Add support for virtual priv register. (#59)
[riscv-isa-sim.git] / riscv / processor.cc
1 // See LICENSE for license details.
2
3 #include "processor.h"
4 #include "extension.h"
5 #include "common.h"
6 #include "config.h"
7 #include "sim.h"
8 #include "mmu.h"
9 #include "disasm.h"
10 #include "gdbserver.h"
11 #include <cinttypes>
12 #include <cmath>
13 #include <cstdlib>
14 #include <iostream>
15 #include <assert.h>
16 #include <limits.h>
17 #include <stdexcept>
18 #include <algorithm>
19
20 #undef STATE
21 #define STATE state
22
23 processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id,
24 bool halt_on_reset)
25 : debug(false), sim(sim), ext(NULL), id(id), halt_on_reset(halt_on_reset)
26 {
27 parse_isa_string(isa);
28 register_base_instructions();
29
30 mmu = new mmu_t(sim, this);
31 disassembler = new disassembler_t(max_xlen);
32
33 reset();
34 }
35
36 processor_t::~processor_t()
37 {
38 #ifdef RISCV_ENABLE_HISTOGRAM
39 if (histogram_enabled)
40 {
41 fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size());
42 for (auto it : pc_histogram)
43 fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second);
44 }
45 #endif
46
47 delete mmu;
48 delete disassembler;
49 }
50
51 static void bad_isa_string(const char* isa)
52 {
53 fprintf(stderr, "error: bad --isa option %s\n", isa);
54 abort();
55 }
56
57 void processor_t::parse_isa_string(const char* str)
58 {
59 std::string lowercase, tmp;
60 for (const char *r = str; *r; r++)
61 lowercase += std::tolower(*r);
62
63 const char* p = lowercase.c_str();
64 const char* all_subsets = "imafdc";
65
66 max_xlen = 64;
67 isa = reg_t(2) << 62;
68
69 if (strncmp(p, "rv32", 4) == 0)
70 max_xlen = 32, isa = reg_t(1) << 30, p += 4;
71 else if (strncmp(p, "rv64", 4) == 0)
72 p += 4;
73 else if (strncmp(p, "rv", 2) == 0)
74 p += 2;
75
76 if (!*p) {
77 p = all_subsets;
78 } else if (*p == 'g') { // treat "G" as "IMAFD"
79 tmp = std::string("imafd") + (p+1);
80 p = &tmp[0];
81 } else if (*p != 'i') {
82 bad_isa_string(str);
83 }
84
85 isa_string = "rv" + std::to_string(max_xlen) + p;
86 isa |= 1L << ('s' - 'a'); // advertise support for supervisor mode
87 isa |= 1L << ('u' - 'a'); // advertise support for user mode
88
89 while (*p) {
90 isa |= 1L << (*p - 'a');
91
92 if (auto next = strchr(all_subsets, *p)) {
93 all_subsets = next + 1;
94 p++;
95 } else if (*p == 'x') {
96 const char* ext = p+1, *end = ext;
97 while (islower(*end))
98 end++;
99 register_extension(find_extension(std::string(ext, end - ext).c_str())());
100 p = end;
101 } else {
102 bad_isa_string(str);
103 }
104 }
105
106 if (supports_extension('D') && !supports_extension('F'))
107 bad_isa_string(str);
108
109 // advertise support for supervisor and user modes
110 isa |= 1L << ('s' - 'a');
111 isa |= 1L << ('u' - 'a');
112 }
113
114 void state_t::reset()
115 {
116 memset(this, 0, sizeof(*this));
117 prv = PRV_M;
118 pc = DEFAULT_RSTVEC;
119 mtvec = DEFAULT_MTVEC;
120 load_reservation = -1;
121 }
122
123 void processor_t::set_debug(bool value)
124 {
125 debug = value;
126 if (ext)
127 ext->set_debug(value);
128 }
129
130 void processor_t::set_histogram(bool value)
131 {
132 histogram_enabled = value;
133 #ifndef RISCV_ENABLE_HISTOGRAM
134 if (value) {
135 fprintf(stderr, "PC Histogram support has not been properly enabled;");
136 fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n");
137 }
138 #endif
139 }
140
141 void processor_t::reset()
142 {
143 state.reset();
144 state.dcsr.halt = halt_on_reset;
145 halt_on_reset = false;
146 set_csr(CSR_MSTATUS, state.mstatus);
147
148 if (ext)
149 ext->reset(); // reset the extension
150 }
151
152 void processor_t::raise_interrupt(reg_t which)
