.minstret;
502 break;
503 case CSR_MINSTRET:
504 case CSR_MCYCLE:
505 return state.minstret;
506 case CSR_MINSTRETH:
507 case CSR_MCYCLEH:
508 if (xlen == 32)
509 return state.minstret >> 32;
510 break;
511 case CSR_SCOUNTEREN: return state.scounteren;
512 case CSR_MCOUNTEREN: return state.mcounteren;
513 case CSR_SSTATUS: {
514 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
515 | SSTATUS_XS | SSTATUS_PUM;
516 reg_t sstatus = state.mstatus & mask;
517 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
518 (sstatus & SSTATUS_XS) == SSTATUS_XS)
519 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
520 return sstatus;
521 }
522 case CSR_SIP: return state.mip & state.mideleg;
523 case CSR_SIE: return state.mie & state.mideleg;
524 case CSR_SEPC: return state.sepc;
525 case CSR_SBADADDR: return state.sbadaddr;
526 case CSR_STVEC: return state.stvec;
527 case CSR_SCAUSE:
528 if (max_xlen > xlen)
529 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
530 return state.scause;
531 case CSR_SPTBR:
532 if (get_field(state.mstatus, MSTATUS_TVM))
533 require_privilege(PRV_M);
534 return state.sptbr;
535 case CSR_SSCRATCH: return state.sscratch;
536 case CSR_MSTATUS: return state.mstatus;
537 case CSR_MIP: return state.mip;
538 case CSR_MIE: return state.mie;
539 case CSR_MEPC: return state.mepc;
540 case CSR_MSCRATCH: return state.mscratch;
541 case CSR_MCAUSE: return state.mcause;
542 case CSR_MBADADDR: return state.mbadaddr;
543 case CSR_MISA: return isa;
544 case CSR_MARCHID: return 0;
545 case CSR_MIMPID: return 0;
546 case CSR_MVENDORID: return 0;
547 case CSR_MHARTID: return id;
548 case CSR_MTVEC: return state.mtvec;
549 case CSR_MEDELEG: return state.medeleg;
550 case CSR_MIDELEG: return state.mideleg;
551 case CSR_TSELECT: return state.tselect;
552 case CSR_TDATA1:
553 if (state.tselect < state.num_triggers) {
554 reg_t v = 0;
555 mcontrol_t *mc = &state.mcontrol[state.tselect];
556 v = set_field(v, MCONTROL_TYPE(xlen), mc->type);
557 v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode);
558 v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax);
559 v = set_field(v, MCONTROL_SELECT, mc->select);
560 v = set_field(v, MCONTROL_TIMING, mc->timing);
561 v = set_field(v, MCONTROL_ACTION, mc->action);
562 v = set_field(v, MCONTROL_CHAIN, mc->chain);
563 v = set_field(v, MCONTROL_MATCH, mc->match);
564 v = set_field(v, MCONTROL_M, mc->m);
565 v = set_field(v, MCONTROL_H, mc->h);
566 v = set_field(v, MCONTROL_S, mc->s);
567 v = set_field(v, MCONTROL_U, mc->u);
568 v = set_field(v, MCONTROL_EXECUTE, mc->execute);
569 v = set_field(v, MCONTROL_STORE, mc->store);
570 v = set_field(v, MCONTROL_LOAD, mc->load);
571 return v;
572 } else {
573 return 0;
574 }
575 break;
576 case CSR_TDATA2:
577 if (state.tselect < state.num_triggers) {
578 return state.tdata2[state.tselect];
579 } else {
580 return 0;
581 }
582 break;
583 case CSR_TDATA3: return 0;
584 case CSR_DCSR:
585 {
586 uint32_t v = 0;
587 v = set_field(v, DCSR_XDEBUGVER, 1);
588 v = set_field(v, DCSR_NDRESET, 0);
589 v = set_field(v, DCSR_FULLRESET, 0);
590 v = set_field(v, DCSR_PRV, state.dcsr.prv);
591 v = set_field(v, DCSR_STEP, state.dcsr.step);
592 v = set_field(v, DCSR_DEBUGINT, sim->debug_module.get_interrupt(id));
593 v = set_field(v, DCSR_STOPCYCLE, 0);
594 v = set_field(v, DCSR_STOPTIME, 0);
595 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
596 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
597 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
598 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