153 {
154 throw trap_t(((reg_t)1 << (max_xlen-1)) | which);
155 }
156
157 static int ctz(reg_t val)
158 {
159 int res = 0;
160 if (val)
161 while ((val & 1) == 0)
162 val >>= 1, res++;
163 return res;
164 }
165
166 void processor_t::take_interrupt()
167 {
168 reg_t pending_interrupts = state.mip & state.mie;
169
170 reg_t mie = get_field(state.mstatus, MSTATUS_MIE);
171 reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie);
172 reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled;
173
174 reg_t sie = get_field(state.mstatus, MSTATUS_SIE);
175 reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie);
176 enabled_interrupts |= pending_interrupts & state.mideleg & -s_enabled;
177
178 if (enabled_interrupts)
179 raise_interrupt(ctz(enabled_interrupts));
180 }
181
182 bool processor_t::validate_priv(reg_t priv)
183 {
184 return priv == PRV_U || priv == PRV_S || priv == PRV_M;
185 }
186
187 void processor_t::set_privilege(reg_t prv)
188 {
189 assert(validate_priv(prv));
190 mmu->flush_tlb();
191 state.prv = prv;
192 }
193
194 void processor_t::enter_debug_mode(uint8_t cause)
195 {
196 state.dcsr.cause = cause;
197 state.dcsr.prv = state.prv;
198 set_privilege(PRV_M);
199 state.dpc = state.pc;
200 state.pc = DEBUG_ROM_START;
201 //debug = true; // TODO
202 }
203
204 void processor_t::take_trap(trap_t& t, reg_t epc)
205 {
206 if (debug) {
207 fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n",
208 id, t.name(), epc);
209 if (t.has_badaddr())
210 fprintf(stderr, "core %3d: badaddr 0x%016" PRIx64 "\n", id,
211 t.get_badaddr());
212 }
213
214 if (t.cause() == CAUSE_BREAKPOINT && (
215 (state.prv == PRV_M && state.dcsr.ebreakm) ||
216 (state.prv == PRV_H && state.dcsr.ebreakh) ||
217 (state.prv == PRV_S && state.dcsr.ebreaks) ||
218 (state.prv == PRV_U && state.dcsr.ebreaku))) {
219 enter_debug_mode(DCSR_CAUSE_SWBP);
220 return;
221 }
222
223 if (state.dcsr.cause) {
224 state.pc = DEBUG_ROM_EXCEPTION;
225 return;
226 }
227
228 // by default, trap to M-mode, unless delegated to S-mode
229 reg_t bit = t.cause();
230 reg_t deleg = state.medeleg;
231 if (bit & ((reg_t)1 << (max_xlen-1)))
232 deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1));
233 if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) {
234 // handle the trap in S-mode
235 state.pc = state.stvec;
236 state.scause = t.cause();
237 state.sepc = epc;
238 if (t.has_badaddr())
239 state.sbadaddr = t.get_badaddr();
240
241 reg_t s = state.mstatus;
242 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_UIE << state.prv));
243 s = set_field(s, MSTATUS_SPP, state.prv);
244 s = set_field(s, MSTATUS_SIE, 0);
245 set_csr(CSR_MSTATUS, s);
246 set_privilege(PRV_S);
247 } else {
248 state.pc = state.mtvec;
249 state.mepc = epc;
250 state.mcause = t.cause();
251 if (t.has_badaddr())
252 state.mbadaddr = t.get_badaddr();
253
254 reg_t s = state.mstatus;
255 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_UIE << state.prv));
256 s = set_field(s, MSTATUS_MPP, state.prv);
257 s = set_field(s, MSTATUS_MIE, 0);
258 set_csr(CSR_MSTATUS, s);
259 set_privilege(PRV_M);
260 }
261
262 yield_load_reservation();
263 }
264
265 void processor_t::disasm(insn_t insn)
266 {
267 uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1);
268 fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n",
269 id, state.pc, bits, disassembler->disassemble(insn).c_str());
270 }
271
272 static bool validate_vm(int max_xlen, reg_t vm)
273 {
274 if (max_xlen == 64 && (vm == VM_SV39 || vm == VM_SV48))
275 return true;
276 if (max_xlen == 32 && vm == VM_SV32)
277 return true;
278 return vm == VM_MBARE;
279 }
280
281 int processor_t::paddr_bits()
282 {
283 assert(xlen == max_xlen);
284 return max_xlen == 64 ? 50 : 34;
285 }
286
287 void processor_t::set_csr(int which, reg_t val)
288 {
289 val = zext_xlen(val);
290 reg_t delegable_ints = MIP_SSIP | MIP_STIP | MIP_SEIP | (1 << IRQ_COP);
291 reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP;
292 switch (which)
293 {
294 case CSR_FFLAGS:
295 dirty_fp_state;
296 state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT);
297 break;
298 case CSR_FRM:
299 dirty_fp_state;
300 state.frm = val & (FSR_RD >> FSR_RD_SHIFT);
301 break;
302 case CSR_FCSR:
303 dirty_fp_state;
304 state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT;
305 state.frm = (val & FSR_RD) >> FSR_RD_SHIFT;
306 break;
307 case CSR_MSTATUS: {
308 if ((val ^ state.mstatus) &
309 (MSTATUS_VM | MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_PUM | MSTATUS_MXR))
310 mmu->flush_tlb();
311
312 reg_t mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE
313 | MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_PUM
314 | MSTATUS_MXR | (ext ? MSTATUS_XS : 0);
315
316 if (validate_vm(max_xlen, get_field(val, MSTATUS_VM)))
317 mask |= MSTATUS_VM;
318 if (validate_priv(get_field(val, MSTATUS_MPP)))
319 mask |= MSTATUS_MPP;
320
321 state.mstatus = (state.mstatus & ~mask) | (val & mask);
322
323 bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS;
324 dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS;
325 if (max_xlen == 32)
326 state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty);
327 else
328 state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty);
329
330 // spike supports the notion of xlen < max_xlen, but current priv spec
331 // doesn't provide a mechanism to run RV32 software on an RV64 machine
332 xlen = max_xlen;
333 break;
334 }
335 case CSR_MIP: {
336 reg_t mask = MIP_SSIP | MIP_STIP;
337 state.mip = (state.mip & ~mask) | (val & mask);
338 break;
339 }
340 case CSR_MIE:
341 state.mie = (state.mie & ~all_ints) | (val & all_ints);
342 break;
343 case CSR_MIDELEG:
344 state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints);
345 break;
346 case CSR_MEDELEG: {
347 reg_t mask = 0;
348 #define DECLARE_CAUSE(name, value) mask |= 1ULL << (value);
349 #include "encoding.h"
350 #undef DECLARE_CAUSE
351 state.medeleg = (state.medeleg & ~mask) | (val & mask);
352 break;
353 }
354 case CSR_MUCOUNTEREN:
355 state.mucounteren = val & 7;
356 break;
357 case CSR_MSCOUNTEREN:
358 state.mscounteren = val & 7;
359 break;
360 case CSR_SSTATUS: {
361 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
362 | SSTATUS_XS | SSTATUS_PUM;
363 return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask));
364 }
365 case CSR_SIP:
366 return set_csr(CSR_MIP,
367 (state.mip & ~state.mideleg) | (val & state.mideleg));
368 case CSR_SIE:
369 return set_csr(CSR_MIE,
370 (state.mie & ~state.mideleg) | (val & state.mideleg));
371 case CSR_SPTBR: {
372 // upper bits of sptbr are the ASID; we only support ASID = 0
373 state.sptbr = val & (((reg_t)1 << (paddr_bits() - PGSHIFT)) - 1);
374 break;
375 }
376 case CSR_SEPC: state.sepc = val; break;
377 case CSR_STVEC: state.stvec = val >> 2 << 2; break;
378 case CSR_SSCRATCH: state.sscratch = val; break;
379 case CSR_SCAUSE: state.scause = val; break;
380 case CSR_SBADADDR: state.sbadaddr = val; break;
381 case CSR_MEPC: state.mepc = val; break;
382 case CSR_MTVEC: state.mtvec = val >> 2 << 2; break;
383 case CSR_MSCRATCH: state.mscratch = val; break;
384 case CSR_MCAUSE: state.mcause = val; break;
385 case CSR_MBADADDR: state.mbadaddr = val; break;
386 case CSR_DCSR:
387 state.dcsr.prv = get_field(val, DCSR_PRV);
388 state.dcsr.step = get_field(val, DCSR_STEP);