599 v = set_field(v, DCSR_HALT, state.dcsr.halt);
600 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
601 return v;
602 }
603 case CSR_DPC:
604 return state.dpc;
605 case CSR_DSCRATCH:
606 return state.dscratch;
607 }
608 throw trap_illegal_instruction();
609 }
610
611 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
612 {
613 throw trap_illegal_instruction();
614 }
615
616 insn_func_t processor_t::decode_insn(insn_t insn)
617 {
618 // look up opcode in hash table
619 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
620 insn_desc_t desc = opcode_cache[idx];
621
622 if (unlikely(insn.bits() != desc.match)) {
623 // fall back to linear search
624 insn_desc_t* p = &instructions[0];
625 while ((insn.bits() & p->mask) != p->match)
626 p++;
627 desc = *p;
628
629 if (p->mask != 0 && p > &instructions[0]) {
630 if (p->match != (p-1)->match && p->match != (p+1)->match) {
631 // move to front of opcode list to reduce miss penalty
632 while (--p >= &instructions[0])
633 *(p+1) = *p;
634 instructions[0] = desc;
635 }
636 }
637
638 opcode_cache[idx] = desc;
639 opcode_cache[idx].match = insn.bits();
640 }
641
642 return xlen == 64 ? desc.rv64 : desc.rv32;
643 }
644
645 void processor_t::register_insn(insn_desc_t desc)
646 {
647 instructions.push_back(desc);
648 }
649
650 void processor_t::build_opcode_map()
651 {
652 struct cmp {
653 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
654 if (lhs.match == rhs.match)
655 return lhs.mask > rhs.mask;
656 return lhs.match > rhs.match;
657 }
658 };
659 std::sort(instructions.begin(), instructions.end(), cmp());
660
661 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
662 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
663 }
664
665 void processor_t::register_extension(extension_t* x)
666 {
667 for (auto insn : x->get_instructions())
668 register_insn(insn);
669 build_opcode_map();
670 for (auto disasm_insn : x->get_disasms())
671 disassembler->add_insn(disasm_insn);
672 if (ext != NULL)
673 throw std::logic_error("only one extension may be registered");
674 ext = x;
675 x->set_processor(this);
676 }
677
678 void processor_t::register_base_instructions()
679 {
680 #define DECLARE_INSN(name, match, mask) \
681 insn_bits_t name##_match = (match), name##_mask = (mask);
682 #include "encoding.h"
683 #undef DECLARE_INSN
684
685 #define DEFINE_INSN(name) \
686 REGISTER_INSN(this, name, name##_match, name##_mask)
687 #include "insn_list.h"
688 #undef DEFINE_INSN
689
690 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
691 build_opcode_map();
692 }
693
694 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
695 {
696 switch (addr)
697 {
698 case 0:
699 if (len <= 4) {
700 memset(bytes, 0, len);
701 bytes[0] = get_field(state.mip, MIP_MSIP);
702 return true;
703 }
704 break;
705 }
706
707 return false;
708 }
709
710 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
711 {
712 switch (addr)
713 {
714 case 0:
715 if (len <= 4) {
716 state.mip = set_field(state.mip, MIP_MSIP, bytes[0]);
717 return true;
718 }
719 break;
720 }
721
722 return false;
723 }
724
725 void processor_t::trigger_updated()
726 {
727 mmu->flush_tlb();
728 mmu->check_triggers_fetch = false;
729 mmu->check_triggers_load = false;
730 mmu->check_triggers_store = false;
731
732 for (unsigned i = 0; i < state.num_triggers; i++) {
733 if (state.mcontrol[i].execute) {
734 mmu->check_triggers_fetch = true;
735 }
736 if (state.mcontrol[i].load) {
737 mmu->check_triggers_load = true;
738 }
739 if (state.mcontrol[i].store) {
740 mmu->check_triggers_store = true;
741 }
742 }
743 }