389 // TODO: ndreset and fullreset
390 state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM);
391 state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH);
392 state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS);
393 state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU);
394 state.dcsr.halt = get_field(val, DCSR_HALT);
395 break;
396 case CSR_DPC:
397 state.dpc = val;
398 break;
399 case CSR_DSCRATCH:
400 state.dscratch = val;
401 break;
402 }
403 }
404
405 reg_t processor_t::get_csr(int which)
406 {
407 switch (which)
408 {
409 case CSR_FFLAGS:
410 require_fp;
411 if (!supports_extension('F'))
412 break;
413 return state.fflags;
414 case CSR_FRM:
415 require_fp;
416 if (!supports_extension('F'))
417 break;
418 return state.frm;
419 case CSR_FCSR:
420 require_fp;
421 if (!supports_extension('F'))
422 break;
423 return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT);
424 case CSR_TIME:
425 case CSR_INSTRET:
426 case CSR_CYCLE:
427 if ((state.mucounteren >> (which & (xlen-1))) & 1)
428 return get_csr(which + (CSR_MCYCLE - CSR_CYCLE));
429 break;
430 case CSR_STIME:
431 case CSR_SINSTRET:
432 case CSR_SCYCLE:
433 if ((state.mscounteren >> (which & (xlen-1))) & 1)
434 return get_csr(which + (CSR_MCYCLE - CSR_SCYCLE));
435 break;
436 case CSR_MUCOUNTEREN: return state.mucounteren;
437 case CSR_MSCOUNTEREN: return state.mscounteren;
438 case CSR_MUCYCLE_DELTA: return 0;
439 case CSR_MUTIME_DELTA: return 0;
440 case CSR_MUINSTRET_DELTA: return 0;
441 case CSR_MSCYCLE_DELTA: return 0;
442 case CSR_MSTIME_DELTA: return 0;
443 case CSR_MSINSTRET_DELTA: return 0;
444 case CSR_MUCYCLE_DELTAH: if (xlen > 32) break; else return 0;
445 case CSR_MUTIME_DELTAH: if (xlen > 32) break; else return 0;
446 case CSR_MUINSTRET_DELTAH: if (xlen > 32) break; else return 0;
447 case CSR_MSCYCLE_DELTAH: if (xlen > 32) break; else return 0;
448 case CSR_MSTIME_DELTAH: if (xlen > 32) break; else return 0;
449 case CSR_MSINSTRET_DELTAH: if (xlen > 32) break; else return 0;
450 case CSR_MCYCLE: return state.minstret;
451 case CSR_MINSTRET: return state.minstret;
452 case CSR_MCYCLEH: if (xlen > 32) break; else return state.minstret >> 32;
453 case CSR_MINSTRETH: if (xlen > 32) break; else return state.minstret >> 32;
454 case CSR_SSTATUS: {
455 reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS
456 | SSTATUS_XS | SSTATUS_PUM;
457 reg_t sstatus = state.mstatus & mask;
458 if ((sstatus & SSTATUS_FS) == SSTATUS_FS ||
459 (sstatus & SSTATUS_XS) == SSTATUS_XS)
460 sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD);
461 return sstatus;
462 }
463 case CSR_SIP: return state.mip & state.mideleg;
464 case CSR_SIE: return state.mie & state.mideleg;
465 case CSR_SEPC: return state.sepc;
466 case CSR_SBADADDR: return state.sbadaddr;
467 case CSR_STVEC: return state.stvec;
468 case CSR_SCAUSE:
469 if (max_xlen > xlen)
470 return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1));
471 return state.scause;
472 case CSR_SPTBR: return state.sptbr;
473 case CSR_SSCRATCH: return state.sscratch;
474 case CSR_MSTATUS: return state.mstatus;
475 case CSR_MIP: return state.mip;
476 case CSR_MIE: return state.mie;
477 case CSR_MEPC: return state.mepc;
478 case CSR_MSCRATCH: return state.mscratch;
479 case CSR_MCAUSE: return state.mcause;
480 case CSR_MBADADDR: return state.mbadaddr;
481 case CSR_MISA: return isa;
482 case CSR_MARCHID: return 0;
483 case CSR_MIMPID: return 0;
484 case CSR_MVENDORID: return 0;
485 case CSR_MHARTID: return id;
486 case CSR_MTVEC: return state.mtvec;
487 case CSR_MEDELEG: return state.medeleg;
488 case CSR_MIDELEG: return state.mideleg;
489 case CSR_TDRSELECT: return 0;
490 case CSR_DCSR:
491 {
492 uint32_t v = 0;
493 v = set_field(v, DCSR_XDEBUGVER, 1);
494 v = set_field(v, DCSR_HWBPCOUNT, 0);
495 v = set_field(v, DCSR_NDRESET, 0);
496 v = set_field(v, DCSR_FULLRESET, 0);
497 v = set_field(v, DCSR_PRV, state.dcsr.prv);
498 v = set_field(v, DCSR_STEP, state.dcsr.step);
499 v = set_field(v, DCSR_DEBUGINT, sim->debug_module.get_interrupt(id));
500 v = set_field(v, DCSR_STOPCYCLE, 0);
501 v = set_field(v, DCSR_STOPTIME, 0);
502 v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm);
503 v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh);
504 v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks);
505 v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku);
506 v = set_field(v, DCSR_HALT, state.dcsr.halt);
507 v = set_field(v, DCSR_CAUSE, state.dcsr.cause);
508 return v;
509 }
510 case CSR_DPC:
511 return state.dpc;
512 case CSR_DSCRATCH:
513 return state.dscratch;
514 }
515 throw trap_illegal_instruction();
516 }
517
518 reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc)
519 {
520 throw trap_illegal_instruction();
521 }
522
523 insn_func_t processor_t::decode_insn(insn_t insn)
524 {
525 // look up opcode in hash table
526 size_t idx = insn.bits() % OPCODE_CACHE_SIZE;
527 insn_desc_t desc = opcode_cache[idx];
528
529 if (unlikely(insn.bits() != desc.match)) {
530 // fall back to linear search
531 insn_desc_t* p = &instructions[0];
532 while ((insn.bits() & p->mask) != p->match)
533 p++;
534 desc = *p;
535
536 if (p->mask != 0 && p > &instructions[0]) {
537 if (p->match != (p-1)->match && p->match != (p+1)->match) {
538 // move to front of opcode list to reduce miss penalty
539 while (--p >= &instructions[0])
540 *(p+1) = *p;
541 instructions[0] = desc;
542 }
543 }
544
545 opcode_cache[idx] = desc;
546 opcode_cache[idx].match = insn.bits();
547 }
548
549 return xlen == 64 ? desc.rv64 : desc.rv32;
550 }
551
552 void processor_t::register_insn(insn_desc_t desc)
553 {
554 instructions.push_back(desc);
555 }
556
557 void processor_t::build_opcode_map()
558 {
559 struct cmp {
560 bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) {
561 if (lhs.match == rhs.match)
562 return lhs.mask > rhs.mask;
563 return lhs.match > rhs.match;
564 }
565 };
566 std::sort(instructions.begin(), instructions.end(), cmp());
567
568 for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++)
569 opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction};
570 }
571
572 void processor_t::register_extension(extension_t* x)
573 {
574 for (auto insn : x->get_instructions())
575 register_insn(insn);
576 build_opcode_map();
577 for (auto disasm_insn : x->get_disasms())
578 disassembler->add_insn(disasm_insn);
579 if (ext != NULL)
580 throw std::logic_error("only one extension may be registered");
581 ext = x;
582 x->set_processor(this);
583 }
584
585 void processor_t::register_base_instructions()
586 {
587 #define DECLARE_INSN(name, match, mask) \
588 insn_bits_t name##_match = (match), name##_mask = (mask);
589 #include "encoding.h"
590 #undef DECLARE_INSN
591
592 #define DEFINE_INSN(name) \
593 REGISTER_INSN(this, name, name##_match, name##_mask)
594 #include "insn_list.h"
595 #undef DEFINE_INSN
596
597 register_insn({0, 0, &illegal_instruction, &illegal_instruction});
598 build_opcode_map();
599 }
600
601 bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes)
602 {
603 return false;
604 }
605
606 bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes)
607 {
608 switch (addr)
609 {
610 case 0:
611 state.mip &= ~MIP_MSIP;
612 if (bytes[0] & 1)
613 state.mip |= MIP_MSIP;
614 return true;
615
616 default:
617 return false;
618 }
619 }